
Performance Comparison of Messaging Protocols
and Serialization Formats for Digital Twins in IoV

Daniel Persson Proos
Linköping University, Sweden

Niklas Carlsson
Linköping University, Sweden

Abstract—This paper compares the performance tradeoffs of
popular application-layer messaging protocols and binary serial-
ization formats in the context of vehicle-to-cloud communication
for maintaining digital twins. Of particular interest are solu-
tions that enable emerging delay-sensitive Intelligent Transport
System (ITS) features, while reducing data usage in mobile
networks. The evaluated protocols are Constrained Application
Protocol (CoAP), Advanced Message Queuing Protocol (AMQP),
and Message Queuing Telemetry Transport (MQTT), and the
serialization formats studied are Protobuf and Flatbuffers. The
results show that CoAP – the only User Datagram Protocol
(UDP) based protocol evaluated – has the lowest latency and
overhead, but is not able to guarantee reliable transfer, even
when using its confirmable message feature. For our context,
the best performer that guarantees reliable transfer is MQTT.
For the serialization formats, Protobuf is shown to have faster
serialization speed and three times smaller serialized message
size than Flatbuffers. In contrast, Flatbuffers uses less memory
and has shorter deserialization time, making it an interesting
alternative for applications where the vehicle is the receiver of
time sensitive information. Finally, insights and implications on
ITS communication are discussed.

I. INTRODUCTION

The transport industry is headed into a connected future,
sometimes referred to as the Internet of Vehicles (IoV) [1].
As part of this transition, many traditional car, truck, and bus
manufacturers are aiming to collect and use detailed (sensory)
data from each vehicle to improve the performance and use of
both individual vehicles and entire vehicle fleets. For example,
digital twins [2] of vehicles and other physical entities are
expected to be stored and updated in the cloud. Using these
digital twins, advanced data analytics are then expected to be
used to improve system solutions that benefit the customer.

While this data today typically is extracted at a coarse
time granularity, it is expected that data will be collected and
used at increasingly finer time granularity. This trend, coupled
with emerging time-sensitive applications of digital twins is
expected to place increasingly strict demands on network com-
munication between vehicles and cloud computing resources;
e.g., with regards to both bandwidth and latencies [3].

Looking at the communication between vehicles and the
cloud, a provider can take several steps to reduce overheads
(expressed as memory and/or bandwidth usage) and end-to-
end latencies [4]. In this paper, we focus primarily on the per-
formance impact of the serialization format and application-
layer protocol used to send messages, the impact of parameter

ISBN 978-3-903176-28-7 © 2020 IFIP

choices within the protocols, and their performance tradeoffs.
Of particular interest are scenarios with highly variable band-
width conditions, as seen by vehicles [5]–[7].

Serialization formats: Data serialization plays an important
role in reducing the message size. Reductions in the payload
size help reduce transfer times, lower the risk of packets
being dropped, and reduce transfer costs when using a mobile
network [8]. Here, we evaluate two publicly available serial-
ization formats: Protobuf and Flatbuffers. Protobuf, developed
by Google, has become a standard format for binary data
serialization in many applications because of its performance
and widespread use. It uses predefined message schemas,
defined in .proto files, known to both the sender and receiver.
Flatbuffers, also developed by Google, is a zero-copy serial-
ization format designed to have shorter deserialization time
and use less memory than Protobuf [9], [10]. Compared with
other formats, very limited amount of academic performance
studies have been conducted on Flatbuffers. Here, we compare
Flatbuffers and Protobuf using real production messages.

Messaging protocols: Hyper-Text Transport Protocol
(HTTP), the de-facto protocol on the web, is typically consid-
ered too verbose for Internet of Things (IoT) communication.
Therefore, many new, lightweight messaging protocols aimed
at this market have been developed in the last two decades [4],
[11]–[13]. Here, we use performance experiments to compare
and contrast the tradeoffs associated with some of the most
prevalent IoT messaging protocols: MQTT, AMQP, and CoAP.
These protocols have different strengths and weaknesses,
with AMQP being the most verbose and CoAP being most
lightweight. While all three protocols have been developed
for IoT, they have not been thoroughly tested in an IoV
setting. In contrast to prior work, we compare the performance
of these protocols under network conditions that mimic the
unpredictable and highly time-varying conditions that mobile
connections incur using a controlled test environment (allow-
ing repeatable and fair head-to-head comparisons).

For our evaluation we use real production messages and
bandwidth traces from mobile clients. Two primary use cases
are considered. In the first use case, the vehicle sends large
chunks of data to the cloud without any strict latency demands.
In the second use case, the vehicle sends small chunks of data
with an expectation of low latencies. For both use cases, we
emulate the platform and network conditions seen by a vehicle
driving along a road while using the mobile networks avail-
able. In particular, we (i) develop a network environment for

©IFIP (2020). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.
The definitive version was published in Proc. of IFIP Networking, Paris, France, June 2020, http://IFIP DL URL.



sending and receiving messages using the different messaging
protocols and data serialization formats interchangeably, (ii)
setup a test framework that allows controlled and repeatable
experiments in which bandwidth conditions are varied based
on trace data, and (iii) evaluate the performance of each
combination (serialization format + messaging protocol) and
determine which is best suited for the considered use cases.

Our results provide quantitative comparisons and qualita-
tive insights into which serialization formats and messaging
protocols to use when optimizing the communication between
mobile vehicles and cloud. This includes exploring quantitative
tradeoffs capturing the performance of different formats and
protocols. With the exception of scenarios where the memory
footprint or deserialization times are the main bottleneck,
Protobuf beats Flatbuffers, as it typically achieves three times
smaller serialized message size and has faster serialization
speed. This makes it the obvious choice for most vehicle-to-
cloud communication, where there typically are more resource
constraints on the sender. Among the messaging protocols,
only the the TCP-based protocols (MQTT and AMQP) deliver
all messages. Even when using the option of confirmable
messages, CoAP was not able to achieve 100% delivery
under high-loss scenarios. Of the TCP-based protocols, the
lightweight nature of MQTT typically makes it the winner
over AMQP, as it has much smaller overheads. CoAP is most
suitable for delivery of small update messages that do not
require guaranteed delivery, as it achieves the lowest latencies
and overheads (at the cost of some failed messages).

Finally, when discussing our results, it should be noted
that we do not consider the use of satellite links, alternative
hardware architectures, or other alternative ways to reduce the
end-to-end latencies (e.g., pushing computing to the ”edge”)
and do not consider the impact that encryption may have.

Outline: Section II provides background on IoV, digital
twins, and the serialization formats and messaging protocols
evaluated. Related work is discussed in Section III. Section IV
describes our methodology. Sections V and VI present our
performance results. Conclusions are presented in Section VII.

II. BACKGROUND: SELECTED FORMATS AND PROTOCOLS

The Internet of Vehicles (IoV) has evolved from primarily
focusing on inter-vehicle mesh networks [14] and Vehicle
Ad-hoc Networks (VANETs) to more complete solutions for
vehicle networking, with recent trends heavily inspired by IoT.
The purpose of digital twin platforms are plentiful. However,
within IoV, the main uses of digital twins are typically centered
around the idea that up-to-date digital twins (maintained in
the cloud) will provide the customer with a clearer view
of the state of their vehicle fleet (e.g., for predictive main-
tenance aiming to minimize unplanned stops due to break-
downs). In the paper, we primarily focus on vehicle-to-cloud
communication (often called called Vehicle-to-Infrastructure
(V2I) communication) over WiFi or cellular networks (e.g.,
4G/LTE/5G) [15] targeting such scenarios. However, we also
briefly discuss use cases involving HD maps and automated
vehicle scenarios (e.g., to reduce road congestion by rerouting

vehicles based on real-time information from other vehicles)
that rely on V2I communication. Overall, these technologies
are expected to help reduce fuel consumption, delivery times,
emissions, and traffic jams.

A. Data Serialization

Data serialization is used to structure data in a streamlined
format before storing or sending. Broadly, there are two
serialization approaches: text based and binary. With text based
serialization, the data is typically structured into key-value
pairs in readable text format. With binary serialization, the
key-value pairs are stored in binary format, typically reducing
the space requirements. To further reduce space requirements,
a schema can be used for both serialization and deserialization.

Choice of formats: While there are many serialization
formats [8], [16]–[23], binary formats are typically desired
as they provide smaller message size than text based formats
like JSON and XML. Among the binary serialization formats,
Protobuf was selected as a baseline as it already is used today
for the chosen production messages used in this study, and
since it had been suggested as the top candidate in some prior
works [8], [24]. Flatbuffers was selected for its use of zero-
copy serialization and since it has been shown to outperform
Protobuf in certain situations [10], [25].

Protobuf: Protocol buffers, also called Protobuf, is a binary
serialization format developed and used by Google. From
version 2, this protocol is open-source and available to the
public. It is described as a language-neutral, platform-neutral,
extensible way of serializing structured data [16]. It works by
using schemas to define the structure of the data that is to be
sent. These schemas are then compiled into code in a specified
programming language, which is then used to serialize and
deserialize the defined data structure.

Flatbuffers: Like Protobuf, Flatbuffers is developed at
Google [26] and uses a schema. (Protobuf schemas can even
be converted to Flatbuffers schemas, using the command line
tool flatc.) The Flatbuffers format emphasizes a zero-copy
methodology based on the principle that the serialized data
should be structured the same way as in working memory. In
particular, the structure of the serialized data is pointer-based,
with every field in the data having a specific offset in memory
from the start of the buffer [27]. This removes the need for
expensive encoding and decoding steps, allows direct reads
of values contained inside a serialized data structure (without
need to deserialize), and speeds up deserialization.

Other formats: There are also other zero-copy formats.
Among these, Cap’n Proto (same developers as Protobuf)
provides an attractive alternative, as it has shown to perform
similarly to Flatbuffers [26], with a slight speed advantage
for Cap’n Proto and slight message size advantage for Flat-
buffers [28]. Here, we selected to use only Flatbuffers as it (in
contrast to Cap’n Proto) allows us to use optional values and
since the comparison still provides insights into the general
tradeoffs between these zero-copy approaches and Protobuf.

Others have suggested that schema-less formats such as
MessagePack can beat Protobuf in some instances (e.g., [17]).



However, while MessagePack allows for smaller serialized
message size [24], Protobuf typically has faster serializa-
tion/deserialization speed [24]. Here, we selected to exclude
schema-less formats for qualitative reasons, as they lack some
of the flexibility of the other formats and since we found
them much less practical for the vehicular production use
cases targeted here (e.g., where the selected data may change
substantially over time and between use cases). For example,
since the developers themselves must optimize the layout of
the serialized data in memory, updates are costly.

B. Messaging Protocols

Use-case driven protocol selection: With the exception
of mobile aspects, the communication patterns to-and-from
vehicles are often similar to the communication patterns seen
in most other IoT applications and sensor networks [11].
Here, we consider two use cases: large chunks and small
chunks. For the large chunk case, we primarily focus on IoV
applications that need reliable transfer, but for which latency
requirements are less strict. For this scenario, the TCP based
protocols MQTT and AMQP were selected. MQTT is the more
lightweight candidate, as it has low data overhead with proven
performance and widespread use in IoT applications. AMQP
was chosen for its richness of features, proven performance,
and corporate adoption. Both protocols adopt a broker-based
message-oriented middleware approach (pre. v1.0 for AMQP).
For the small chunk case, we focus on on application scenarios
with tighter latency demands, but without expectation of
reliable transfer. Here, the UDP based CoAP protocol was
selected. We next briefly discuss each protocol.

MQTT: MQTT [29] is designed for constrained environ-
ments with low bandwidth and uses a small code footprint.
MQTT uses a publish/subscribe framework, in which a client
can subscribe to a topic and receive notifications via a server
whenever there is a new message published on that topic.
An MQTT server acts as message broker between publish-
ers and subscribers. MQTT uses three levels of message
transmission reliability, each representing a different level of
Quality of Service (QoS): at-most-once (QoS=0), at-least-once
(QoS=1) and exactly-once (QoS=2). With QoS=0, messages
are simply sent once and are not acknowledged. With QoS=1,
acknowledgements are used and messages are re-sent if no
acknowledgement is received before timeout. Finally, with
QoS=2, a four-way handshake is used to guarantee that a
message arrives exactly once.

AMQP: AMQP began its life at the investment bank J.P.
Morgan Chase [30] and was developed to handle the high
demands of stock trading systems on the New York Stock
Exchange. Depending on the version, AMQP either specifies
a broker architecture or not. The version studied here is 0-
9-1. This is the most used version and is supported by most
message brokers. Beyond using TCP, AMQP 0-9-1 uses no
application-layer reliability measures (in terms of acknowl-
edgements) to ensure reliable message transfer from the sender
of a message to a broker. However, this functionality has been
added to different brokers as Protocol Extensions [31].

CoAP: CoAP [32] implements the Representational State
Transfer (REST) architecture in machine-to-machine (M2M)
communication and communicates in a request-response man-
ner. Like HTTP, CoAP works with URIs, resources, and
supports resource discovery on a server. CoAP implements
its own reliability models on-top of UDP that either use con-
firmable or non-confirmable messages. Confirmable messages
are re-sent if an acknowledgement does not arrive within a
timeout window. In contrast, non-confirmable messages do not
require acknowledgements. In addition to the request-response
approach, CoAP can also work in a publish/subscribe manner
by using observable resources [33]. Using an extended GET-
request, a client can tell a server that it wants a message when-
ever the resource is updated. A resource can have multiple
observers and a list of all observers is kept in the server.

III. RELATED WORK

Data serialization: Recent work has compared different
serialization formats. For example, Hamerski et al. [17] com-
pared the performance of binary serialization formats in a
highly resource restricted, embedded environment (with only
a few kilobytes of memory). Petersen et al. [24] evaluated
serialization formats in the context of smart electrical grids,
with tests made on a Beaglebone Black (a small standalone
computer with similar performance as a Raspberry Pi). De-
spite both studies including MessagePack and Protobuf, they
came to different conclusions. For example, in the context of
Hamerski et al. [17] study, MessagePack provides the largest
size reduction and best serialization speeds, whereas in the
context of Petersen et al. [24] Protobuf performed best. Neither
of these studies evaluate Flatbuffers or any other zero-copy
serialization format in comparison to more established formats,
like Protobuf. Hamerski et al. [17] were not able to use the
official Flatbuffers library due to it being too verbose for their
extremely resource restricted environment, and Petersen et
al. [24] instead investigated a plethora of different serialization
formats. However, none of these were zero-copy formats.
Finally, we also note that among the many studies comparing
different formats using a similar methodology [8], [17], [20],
[22], [24], only Petersen et al. [24] and Popić et al. [22]
(similar to us) evaluate the performance using real messages
(in our case CurrentStatus messages from Scania vehicles).

Messaging protocols: Various studies have qualita-
tively [13] or quantitatively [34]–[37] evaluated and compared
the performance of different messaging protocols [4], [11],
[12]. For example, Naik [13] presents a really nice overview
of the key tradeoffs between CoAP, MQTT, AMQP, and HTTP.
At a high level, it is argued that this ordering of the protocols
(i.e., CoAP, MQTT, AMQP, and HTTP) corresponds to going
(i) from smallest to largest message size, (ii) from smallest
to largest message overhead, (iii) smallest to largest power
consumption, (iv) smallest to largest resource requirements, (v)
smallest to largest bandwidth consumption, and (vi) smallest
to largest latency. For other metrics (e.g., reliability, inter-
operability, security, provisioning, M2M/IoT usage, and stan-
dardization) alternative orderings are provided. For example,



from lowest to highest, Naik suggests the following reliability
ordering: HTTP, CoAP, AMQP, and MQTT (and the reverse
ordering for interoperability.)

Early work on CoAP studied the interoperability of specific
implementations [38], [39], compared CoAP performance with
HTTP [40], or evaluated its performance on different hardware
architectures [41]. Thangavel et al. [36] developed middleware
that can accommodate both CoAP and MQTT for the context
of sensor networks using the publish/subscribe paradigm, and
used it to provide early comparisons of the their performance.

Chen et al. [34] evaluate the performance under constrained
conditions with poor network connections (e.g., low band-
width, high latency, and/or high packet loss rate) and found
advantages of TCP-based protocols (e.g, MQTT). Gundoğan
et al. [37] compared the performance of CoAP and MQTT
with that of named data networking (NDN) [42].

None of the above works consider mobile scenarios. Perhaps
closest to ours in this regard, is the work by Luzuriaga et
al. [35], which compares protocol performance in the context
of access point migration, where a mobile user changes from
WiFi access point. However, they also do not capture the end-
to-end performance that a vehicle would experience in an IoV
scenario. In contrast, we use traces to emulate the network
conditions that such a vehicle may experience.

IV. METHOD: EVALUATION PLATFORM

Scania uses a message type called CurrentStatus to transfer
sensor readings from the vehicle to the cloud. For testing the
performance of the different serialization formats, this message
type was used. The template for this message type is written
and optimized for Protobuf, and therefore a challenge was
rewriting the schema to optimize for Flatbuffers.

Default messages: For the serialization experiments, we use
5,739 procured CurrentStatus messages from Scania. These
messages are in JSON format and provide a representation of
unserialized data. Figure 1 shows the size distribution of these
messages. We call these large chunks.

For the protocol experiments with large chunks, we used
random CurrentStatus messages serialized with Protobuf
(which provided the most compression of the serialized for-
mats tested). For the protocol experiments with small chunks,
we used 10 byte messages with the contents message001
through message100. These two types represent two ends of
the current spectrum. We also ran complementing experiments
with intermediate messages sizes.

Serialization: The JSON files of the CurrentStatus mes-
sages were loaded into the serialization program and the
content was serialized into Protobuf or Flatbuffers format.
To measure the memory usage for serialization and deseri-
alization, the function getrusage was used to get the peak
resident set size, which is the amount of memory allocated for
the program in RAM. Similar to Petersen et al. [24] we also
measured the serialization and deserialization time, serialized
size, and report averages as measured 1,000 times per message.

The measurements were made on an instance of Ubuntu
18.04 LTS running on a VirtualBox virtual machine (VM),

Fig. 1: Distribution of JSON message sizes.

on top of 64-bit Windows 10 build 1803. The hardware used
was a laptop with an 8th gen, six core Intel Core i7 CPU
running at 2.6 GHz, with 16GB RAM. The VM was allocated
six physical cores and 8GB RAM. Nanosecond timestamps
were extracted before and after every measurement using C++.
For the serialization, we used the official C++ libraries for
Flatbuffers (1.10.0), Protobuf (3.7.1), and JsonCpp (1.8.4). gcc
(7.4.0) was used for compilation.

Messaging protocols: In our experiments, we place the
clients on a Raspberry Pi (3B running Raspbian 9) and
the server on the same VM and laptop as the serialization
tests above. The machines were connected via Ethernet and
messages are sent from the publishing/sending client on the
Pi, to the broker/server on the laptop, and then back to the Pi
to finally arrive at the consuming/receiving client. To capture
the network communication we run Wireshark on the Pi and to
emulate the network conditions we run NetEm on the laptop.
Table I summarizes the different software that were used
together with the testing of each protocol. The client and server
were implemented in Java and the libraries used were Eclipse
Californium for CoAP, RabbitMQ for AMQP, and for MQTT
Eclipse Paho was used for client and server and VerneMQ for
the broker. The versions used for the RabbitMQ and VerneMQ
server software were 3.7.12 and 1.8.0, respectively.

When evaluating AMQP and MQTT, we let one client
subscribe to the same topic that the other client is publishing
to. To ensure that we could separate the exchanges of different
messages, serialized messages sent were separated by ten
seconds. We used a similar set up when evaluating CoAP
(but with had to use a larger time threshold when using
confirmable messages under large loss rate scenarios). Here,
the server (on the laptop) used an observable resource that
was being observed by one of the clients, and the other client
sent messages in POST requests to update this resource. These
updates were then sent to the first client.

Network conditions: Network conditions for the link be-
tween clients and server were emulated using NetEm and
the Linux Traffic Control tool (tc) on the laptop. For the
bandwidth variations, we used LTE upload throughput traces
by Raca et al. [6], recorded while driving a car. (See example
trace in Figure 2.) We used RTT measurements by Huang
et al. [3], from a LTE network, to generate 100,000 random
RTT samples from a fitted Gaussian distribution (µ=69.5 ms,
σ=5.6 ms). The samples were then used together with the
throughput traces to update the parameters of NetEm on a per-
second granularity. This allowed us to repeat the exact same
network conditions for each of the protocols, QoS levels, and



TABLE I: Software used for the networking experiments.
Raspberry Pi Laptop

Protocol Publishing/sending Subscribing/receiving Server/broker
AMQP RabbitMQ Publishing Client RabbitMQ Subscribing Client RabbitMQ Broker
MQTT Eclipse Paho Publishing Client Eclipse Paho Subscribing Client VerneMQ Broker
CoAP Eclipse Californium Posting Client Eclipse Californium Observing Client Eclipse Californium Server

Fig. 2: Upload bandwidth trace used for the protocol tests.

messages. Finally, to test reliability, different packet loss rates
were applied to the link: 0%, 1%, 5%, 10%, and 25%.

Limitations: While RabbitMQ runs on all common OS’s,
VerneMQ, only runs on Linux and MacOS. To ensure fair
head-to-head comparisons, a computer running one of these
OS:es is needed to run the server, in the way it is described
here. Other broker software may be used for AMQP or MQTT.
However, the performance of such brokers is not guaranteed
to be the same as the ones used in our experiment.

Here, we only consider non-encrypted traffic. Interesting
future work could compare the impact of implementing en-
crypted versions of the messaging protocols or protocols aimed
for secure communication [43].

The chosen throughput traces provide example V2I con-
nections. However, measurements have shown that bandwidth
conditions can vary significantly from location-to-location
as well as within a location [44]. Furthermore, throughput,
latency, and packet loss rate are not the only parameters
affecting this type of connection and the example parameter
values selected do not capture all possible scenarios that
a V2I connection may experience. The use of throughput
traces and representative RTTs are instead intended to provide
an example comparison under relatively normal conditions.
Finally, we note that the RTTs in practice would be related to
the throughput and the distance to the cell tower, for example.
Here, we simply assume that RTTs are independent, and draw
random independent and identically distributed (i.i.d) samples.

V. PERFORMANCE RESULTS: SERIALIZATION FORMATS

Speed: Figure 3a shows the measured speed of serialization
and deserialization. For Flatbuffers, the serialization for one
message took on average 1,048 µs and deserialization took
only 0.09 µs. For Protobuf, these values were 708 µs and
69 µs, respectively. The serialization and deserialization times
of Protobuf with the optimize for speed option set (results
omitted from figure) were close to identical to the default
settings (shown in Figure 3a): 702 µs and 69 µs, respectively.
These results highlight that Protobuf is faster for serialization
(the dominating time cost) and Flatbuffers is much faster at
deserialization (time cost at receiver side).

Sizes: Figure 3b shows the message sizes before serial-
ization (original JSON format) and after serialization when
using Protobuf and Flatbuffers. Protobuf is the clear winner

(a) Serialization speed. (b) Serialized message size.
Fig. 3: Serialization/deserialization speeds and serialized mes-
sage sizes; averaged over all messages and 1000 runs/message.

(a) Flatbuffers. (b) Protobuf.
Fig. 4: Distributions of serialized message sizes.

and managed to shrink the average message size to 1,157
bytes. This is more than a factor ten smaller compared to
the original JSON size (average of 12,187 bytes) and a factor
three smaller than the average serialized message size when
using Flatbuffers (3,536 bytes). Upon further inspection, the
messages serialized with Flatbuffers contained many zeros.

Figure 4 shows the distribution of serialized message sizes
when using Flatbuffers and Protobuf. These distributions
mimic the general shape of the original JSON message size
distribution (Figure 1), including two peaks around the average
message size and some smaller outliers with smaller sizes.

Memory usage: Figures 5 and 6 show the memory usage
for the programs used to serialize and deserialize the messages,
respectively. We note that (i) these measures include the
memory taken by all libraries and data structures used by
the programs, and (ii) both the program used for Flatbuffers
and Protobuf mostly use the same libraries. The Flatbuffers
program uses JsonCpp, the official Flatbuffers C++ library
and the official Protobuf library (for parsing of RFC 3339
timestamp strings). The Protobuf program uses all these li-
braries with the exception of the Flatbuffers library. Both
programs also had to load the JSON data structure containing
the unserialized messages. For these reasons, the reported
memory usage results should be seen as a relative comparison
of the two processes rather than as exact measures of their
individual memory footprints. In general, the average memory
consumption for Flatbuffers is lower than for Protobuf. For
example, the average memory usage during serialization were
3.76 MB and 5.87 MB, respectively, and the corresponding
numbers for deserialization were 2.04 MB and 5.28 MB.



(a) Flatbuffers. (b) Protobuf.
Fig. 5: Distributions of serialization memory usage, averaged
over 1000 serializations for each message.

(a) Flatbuffers. (b) Protobuf.
Fig. 6: Distributions of deserialization memory usage, aver-
aged over 1000 serializations for each message.

As with all compression, serialization requires more re-
sources to achieve a better compression rate. This is evident
in the case of Protobuf, in comparison to Flatbuffers. For
example, the average memory footprints (reported above)
suggest that Protobuf uses more than 50% more memory
for serialization than for Flatbuffers and 150% more for
deserialization. As these numbers also include the consumed
memory for all used (and mostly shared) libraries, the 50%
and 150% differences in memory consumption are only lower
bounds. In memory critical situations, this is an important
consideration to make, especially since the message sizes to be
serialized/deserialized would grow as more data is sent from/to
vehicles. The above results therefore show an important trade-
off between serialization speed (Protobuf winner), message
size (Protobuf winner), and memory usage (Flatbuffer winner).

Impact of message size on the memory usage: First,
for larger message sizes, the memory usage for Protobuf
serialization depends more on the message sizes than the
memory usage of Flatbuffers. For example, note that the mem-
ory usage distribution for Protobuf serialization (Figure 5b)
has a similar bimodular distribution as the size distribution
of the unserialized messages (Figure 1) and the serialized
Protobuf messages (Figure 4b). In contrast, Flatbuffers does
not show this same correlation, with over 5,700 out of the
5,739 messages residing in the dominant right bin in Figure 5a.

Second, Flatbuffers is better able to reduce its footprint
when serving small messages. For example, see the small peak
at 2.2 MB in Figure 5a (which captures the smaller outliers). In
contrast, Protobuf never reduces its memory usage below 5,400
KB (Figure 5b). This floor is mirrored in its deserialization
memory usage (Figure 6) and suggests that Protobuf may not
be able to reduce its memory footprint when there are large
size variations or there are many smaller messages sent.

Finally, the memory usages for deserialization (Figure 6) do
not seem to depend on the message sizes. For both formats, the

Fig. 7: Latencies per message for large chunks.

Fig. 8: Message overhead for large chunks.

memory usage during deserialization appears to be Gaussian,
with a relatively low variance.

Discussion: Protobuf achieves greater size reductions than
Flatbuffers. This provides Protobuf with a big advantage in
end-to-end communication scenarios, as both latencies and
bandwidth usage are directly related to the message size.
Most of this size difference can be explained by the padding
generally needed in zero-copy serialization formats [26], for
the fast lookup times that signify this type of serialization
format. While these features provide Flatbuffers with the
opportunities to do quick lookups on the receiver side (e.g.,
in the cloud in the typical digital twin scenario, on vehicles
in a platoon [45], or on an individual vehicle in the case up-
to-date HD maps that are distributed to enhance self-driving
capabilities of a vehicle) it results in higher processing and
serialization times on the sender side (e.g., a vehicle, the lead
vehicle, or the cloud for the three cases above). Based on
these observations, we argue that Protobuf typically is the
desirable format for the main digital twin scenarios considered
here, but see Flatbuffers as a good candidate for cloud-to-
vehicle communication where the vehicle needs quick access
to the data (e.g., as in HD map scenarios where the maps may
be updated in real-time so to provide traffic data and other
information that may benefit the vehicle).

VI. PERFORMANCE RESULTS: PROTOCOL COMPARISON

A. Large Chunks Case

Latency: Figure 7 shows the average latencies (with two-
sided 95% confidence intervals using student-t) for the differ-
ent protocols and QoS settings, at different packet loss rates.
We note that CoAP generally has the lowest latency when
using non-confirmable packets, especially for higher packet
loss rates, as it consistently achieves latencies at around 150-
200 ms. This is perhaps not surprising, since CoAP with this
configuration has no mechanism to handle packet loss.

Message overhead: Figure 8 shows the average overhead
per message, measured in additional bytes on the wire for



Fig. 9: Unsuccessful message transfers, large chunks.
the application layer packets. This metric was calculated by
summing up the sizes of all link-layer frames associated with
a message, and then subtracting the size of the message. The
sizes of packets that did not refer to a successful message
exchange, such as heartbeat packets and failed transfers, were
distributed equally across the individual messages’ overhead.

As expected, the protocols that provide higher reliability and
QoS have higher overhead. For example, MQTT (QoS 2) is the
configuration with the highest overhead (approximately 250
bytes per message), closely followed by AMQP using manual
acks. These configurations have an average overhead of 50-100
bytes higher per message than the closest configuration AMQP
(Auto). Both AMQP configurations have a large overhead
compared to the MQTT configurations that use equivalent
reliability levels (i.e., with QoS 0 and QoS 1).

At the other end of the spectrum, CoAP using non-
confirmable messages (NON) consistently has the lowest
overheads, followed by MQTT set to QoS 0 and CoAP
using confirmable messages (CON). The consistently higher
overhead with CoAP using confirmable messages (CON) than
using non-confirmable messages (NON) is partially due to
all transferred packets with this protocol option receiving an
acknowledgement packet. We also note that both CoAP using
confirmable messages and MQTT (QoS 1), which have very
comparable overheads to each other for lower packet loss rates,
use at-least-once delivery mechanisms.

The slightly bigger correlation between message overhead
and packet loss rate at the higher loss rates seen for CoAP
using confirmable messages is likely due to the extra messag-
ing done at the application layer to transfer all messages also
at larger loss rates. For most other protocols the (measured)
overheads are relatively insensitive to the packet loss rates.
While we have observed many retransmissions at the transport
layer for all TCP-based protocols (when operating at high
loss rates), these retransmissions are not captured by the
application-level overhead metric. It is therefore not surprising
that we only observe a slight correlation between overheads
and packet loss rates for CoAP using confirmable messages.

Unsuccessful message transfers: Figure 9 shows the
percentage of unsuccessful message transfers. As expected,
all protocols using TCP successfully deliver all packets. In
contrast, the UDP-based CoAP protocol sees unsuccessful
message exchanges even when using confirmable messages.
While it is expected that the percentages of unsuccessfull
messages are similar to the packet loss rates when using non-
confirmable messages, it is interesting that we also see non-
negligible percentages when using confirmable messages.

Fig. 10: Latencies for small chunks.

Fig. 11: Message overhead for small chunks.

Discussion: Since even CoAP with confirmable messages
results in non-delivered messages, only the TCP-based pro-
tocols can be considered reasonable candidates for the large
chunks scenario. Of the TCP-based protocols, MQTT (QoS 0)
has by far the lowest overhead. MQTT (QoS 1-2) and AMQP
have added reliability but comes at much higher overhead per
message. The extra overhead of MQTT (QoS 1-2) comes from
additional control messages. In contrast, the extra overhead
associated with AMQP comes exclusively from use of larger
packet headers. Of course, in the case that the reliability
offered by TCP (which is all that MQTT (QoS 0) and AMQP
(Auto) use) is not enough, MQTT (QoS 1-2) and AMQP
using manual acks are the only remaining options. Considering
the excessive overhead of MQTT (QoS 2) and AMQP using
manual acks, and the fact that even MQTT (QoS 0) managed
to transfer all messages successfully, we believe that MQTT
(QoS 0) should be enough in this case.

B. Small Chunks Case

Figure 10 shows the latency results for the small chunks
experiments. As expected, the delays for the small chunks
are consistently lower than for the large chunks case, and
again CoAP using non-confirmable messages is least affected
by packet losses, and CoAP using confirmable messages is
the most effected by packet loss. However, these performance
differences are much more noticeable for the small chunks case
than for the large chunks case. For example, with CoAP using
confirmable messages the average latency increases almost
seven times when the packet losses increase from 0-to-25%.

In general, the overheads per message are very similar
for the small chunk case (Figure 11) and large chunk case
(Figure 8), with a few notable differences. First, the overheads
for both AMQP configurations are consistently lower for the
small chunk case. Second, the overheads for MQTT with
QoS 1 and QoS 2 are consistently higher. Nevertheless, for
both CoAP versions and MQTT (QoS 0) the results are very
similar for the two cases.



Fig. 12: Average latencies for different message sizes.

Finally, we note that the rate of unsuccessful messages
(results not shown) were very similar for the small chunk case
as for the large chunk case, with the only exception that CoAP
using confirmable messages only saw unsuccessful message
exchanges when there was a 25% packet loss rate (not also
for the 10% case). Otherwise, CoAP with non-confirmable
messages saw percentages similar to the packet loss rates and
the TCP-based protocols succesfully delivered all messages.

C. Cross-case Observations

CoAP with non-confirmable messages consistently has
lower message overhead than the other protocols. Furthermore,
with the exception of at higher packet loss rates, CoAP using
confirmable messages generally has similar latencies to the
TCP-based protocols. The spike in delays for higher packet
loss rates is especially interesting when compared to MQTT
(QoS 0) and AMQP (Auto), that use no application layer
reliability mechanisms. This hints that the transport layer
reliability mechanisms offered by TCP are much more efficient
at keeping latency down, than those offered by CoAP. This is
especially true when considering that CoAP, using confirmable
messages, did not get all messages through at higher packet
loss rates while all TCP based configurations did so, even
MQTT (QoS 0) and AMQP (Auto).

The lowest delay can be seen using CoAP with non-
confirmable messages. If a low delay is the only important
consideration when choosing a configuration, this one will be
the best choice. However, if reliability is any consideration,
this configuration should be avoided. Looking at TCP based
protocols, all configurations keep a respectably good delay
which does not seem affected too much by higher packet
loss rates. When comparing overheads, CoAP using non-
confirmable messages had the lowest, followed by MQTT
(QoS 0). This is reasonable considering they do not have any
application layer reliability mechanisms. What is surprising is
that AMQP (Auto) had a higher overhead than both MQTT
(QoS 1) and CoAP, using confirmable messages, even though
it did not use any such mechanisms. The difference relative to
CoAP using confirmable messages can perhaps be explained
by the use of TCP. However, intuitively, from a reliability per-
spective alone, AMQP with automatic acks may be expected
to have similar overhead to MQTT (QoS 0) and AMQP using
manual acks similar to MQTT (QoS 1). Instead, the AMQP
versions have noticeably higher overheads than their MQTT
counterparts. This highlights AMQP’s more verbose nature
and that the protocols target different scenarios.

Fig. 13: Average latencies when keeping the loss rate at 0%
and scaling the emulated bitrate for large chunks.

D. Impact of Message Sizes and Throughput

Figure 12 shows latency results for intermediate packet sizes
(with logarithmic x-scale) between the small chunk and large
chunk cases. Note that the relative differences between the
protocols remain fairly consistent across the full range.

Figure 13 shows the latencies as a function of the available
bitrate, as defined here by the factor that we scaled the band-
width of the original bandwidth traces before using them for
bandwidth emulation in our experiments. These experiments
where done with the original large chunks, and again the
results are shown consistent across bandwidths.

E. Impact of Broker Choices

Finally, we performed an experiment to better understand
how much of the latencies are due to the added transmis-
sion logic introduced by the used protocol solutions. This
experiment was run with the best possible network conditions
(i.e., no introduced delays or packet losses, and the maximum
possible bandwidth) and the same 10 byte payload used for
the small chunk experiments. (Since the message payloads are
much smaller than the headers processed by the brokers, they
should not contribute much to the results.) The latencies from
this experiment are shown in Figure 14 and are in the range
4.25-7.47 ms. This can be compared to the average ping time
2.52 ms (σ=1.37), across 200 pings, between the Pi and the
laptop under the same conditions. These results suggest that
the different protocol solutions on average introduce roughly
2-5 milliseconds of additional processing compared to a ping
message. This is substantially less than the typical latencies
reported earlier in this section, suggesting that additional
improvements to the processing speed of the protocol solutions
themselves (e.g., by optimizing brokers for MQTT and AMQP,
or sending messages directly with CoAP) likely would not sub-
stantially improve the results. Instead, the latencies are mainly
due to the factors already considered in the experiments.

VII. CONCLUSION

This paper evaluates the performance of different serializa-
tion formats and application layer messaging protocols in the
context of vehicle-to-cloud communication intended for digital
twins. For the serialization formats, Protobuf is shown to have
three times smaller serialized message size than Flatbuffers
and also faster serialization speed. Flatbuffers is the winner in
the case of memory use and deserialization time, which could
make up for the poor performance in other aspects of data



Fig. 14: Average latencies using the best possible network
conditions with small chunks.

processing in the cloud (or more likely on the client, in the
case communication is reversed, as in the case of distribution
of HD maps, for example). In the context of the messaging
protocols, the main tradeoffs have been found to be between
message latency, reliability, and message overheads. For ex-
ample, CoAP using non-confirmable messages has the lowest
latencies, but does not guarantee delivery. In fact, even with
confirmable messages CoAP was not able to achieve 100%
delivery under high-loss scenarios. In contrast, the TCP-based
protocols (MQTT and AMQP) deliver all messages. Of these,
AMQP typically had much higher overheads than MQTT.
Despite this, and the evident correlation between message size
and latency, AMQP achieved comparable latencies as MQTT.
However, assuming reliable delivery is expected (as in the
large chunks case considered earlier in this paper), MQTT with
QoS=0 provides the most attractive tradeoff between latency
and transmitted data volume. On the other hand, for cases in
which reliability is not a concern, CoAP is the best choice.

REFERENCES

[1] T. S. Darwish and K. Abu Bakar, “Fog based intelligent transportation
big data analytics in the internet of vehicles environment: Motivations,
architecture, challenges, and critical issues,” IEEE Access, vol. 6, 2018.

[2] D. Bolton. (2016) What are digital twins and why will they
be integral to the internet of things? [Online]. Available: https:
//www.applause.com/blog/digital-twins-iot-faq/

[3] J. Huang et al., “A close examination of performance and power
characteristics of 4G LTE networks,” in Proc. ACM MobiSys, 2012.

[4] J. Contreras-Castillo et al., “Internet of vehicles: Architecture, protocols,
and security,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3701–
3709, 10 2018.

[5] E. Soltanmohammadi et al., “A survey of traffic issues in machine-to-
machine communications over LTE,” IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 865–884, 12 2016.

[6] D. Raca et al., “Beyond throughput: a 4G LTE dataset with channel and
context metrics,” in Proc. ACM MMSys, 2018.

[7] H. Riiser et al., “Commute path bandwidth traces from 3G networks:
analysis and applications,” in Proc. ACM MMSys, 2013.

[8] A. Sumaray and S. Makki, “A comparison of data serialization formats
for optimal efficiency on a mobile platform,” in Proc. ICUIMC, 2012.

[9] Google. Flatbuffers. [Online]. Available: https://google.github.io/
flatbuffers/

[10] K. Khare. (2018) JSON vs Protocol Buffers
vs FlatBuffers. [Online]. Available: https://codeburst.io/
json-vs-protocol-buffers-vs-flatbuffers-a4247f8bda6f

[11] V. Karagiannis et al., “A survey on application layer protocols for the
internet of things,” Trans. on IoT and Cloud Computing, pp. 1–10, 2015.

[12] A. Čolaković and M. Hadžialić, “Internet of things (iot): A review of
enabling technologies, challenges, and open research issues,” Computer
Networks, vol. 144, pp. 17–39, 10 2018.

[13] N. Naik, “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP,” in Proc. IEEE ISSE, 2017.

[14] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, “An overview of internet of
vehicles,” China Communications, vol. 11, no. 10, pp. 1–15, 10 2014.

[15] O. Kaiwartya et al., “Internet of vehicles: Motivation, layered archi-
tecture, network model, challenges, and future aspects,” IEEE Access,
vol. 4, pp. 5356–5373, 9 2016.

[16] Google. Protocol Buffers Developer Guide - Overview. [Online].
Available: https://developers.google.com/protocol-buffers/docs/overview

[17] J. C. Hamerski et al., “Evaluating serialization for a publish-subscribe
based middleware for MPSoCs,” in Proc. IEEE ICEC), 2018.

[18] G. Kaur and M. M. Fuad, “An evaluation of protocol buffer,” in Proc.
IEEE SoutheastCon, 2010.

[19] N. Gligorić et al., “Performance evaluation of compact binary XML
representation for constrained devices,” in Proc. DCOSS, 2011.

[20] K. Maeda, “Performance evaluation of object serialization libraries in
xml, json and binary formats,” in Proc. DICTAP, 2012.

[21] L. Tuyisenge et al., “Network architectures in internet of vehicles (IoV):
Review, protocols analysis, challenges and issues,” in Proc. IOV, 2018.

[22] S. Popić et al., “Performance evaluation of using protocol buffers in the
internet of things communication,” in Proc. SST, 2016.

[23] ITU, “Abstract syntax notation one (ASN.1): Specification of basic
notation,” 2015. [Online]. Available: www.itu.int/rec/T-REC-X.680/

[24] B. Petersen et al., “Smart grid serialization comparison: Comparision
of serialization for distributed control in the context of the internet of
things,” in Proceedings of Computing Conference, 2018.

[25] Flatbuffers. C++ Benchmarks. [Online]. Available: https://google.github.
io/flatbuffers/flatbuffers benchmarks.html

[26] K. Varda. (2014) Cap’n Proto, FlatBuffers, and SBE. [Online]. Available:
https://capnproto.org/news/2014-06-17-capnproto-flatbuffers-sbe.html

[27] Flatbuffers. Flatbuffer Internals. [Online]. Available: https://google.
github.io/flatbuffers/flatbuffers internals.html

[28] K. Sorokin. Benchmark comparing various data serialization libraries
(thrift, protobuf etc.) for C++. [Online]. Available: https://github.com/
thekvs/cpp-serializers

[29] OASIS. (2014) Mqtt version 3.1.1 documentation. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[30] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Com-
puting, vol. 10, pp. 87–89, 11 2006.

[31] RabbitMQ. Introducing publisher confirms. [Online]. Available: https:
//www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

[32] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” RFC 7252, IETF, 2014.

[33] K. Hartke, “Observing resources in the constrained application protocol
(coap),” RFC 7641, IETF, 2015.

[34] Y. Chen and T. Kunz, “Performance evaluation of iot protocols under a
constrained wireless access network,” in Proc. MoWNeT, 2016.

[35] J. Luzuriaga et al., “A comparative evaluation of AMQP and MQTT
protocols over unstable and mobile networks,” in IEEE CCNC, 2015.

[36] D. Thangavel et al., “Performance evaluation of MQTT and CoAP via
a common middleware,” in Proc. IEEE ISSNIP, 2014.

[37] C. Gundoğan et al., “NDN, CoAP, and MQTT: A comparative measure-
ment study in the IoT,” in Proc. ACM ICN, 2018.

[38] C. Lerche et al., “Industry adoption of the internet of things: A
constrained application protocol survey,” in Proc. IEEE ETFA, 2012.

[39] B. C. Villaverde et al., “Constrained application protocol for low power
embedded networks: A survey,” in Proc. IEEE IMIS, 2012.

[40] A. Ludovici et al., “TinyCoAP: A novel constrained application pro-
tocol (CoAP) implementation for embedding RESTful web services in
wireless sensor networks based on TinyOS,” J. Sensor and Actuator
Networks, vol. 2, p. 288–315, 2013.

[41] C. P. Kruger and G. P. Hancke, “Benchmarking internet of things
devices,” in Proc. IEEE INDIN, 2014.

[42] L. Zhang et al., “Named data networking,” ACM SIGCOMM CCR,
no. 44, pp. 66—-73, 2014.

[43] T. Limbasiya and D. Das, “Lightweight secure message broadcasting
protocol for vehicle-to-vehicle communication,” IEEE Sys. J., vol. 14,
pp. 520–529, 2020.

[44] T. Linder et al., “On using crowd-sourced network measurements for
performance prediction,” in Proc. IEEE/IFIP WONS, 2016.

[45] C. Campolo et al., “Better platooning control toward autonomous
driving: An lte device-to-device communications strategy that meets
ultralow latency requirements,” IEEE Vehicular Technology Magazine,
vol. 12, no. 1, pp. 30–38, 3 2017.


