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Abstract—The news articles we read online can reveal a lot
about us. Privacy aware groups have therefore long pushed for
the use of HTTPS (encrypted end-to-end communication). In this
paper, we present the design and evaluation of a lightweight
framework that can (1) successfully identify individual news
articles even when the articles are delivered over encrypted
connections, and (2) separate between articles associated with
different news websites even when the websites are delivered over
the same infrastructure. Our results demonstrate that naive use
of HTTPS is not enough to prevent attackers monitoring a user’s
connections from identifying articles that the user reads on the
most popular news website. We also provide insights into what
makes some websites more/less resilient to our attack, and we use
Twitter data to evaluate the effectiveness of an example attack
that in addition incorporates the popularity of individual news
articles. We are the first to demonstrate and evaluate the practical
effectiveness of this type of attack when applied on modern
news websites, and our multi-website-based evaluation provides
valuable insights into how websites can best protect themselves
against this type of attacks. These insights are important for
websites that want to help protect the privacy of their users.

Index Terms—Fingerprinting attack, Encrypted traffic analy-
sis, News articles identification

I. INTRODUCTION

If monitored over time, the news articles that a person

reads can easily reveal information about a person and their

leanings. With most people today obtaining their news online,

many entities are therefore dedicating significant effort trying

to learn as much as they can about the users’ online activities.

In the privacy literature, as well as in modern media,

most attention related to this privacy concern have been

given to cookie management, GDPR/CCPA, the information

that is revealed to content providers and ad providers, or

alternatively the protection achieved when browsing using

privacy enhancing technologies (PETs) such as Tor. Much

less attention has been given to what an eavesdropper that

monitors regular HTTPS traffic may learn. Furthermore, due

to their focus on Tor and other PETs, most fingerprinting

works have focused on determining what websites are visited

rather than what news articles that a user reads on certain

websites. Two reasons for this research gap may be that (1)

most web traffic was not encrypted until recent years (due to

initially slow adoption of HTTPS), causing most to focus on

the context of PETs, where the problem of identifying websites

presented a sufficiently hard challenge, and (2) it being non-
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trivial to identify individual news articles from the encrypted

connections visible to the eavesdropper.

Compared to third-party cookies and third-party providers,

which make themselves indirectly visible on the webpages

(via objects/cookies), eavesdroppers are by their nature more

difficult to expose and protect against. Yet, if given the ability

to extract even a small fraction of the news articles from the

encrypted traffic, such attacker could pose a significant privacy

threat to individuals. For example, a network operator may

collect and sell user information for marketing purposes, a

government may perform mass surveillance, tracking citizens’

online interests and reading habits to suppress or highlight

political views, or a corporation/organization may profile

their employers/members to further their own agenda. An

eavesdropper could also be another user located on the same

network or simply sniffing packets in the air. For this reason,

it is very important to better understand the capabilities of an

entity that can monitor the encrypted web traffic.

To address this question, in this paper, we present and

evaluate a methodology for identifying individual news articles

(with a high probability) even when (1) the news articles

are delivered over encrypted connections using Hypertext

Transfer Protocol Secure (HTTPS) and (2) many articles

may be delivered over the same infrastructure. To break the

confidentiality of encrypted web connections, we design a

fingerprinting attack based on a lightweight classifier that

requires little training and a proxy-less framework for auto-

matically collecting and labeling encrypted TCP traffic. The

attack compromises the confidentiality through a combination

of deep packet inspection (DPI), analysis of traffic patterns,

and matching of digital fingerprints created for individual news

articles (e.g., based on the popularity of news articles that day).

Our method is shown to provide high F1 scores, recall, and

precision; highlighting the danger of these types of privacy

violating attacks. Moreover, we show that the size of the X.509

certificate (encrypted with TLS 1.3) can be used to narrow

down the potential news websites that a user may read. This

allows an attacker to effectively differentiate between popular

websites using the same underlying Content Delivery Network

(CDN) and that cannot be separated using IP blocks alone.

Finally, we show that only a limited number of news articles

per news source need to be fingerprinted each day for an

attacker to successfully map many articles to a monitored user.

Most prior work (Section VII) have developed fingerprinting

techniques for classification of websites, not for individual

©IFIP, (2022). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.

The definitive version was published in Proc. IFIP Networking, 2022, http://IFIP DL



news articles, and most these works focus only on identi-

fying a user visiting landing pages. Furthermore, many of

these techniques have become increasingly complex, requiring

significant training (e.g., of a GAN [1]). In contrast, we take

on the more ambitious target of identifying individual news

articles (i.e., internal web pages) within the most popular news

website visited by a user, and we achieve this using a very

lightweight classifier. Furthermore, most prior fingerprinting

works only apply within a closed-world setting [2]. In contrast,

we base our evaluation on a real-world scenario and provide

tangible insights into the vulnerability of the most popular

news websites. To drive our real-world scenario, we use links

extracted from Twitter, allowing us to incorporate the relative

popularity of both news websites and individual articles into

our evaluation and discussion of a possible attack.

Outline: Section II describes how we extract the features

used for website and article identification. Section III describes

the design of our identification framework. The next two

sections evaluate the approach for the 10 most popular news

websites observed in our Twitter dataset (Section IV) and pro-

vide insights into why the basic attack is more/less successful

on certain websites (Section V). Section VI then presents and

evaluates an example attack that leverages the popularity skew

of the articles read each day. Finally, we describe related work

(Section VII) and present our conclusions (Section VIII).

II. FEATURE EXTRACTION

Feature extraction from encrypted connection data of web-

site visits is non-trivial. One reason for this is that all web-

sites are implemented differently, loading a website typically

involves downloading a large number of files from many

different domains, and the files downloaded (e.g., ads) are

often personalized for each user. As part of our work, we have

identified and use two simple fingerprinting features extracted

from the encrypted traffic: the X.509 certificate size and the

size of the main document associated with the article. To

calculate these features, we first extract the Transport Layer

Security (TLS) chunks from each connection.

A. TLS chunk extraction

TLS is used to secure modern HTTPS connections [3]. Iden-

tification and authentication are established using certificates

issued to web servers by a Certificate Authority (CA). The

certificates help clients verify the identity of a web server.

Confidentiality and integrity are established using encryption

and a message integrity check with a keyed Message Authen-

tication Code (MAC). As the connections use TLS encryption,

the contents are kept secret even if intercepted in transit. In

this paper, we assume that these encryption methods are secure

and instead base our features on the encrypted sizes.

We define TLS chunks as the collection of TLS record sizes

of the application data sent from the server to the client. To

extract TLS chunks, we concatenate TCP payload bytes sent

from the server to the client into one byte-stream. Then, we

extract the TLS version by searching for the byte sequence

[0x16, 0x03, m], where m ∈ {0x00, 0x01, 0x02, 0x03}. The

TABLE I
CERTIFICATE PARAMETERS FOR THE MOST LINKED NEWS DOMAINS (IN

ORDER) ON TWITTER AT THE TIME OF THE EXAMPLE STUDY.

Domain Certificate size Certificate index

New York Times Cs ∈ {5176} Ci ∈ {1, 2}
Yahoo Cs ∈ {5253, 4774} Ci ∈ {2, 4}

Fox News Cs ∈ {2933, 2934, 2935} Ci ∈ {2, 4}
MSN Cs ∈ {5558, 5562} Ci ∈ {0}
BBC Cs ∈ {5390, 5310} Ci ∈ {2, 4}

NBC News Cs ∈ {2772} Ci ∈ {1, 3}
Forbes Cs ∈ {2715, 2720} Ci ∈ {1}

Buzzfeed Cs ∈ {3028} Ci ∈ {1, 4}
Reuters Cs ∈ {6280} Ci ∈ {2, 4}

New York Post Cs ∈ {4563} Ci ∈ {2, 4}

first byte 0x16 indicates the start of a TLS record of type

“Handshake”, and the following two bytes indicate the major

and minor TLS version, respectively.

After acquiring the TLS version, we begin the extraction of

TLS chunks. By searching for the byte sequence [0x17, 0x03,

ma] (where the byte 0x17 indicates a TLS record of type

“Application”, and ma is the minor TLS version previously

extracted), we can identify all TLS chunks of interest from the

byte stream. The two bytes following these sequences contain

the TLS record size. By extracting these sequences and TLS

sizes, we can form TLS chunks from a TCP connection. For

details of TLS bytes and handshake, we refer to the RFC [3].

Our technique works best if all chunks of a connection are

captured. In the following, we assume an attacker with a good

vantage point (e.g., at the edges of the network) that can

observe all packets associated with a connection.

B. TLS certificate size extraction

Studying the encrypted packet streams when downloading

a significant number of articles from each news website,

including decrypted example connections, we find that (1) the

TLS chunk delivering the certificate can be identified from the

TLS chunk sequence and (2) the size and its corresponding

chunk index can be used to identify which website is accessed.

The certificate size is captured by the size of the largest early

chunk, and both the chunk size and index are typically the

same when connecting to a given website. Here, we use the

certificate size Cs with chunk index Ci as a feature to limit the

lookup scope of a TCP connection to a specific web domain.

Table I shows the observed certificate parameters for the 10

news websites for which we observed the most news article

links on Twitter for the week 2021-02-01 to 2021-02-06,

inclusive. (For the data collection, we extracted all tweets with

a link and identified those that point to a news domain. Here

we focus only on the top 10.) The indices refer to the TLS

chunks sent from the server to the client. When identifying the

domain of an encrypted connection, we search for a matching

TLS chunk of size Cs at index Ci.

C. Document transfer size extraction

To map an encrypted connection to an individual news

article on the identified domain, we first extract the transfer

size of the main document using a careful reconstruction

process. Here, it is important to note that the main document is



almost always fragmented into and delivered as multiple TLS

chunks of varying sizes. While these chunk-size sequences

at first may appear somewhat random and the reconstruction

process is different for each studied news domains (likely due

to server-side implementation differences), we have identified

predictable patterns that we leverage to reconstruct the transfer

size of the main document (and other documents) delivered.

We have found that the file transfer sizes can be recon-

structed for most websites using one of two main approaches:

“sequence based” and “anchor based”. We next describe these

approaches and present good settings for each domain.

The sequence based reconstruction process uses unbroken

sequences of TLS chunks of size Di ∈ D bytes to form the

document transfer size. For some domains, we also include

a trailing TLS chunk after the sequence in the transfer size

or added additional exceptions (e.g., to allow for a smaller

number of chunks breaking the sequence but not the transfer of

the file). The anchor based process is fundamentally different,

and relies on two anchor TLS chunks to mark the start and

the end. Here, one size Ts indicates the start and one size

Te indicates the end. We simply calculate the transfer size

by summing the size of the TLS chunks in between the

first two anchor chunks (i.e., first occurrence of Ts and Te).

Depending on the domain, the size of Ts and Te are also

included in the transfer size. We next present the domain-

specific reconstruction process and parameters that we found

worked best for each domain.

New York Times: Sequence based with D ∈ {1395, 1055,
202, 40}, including trailing TLS chunk. Occasionally, the

sequence began with a chunk of size 1395 bytes and then a

chunk not in D. In those cases, we filtered these two chunks.

Yahoo: Sequence based with D ∈ {1395}. Sequences were

often broken repeatably by chunks of varying sizes. These are

included if the breaking sequence length was less than four.

Fox News: Anchor based with Ts = Te = 2900, including

trailing TLS and anchor chunks. The anchors Ts and Te mark

the first and last occurrence of the chunk size, respectively.

MSN: Anchor based with Ts = Te = 33. The anchors

mark the first and second occurrence of the TLS chunk size,

respectively. If Ts and Te were received back-to-back, the

anchors mark the second and third occurrences instead.

BBC: Sequence based with D ∈ {1395}, including trail.

NBC News: Anchor based with Ts ∈ {72, 2907} and Te ∈
{843, 844, 845, 846, 847, 848, 849, 744}. If Ts = 2907, it is

included in the transfer size.

Forbes: Sequence based with D ∈ {1395}, including

trailing TLS chunk. Occasionally, the sequence was broken by

TLS chunks of sizes less than 100 bytes, which were filtered.

Buzzfeed: Sequence based with D ∈ {1395, 1055}.

Reuters & New York Post: Anchor based with Ts = 66
and Te = 26, or Ts = Te = 26 with anchors marking the first

and second occurrence of the TLS chunk size.

III. IDENTIFICATION FRAMEWORK

Our framework is split into two tracks: one for training

and one for news article identification. The training track

Data
collection

Data
extraction

Training / fingerprint generation

Data
collection

Data
extraction    Identification

Article identification (with confidence)

Fingerprint
creation

Score 
+ vote

Fig. 1. High-level overview of the system design.

is run before the identification track to provide a collection

of fingerprints that the identification module of the second

track uses to identify the most likely articles that a user

may be reading. Figure 1 shows an overview of these tracks

together with their modules. The data collection and extraction

modules are used for both tracks. The main difference is in

the third module of each track. For the first track, this module

simply creates fingerprints, whereas for the second track, the

fingerprint of an observed connection is compared against the

example fingerprints previously created during the training

phase. The implementation is written in C# targeting .NET

Core 3.1 to allow for cross-platform functionality.

Data collection: The data collection module uses Sele-

nium [4] to browse news websites and capture browsing

information. We use SharpPcap [5] for packet capturing and

reading/writing to PCAP files. For our experiments, we capture

network data while browsing to a predetermined set of URLs,

store the actual document transfer size with the server IP

address, and create a traffic data object by bundling the brows-

ing information with the PCAP data. Due to our bandwidth

limitation (100/100 Mbps), we collect network data from five

domains in parallel on five isolated browsers. Both the browser

and DNS-cache are cleared between each data collection.

Data extraction: To find the connection transferring the

main document, we extract TCP connections and TLS chunks

from the PCAP data. Then, we filter the connections and

extract those that (1) fall within a time window of when the

initial request was made, (2) contain the server IP address, and

(3) contain TLS chunks.

Fingerprint creation: From the extracted TCP connections

and their TLS chunks, we compare the reconstructed document

transfer size to the actual size, and create a fingerprint based

on the best matching connection if the difference falls within a

maximum allowed threshold. A fingerprint contains the URL,

the certificate transfer size, and the document transfer size.

Creating collection of fingerprints: Due to small variations

in the transfer size of an individual news article, we collect

several fingerprints for each URL of interest. This collection

of fingerprints is later used by the identification module

to score and classify observed connections. Because of our

lightweight design (e.g., only two factors need to be extracted

per website visit), the training process requires little time.

For example, creating 1, 500 fingerprints from 1.3 million

connections takes less than 60 seconds on our 6-core Intel

machine (i5-9600K CPU @ 3.70GHz), with 8 GB RAM,

running Windows 10 Home. This means that we can quickly



generate new fingerprints and adapt to changes on the web.

Identification: The identification module first extracts the

certificate transfer size and matches it against the domain-

specific certificate parameters (TLS chunk size and index

previously shown in Table I). This allows us to identify the

browsed domain and reduce the lookup space. Second, the

transfer size of the main document is extracted using our

domain-specific reconstruction process.

Finally, we use a voting group system to identify the

best matching fingerprint from a set of candidates and use a

confidence threshold to decide if we consider the top candidate

a good match. This is achieved through the following steps:

(1) Each fingerprint (including several fingerprints for the

same article) are scored based on the absolute size difference

between their and the observed document transfer size. (2)

We sort the candidate fingerprints based on their difference

score (smallest to largest) and keep the top-Vs, where Vs is

the voting group size. (3) We calculate the average score Ai

per URL of the n URLs with at least one fingerprint in the

top-Vs. (4) For the URL with the lowest average score, say

Ai, we calculate a confidence value C as
∏n

i=2

(

1− A1

A1+Ai

)

.

(5) Our classification is performed only if the confidence C is

above a confidence threshold Ct.

IV. PERFORMANCE TESTING

We use single-factor experiments to evaluate the accuracy

of our news article identification framework. Specifically, we

study the impact of varying one system design parameter at a

time, while the other parameters are set to their default values.

For each experiment configuration, we run 15 experiments

(each with a new set of random pages), and report the average

F1 score, recall, and precision metrics. For completeness, we

also report the loss rate, defined as the percentage of URLs

where the data extraction and fingerprint creation failed. We

next describe the factors varied and their default values.

Pages per domain: The number of pages randomly sampled

from the data set. Pd ∈ {1, 10, 25, 50, 75, 100}, default 10.

Time window: The maximum time threshold for a TCP

connection to start after an initial request (used in data extrac-

tion). Tw ∈ {10, 100, 500, 1000, 100000}, default 500ms.

Score deviation: The maximum document transfer size

difference from the actual size to be considered valid (used

in fingerprint creation). Sd ∈ {0, 10, 50, 100}, default 10%.

Voting group size: The number of top candidate fin-

gerprints to consider in the voting group system (used in

identification). Vs ∈ {1, 10, 5, 20, 50, 100}, default 10.

Confidence threshold: The minimum level of confidence

to classify a connection as a match (used in identification).

Ct ∈ {0, 25, 50, 60, 70, 80, 90, 95, 100}, default 50%.

Score threshold: The maximum matching score allowed

to classify a connection as a match (used in identification).

St ∈ {100, 5000, 10000, 100000}, default 5000.

A. Extraction Performance

Let us first consider the impact of the three factors used

during fingerprint extraction and creation: the number of

pages per domain, the time window, and the score deviation.

Figure 2 summarizes these results as a 12-by-12 grid. Each

row shows the results of a domain (or a collection of domains

as in the case with All and Top Performing) and contains

12 columns grouped into three groups of four. Columns 1-4

show the performance results when varying Pages per Domain.

Similarly, columns 5-8 and 9-12 show the results when varying

the Time Window and Score Deviation, respectively. In each

case, we show the F1 score, recall, precision, and loss rate

as a function of the factor. Here, the solid blue and orange

lines show the maximum and minimum values, respectively.

The dashed blue line shows the mean value for the optimistic

setting, and the dashed orange line for the conservative setting.

With the optimistic settings, we only include the Pd ≤ 100
articles used for training in the evaluation, whereas for the

conservative setting, we also included the 100 − Pd articles

not used for the training. As a reference point, we list the

average score (over the optimistic and conservative means)

achieved using our default configuration (value shown in each

plot) and show its default value (vertical dashed line).

Finally, we use shaded regions to show the parameter region

over which each metric is within ±0.2 of the score achieved

with the default configuration. In general, the wider this region

is, the less sensitive the result are to the parameter value. To

emphasize the differences, we color each region based on the

size of this region (blue indicates 100% coverage, yellow 0%,

and we use linear interpolation for values in between).

In general, we have found the attack to be highly successful

for several domains (e.g., F1 scores higher than 0.8 for 7 out

of 10 domains, and higher than 0.92 for 4 out of 10 domains),

indicating that the method works well for identification of

news articles on these popular websites. Furthermore, the

results are not sensitive to the selection of the time window or

score deviation thresholds (e.g., see large blue regions). With

the success rate for several news websites being more sensitive

to the number of articles per domain (smaller shaded regions),

as discussed later in the paper, it is important to note that most

reads each day are associated with a small subset of articles on

each website. We next discuss the attack’s performance (and

each factor’s impact) when applied on each domain.

BBC: Our attack performs well on BBC with an F1 score

of 0.924, recall of 0.966, and precision of 0.901 at the default

configuration. With an increase in the number of pages, the

metrics drop to 0.726, 0.653, and 0.817, respectively. The

stability is high for the F1 score and precision while being

around 50% for the recall. The results show that our attack

scales well on BBC with the number of internal pages. For

different time windows, the best performance is achieved at or

above the default value of 500ms, while the score deviation

performs well at or above its default value of 10%.

Buzzfeed: The performance starts well on Buzzfeed but

decrease rapidly with more pages. This is also seen by the

small stability region for F1 and recall. In contrast, the

precision is near 1.0 for all number of internal pages. The

time window and score deviation factors have small impact

on the performance if chosen at or above 100ms and 10%.
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Fig. 2. Performance impact of three fingerprinting parameters (Pages per Domain, Time Window and Score Deviation) measured using four metrics (F1
score, Recall, Precision, Loss Rate) for each of the domains, as well as for all domains and the top performing domains collectively.

Forbes: The attack on Forbes performs well with high

stability and mean values for F1 score, recall, and precision

(mean values always above 0.8). We find the optimal value for

the time window to be at or above 100ms, and that the score

deviation performs well at or above 10%.

Fox News: The performance of Fox News starts well but

decreases with the number of internal pages, also shown by the

smaller stability regions. The time window and score deviation

have limited impact if chosen at or above 100ms and 10%.

MSN: The performance on MSN decreases rapidly with the

number of internal pages. The results are relatively insensitive

around the default time window selection. The choice of score

deviation has little-to-small impact if chosen at or above 10%.

NBC News: The performance of NBC News is similar but

slightly better than that of Fox News.

New York Post: The performance on New York Post is

poor, with low scores for all three metrics, and across the

parameter region. The main reason for the poor performance

is that New York Post does not have a clear chunk size

pattern, making it difficult to extract TLS chunks and identify

transfer sizes from the network trace. As we discuss later, this

observation may be used as a fingerprinting prevention strategy

to help protect against attacks similar to what we demonstrate

here. As such, New York Post may serve as an example use

case for how fingerprinting can be made more difficult.

New York Times: The performance on New York Times

is similar to that of BBC and Forbes, with high scores for all

number of pages and large stability regions. The choice of the

time window has only a small impact if chosen at or above

100ms, while the choice of score deviation peaks near 10%.

Reuters: Reuters performs similar to NBC News.

Yahoo: Yahoo performs similar to the New York Post.

All: In general, the number of pages per domain has the

largest impact on the F1, recall, and precision. We observe a

performance drop as the number of internal pages increases.

For example, when combining the results from all domains,

the performance starts relatively high but decreases to near

0.5 for all three metrics. The impact of the time window and

score deviation is small (e.g., big stability regions), especially

if chosen to be at or above 100ms and 10%. None of the

factors have any significant impact on the loss rate. The small

losses are instead due to malformed network traces.
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Fig. 3. Performance impact of three identification parameters (Voting Group Size, Confidence Threshold and Score Threshold) measured using four metrics
(F1 score, Recall, Precision, Loss Rate) for each of the domains, as well as for all domains and the top performing domains collectively.

Top Performing: Finally, as an attack is expected to be

used on domains with a high success rate, we group the top

performing domains defined as those with F1 ≥ 0.5 at 100

internal pages (BBC, Forbes, NBC News, New York Times,

Reuters). While the values of the three scoring metrics again

decrease as the number of internal domains increases, this

happens less rapidly compared to for all domains. The time

window and score deviation threshold follow a similar pattern.

B. Identification Performance

The three factors used for identification also affect the per-

formance. Figure 3 shows the results when varying the Voting

Group Size, Confidence Threshold, and Score Threshold.

In general, the results are not particularly sensitive to the

confidence threshold or the score threshold. For these factors,

almost all websites have large (blue shaded) stability regions.

While the regions are smaller for the voting group size factor,

the region is still substantial, making it easy to make a

good global threshold choice or selecting domain specific

thresholds. We next discuss the results on a per-domain basis.

BBC: We observe a small tradeoff between F1/recall and

precision when varying the Voting Group Size. The F1 score

and recall decrease as the voting group increases, while

the precision increases slightly. The stability region for F1

and recall are smaller than for precision, showing that the

tradeoff is not equal in absolute values. A similar tradeoff

(but with lower scores) is present when varying the confidence

threshold. The score threshold has only small impact.

Buzzfeed: The performance metrics are stable on Buzzfeed

with large stability regions. For the group size, we observe

only a slight decrease when the factor increases. We observe

no clear trend when choosing different confidence and score

thresholds. Similar to the case with extraction factors, the

precision value stays near 1.0 for all identification factors.

Forbes: The attack does not perform well on Forbes with

large group size. With small stability regions for F1 and recall,

it is clear that a smaller voting group is beneficial on Forbes.

For the confidence threshold, we observe a tradeoff between

F1/recall and precision. However, the tradeoff is not equal,

and an overall performance increase is gained by using a lower

confidence threshold. The score threshold has minimal impact.
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Fig. 4. Comparison of the actual (blue) and extracted (brown) transfer size distributions of each domain, obtained using the default setting and 100 pages per
domain. The x-axis scale is selected to encompass both the smallest and largest observed transfer size, and the x-range is split into 50 equally large buckets.

Fox News: The performance on Fox News decreases as

the group size increases, with a slight increase in precision.

Similar to Forbes, the tradeoff between F1/recall and precision

is clearly visible when varying the confidence threshold.

Except for small score threshold, this factor has small impact.

MSN: Low and decreasing F1 score and recall are observed

even for small voting groups and confidence thresholds. The

precision can be increased by selecting a higher confidence

threshold. For the score threshold, we observe limited impact.

NBC News: The F1 score decreases significantly with group

sizes beyond the default size. The tradeoff between F1/recall

is clearly shown for the confidence threshold, and the choice

of score threshold has only limited impact.

New York Post: In addition to poor performance, we

observe no clear trend when varying the identification factors

for New York Post. This again captures that it was difficult to

identify and extract the document sizes (from the encrypted

traffic) when visiting news articles on New York Post.

New York Times: With small stability regions for F1 score

and recall, and only a slight increase in precision, a large group

size would be of little benefit here. On the contrary, we observe

large stability regions when varying the confidence threshold.

Due to a significant decrease in F1/recall when increasing the

confidence threshold, there are only small gains with a large

value unless aiming for a precision value near 1.0. We observe

little-to-no impact for different score thresholds.

Reuters: For Reuters, we again observe a clear tradeoff

in F1/recall and precision as the group size and confidence

threshold increases, showing some benefits of using larger

values. The score threshold has small but visible impact.

Yahoo: Similar to New York Post, we observe no clear

trends and poor performance for Yahoo.

All: In general, there is no significant performance gain in

increasing the group size, where a size near 10 performs well

in most cases. Using a large group size results in a significant

drop in F1/recall, but only a small gain in precision. The

tradeoff between F1/recall and precision is most visible when

varying the confidence threshold. We receive high precision

but low F1/recall for high values, while low values result

in high F1/recall at the cost of precision. The confidence

threshold can thus be tuned based on the desired tradeoff.

Furthermore, as the voting group system performs well, vary-

ing the score threshold by filtering classifications based on

their distance to a fingerprint does not significantly impact

performance. The score threshold has little impact in raising

the lower bound for the metrics. Similar to the extraction

factors, none of the identification factors have any significant

performance impact on the loss rate. This is expected as these

factors are not connected to the data extraction process. The

small deviations are due to random sampling.

Top Performing: We observe similar but better results

when considering only the five top performing domains when

varying the group size and score threshold. We also receive

a significant increase in precision when increasing the confi-

dence threshold. Here, the decrease in F1 and recall might be

acceptable in case a high precision is desired.

V. TRANSFER SIZE ANALYSIS

Most differences in how well the attack worked on different

websites can be explained by the variation in the observed

(and actual) transfer sizes of individual news articles. Figure 4

shows the distribution of actual and reconstructed/extracted

transfer sizes. With our reconstruction process working well

for all domains except New York Post, it is perhaps not

surprising that we observe high overlap for all domains except

for the New York Post. While there may be ways to accurately

extract transfer sizes from the encrypted data for New York

Post, the unpredictable nature of the chunking suggest that

identification of patterns may be difficult. In fact, we do

not rule out the possibility that the patterns we observe is

due to a privacy-aware chunking implementation. Based on

our findings, potential countermeasures could include websites

introducing randomness in the chunking and CAs issuing

certificates only from a limited set of “standard” sizes (to

increase overlap probability in certificate sizes).



TABLE II
TRANSFER SIZE VARIATION FOR NEWS ARTICLES (BYTES).

Domain Mean variance Max variance Min variance

BBC 1,065 19,469 15

Buzzfeed 53 226 2

Forbes 2,283 22,333 3

Fox News 317 2,239 79

MSN 2,006 26,647 79

NBC News 588 2,499 0

New York Post 1,446 3,956 76

New York Times 1,399 55,820 264

Reuters 606 3,018 46

Yahoo 47,105 144,209 4,992

The relatively poor performance of the other two domains

with F1 scores below 0.8 (i.e., MSN and Yahoo) can be

explained by two factors that together complicates the identi-

fication of articles. First, most articles of these two domains

have similar size (e.g., both distributions have one or two

clear spikes). Second, the two domains have among the highest

relative variation in the document sizes of individual articles.

(This is seen by comparing the individual variations shown in

Table II with the order of magnitudes observed in Figure 4.)

Combined, these two aspects result in dense clustering of

fingerprints (with most documents of similar size) and the

need to leave room for some flexibility (due to high variance);

making it difficult to make high-confidence predictions. We

also note that even the slight split into two spikes (MSN)

compared to one spike (Yahoo) and relatively less individual

variations (MSN relatively less variation than Yahoo) allowed

MSN to achieve higher F1 scores than Yahoo.

Finally, for 7 out of the 10 domains the attack is successful

(e.g., achieve F1 scores higher than 0.8). The high success rate

for these domains can be explained by (1) good matching and

(2) sufficiently higher variance in the sizes observed between

different articles compared to for an individual article.

VI. DISCUSSION: EXAMPLE ATTACK

While there are many ways to implement and execute

the presented attack, we use our Twitter data to discuss the

effectiveness of one example approach. First, we note that the

reads at any given news website are heavily skewed [6] and

that the news cycle typically changes daily [7]. For example,

in our dataset, the 10 most popular links of a domain (at

a particular day) were responsible for on average 37% of

the retweets, the top-50 for 67%, and the top-100 for 78%.

Motivated by high correlation between the number of retweets

and reads [6], we use the retweets to estimate the fraction of

article visits correctly identified by an attacker that track users

accessing these websites (e.g., after visiting Twitter; easy to

capture using IP address info, DNS data, or a combination

thereof) and only use fingerprints for the top-K news articles

observed for that website on a given day.

Table III provides conservative lower bound estimates of

the expected recall, precision, and F1 scores when using the

fingerprints of the top-10 and top-50 articles of each website.

For these estimates, we have used the conservative average

results of the precision PK and recall RK when using only

TABLE III
CONSERVATIVE LOWER-BOUND ESTIMATES OF THE RECALL AND

PRECISION WHEN USING THE TOP-K ARTICLES OF EACH SERVICE.

K=10 K=50

Domain R PLB F1LB R PLB F1LB

BBC 0.97 0.48 0.64 0.83 0.61 0.70

Buzzfeed 0.64 0.34 0.44 0.30 0.72 0.43

Forbes 0.98 0.38 0.54 0.96 0.63 0.76

Fox News 0.96 0.41 0.58 0.60 0.49 0.54

MSN 0.39 0.10 0.15 0.21 0.29 0.24

NBC News 0.99 0.36 0.52 0.73 0.56 0.63

New York Post 0.07 0.06 0.06 0.00 0.00 0.00

New York Times 0.99 0.33 0.49 0.89 0.51 0.65

Reuters 0.91 0.27 0.42 0.68 0.37 0.48

Yahoo 0.10 0.10 0.10 0.03 0.05 0.04

this top-K set and then noted that (1) the recall rate R on

the full set of articles observed is the same as RK and (2) the

precision can be lower bounded by PLB = qKPK , where qK is

the fraction of requests that are to the top-K articles (estimated

as the number of retweets of these news articles). This can

be easily derived by keeping track of true positive rates and

making the conservative assumption that we see the same false

positive rate for the pages that are not fingerprinted as those

that are fingerprinted. In general, we do better. Finally, we

estimate the F1 scores as F1LB = 2RKqKPK/(RK+qKPK).
Even with these conservative estimates, the attacker could

achieve an F1 score above 0.5 for half of the websites.

Depending on the long-term objective, we can use K = 10 to

increase the recall or K = 50 to increase the precision. For

example, a patient attacker can use the top-10 articles each

day to ensure a recall above 0.9 for six of the websites. This

shows that an attacker monitoring the service for an extended

time period could accurately identify many articles that a user

reads even though the traffic is encrypted. From these articles,

the attacker can then identify biases, preferences, and other

aspects that may compromise the user’s privacy.

VII. RELATED WORK

While encrypted traffic analysis is a well-studied area, many

works have focused on website fingerprinting [8]–[12] rather

than determining what article a user reads on a particular

website. Much of this research apply various machine learning

techniques [1], [13]–[25] to fingerprint websites obtained using

privacy enhancing technologies such as Tor, JAP, OpenSSL,

or OpenVPN. Others have proposed various countermea-

sures [26]–[32] or tried to automate the feature extraction [33],

[34]. None of these works try to fingerprint individual news

articles, and the only other work that we find (and that claims

to be the first) that consider internal pages uses a heavy GAN

model [1]. In contrast, our approach is much more lightweight

and yet shown to be successful for a practical attack scenario.

Besides identifying browsed web pages, fingerprinting at-

tacks and encrypted traffic analysis can also be used to

reveal other information, such as user actions [35], buffer

conditions [36], video streams [37], mobile applications [38],

voice traffic [39], and messaging applications [40]. For exam-

ple, Bahramali et al. [40] identify group members of instant

messaging applications by studying packet timing and sizes.



Finally, Aqeel et al. [41] highlight the importance of mea-

surement studies to differentiate between landing and internal

pages. They show that around two-thirds of the reviewed

publications in top-tier networking conferences are not directly

applicable to internal pages. Similarly, in contrast to prior

fingerprinting research, we focus specifically on the internal

webpages (i.e., the news articles) of a few targeted domains.

VIII. CONCLUSION

In this paper, we have presented the design and evaluation

of a framework that can successfully identify individual news

articles even when the articles are delivered over encrypted

connections. This shows that HTTPS is not enough to protect

the user’s privacy when visiting a news website. We have also

shown that we can separate between articles associated with

different news websites even when the websites are delivered

over the same infrastructure. This significantly increases the

attacker’s capability in scenarios where websites end up using

the same CDN. By comparing the success rates and the

underlying reasons behind these success rates for different

websites, we also provide insights into what makes some

websites more/less resilient to our attack. Finally, using Twitter

data, we have demonstrated the effectiveness of an example

attack that in addition incorporates the popularity of individual

news articles and discussed tradeoffs associated with how

many fingerprints to be used each day. The insights provided

are valuable for websites wanting to protect the privacy of

their users. Interesting future work include validating the

methodology on other internal documents than news articles.
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