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Abstract. With BitTorrent-like protocols a client may download a file from a 
large and changing set of peers, using connections of heterogeneous and time-
varying bandwidths.  This flexibility is achieved by breaking the file into many 
small pieces, each of which may be downloaded from different peers.   

This paper considers an approach to peer-assisted on-demand delivery of stored 
media that is based on the relatively simple and flexible BitTorrent-like 
approach, but which is able to achieve a form of “streaming” delivery, in the 
sense that playback can begin well before the entire media file is received.  
Achieving this goal requires: (1) a piece selection strategy that effectively 
mediates the conflict between the goals of high piece diversity, and the in-order 
requirements of media file playback, and (2) an on-line rule for deciding when 
playback can safely commence.  We present and evaluate using simulation 
candidate protocols including both of these components.  

Keywords: BitTorrent-like systems, peer-assisted streaming, probabilistic piece 
selection. 

1   Introduction 

Scalable on-demand streaming of stored media can be achieved using scalable server 
protocols such as patching [1] and Hierarchical Stream Merging [2], server replication 
as with CDNs, and/or peer-to-peer techniques.  This paper concerns peer-to-peer 
approaches. 

A number of prior P2P protocols for scalable on-demand streaming have used a 
cache-and-relay approach [3-6].  With these techniques, each peer receives content 
from one or more parents and stores it in a local cache, from which it can later be 
forwarded to clients that are at an earlier play point of the file.  Some work of this 
type concerns the problem of determining the set of servers (or peers) that should 
serve each peer, and at what rate each server should operate [7, 8].  Related ideas, 
based on application-level multicast architectures, have been used in protocols for live 
streaming [9, 10]. 
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The above approaches work best when peer connections are relatively stable.  
Motivated by  highly dynamic environments where peer connections are 
heterogeneous with highly time-varying bandwidths and peers may join and/or leave 
the system frequently, recent work by Annapureddy et al. [11] has considered the use 
of BitTorrent-like protocols [12]  for scalable on-demand streaming.  (Other recent 
work has considered use of such protocols for live streaming [13-15].) 

In BitTorrent-like protocols, a file is split into smaller pieces which can be 
downloaded (in parallel) from any other peer that has at least one piece that the peer 
does not have itself.  In the approach proposed by Annapureddy et al. for on-demand 
streaming of stored media files, each file is split into sub-files, each encoded using 
distributed network coding [16].  Each sub-file is downloaded using a BitTorrent-like 
approach.  By downloading sub-files sequentially, playback can begin after the first 
sub-file(s) have been retrieved, thus allowing a form of “streaming” delivery. 

Note that use of large sub-files results in large startup delays, while using very 
small sub-files results in close to sequential piece retrieval, which can lead to poor 
performance as will be shown in Section 3.3.  The best choice of sub-file sizes would 
be workload (and possibly also client) dependent, although the method requires these 
sizes to be statically determined.  The authors do not elaborate on how the sizes can 
be chosen, or how startup delays can be dynamically determined. 

Rather than statically splitting each file into sequentially retrieved sub-files or 
using a small window of pieces that may be exchanged (as in BitTorrent-like 
protocols that have been proposed for live streaming [13]), in this paper we propose 
an approach in which any of the pieces needed by a peer may be retrieved any time 
they are available.  As in BitTorrent, selection of which piece to retrieve when a 
choice must be made is controlled by a piece selection policy.  For the purpose of 
ensuring high piece diversity, which is an important objective in download systems 
(where the file is not considered usable until fully downloaded) [17], BitTorrent uses 
a rarest-first policy, giving strict preference to pieces that are the rarest among the set 
of pieces owned by all the peers from which it is downloading.  On the other hand, in 
the context of streaming it is most natural to download pieces in-order.  The piece 
selection policy proposed in this paper attempts to achieve a good compromise 
between the goals of high piece diversity, and in-order retrieval of pieces.  We also 
address the problem of devising a simple on-line policy for deciding when playback 
can safely commence. 

The remainder of the paper is organized as follows.  Section 2 provides a brief 
overview of BitTorrent.  Section 3 defines and evaluates candidate piece selection 
policies.  Section 4 addresses the problem of dynamically determining the startup 
delay.  Finally, conclusions are presented in Section 5. 

2   Overview of BitTorrent 

With BitTorrent files are split into pieces, which themselves are split into smaller sub-
pieces.  Multiple sub-pieces, potentially of the same piece, can be downloaded in 
parallel from different peers.  A peer is said to have a piece whenever the entire piece 
is downloaded.  A peer is considered interested in all peers that have at least one piece 



that it currently does not have itself.  BitTorrent distinguishes between peers that have 
the entire file (called seeds), and peers currently downloading the file (called 
leechers). 

In addition to the rarest-first piece selection policy, BitTorrent uses a number of 
additional policies that determine which peers to upload to.  While each peer 
establishes persistent connections with a large set of peers (e.g., 80 [17]), at each time 
instance, each peer only uploads to a limited number of peers.  Only peers that are 
unchoked may be sent data.  Generally, clients re-evaluate the set of unchoked peers 
relatively frequently (e.g., every 10 seconds, each time a peer becomes 
interest/uninterested, and/or each time a new connection is established/broken). 

To discourage free-riding, BitTorrent uses a tit-for-tat policy in which leechers 
give upload preference to the leechers that provide the highest download rates to 
them.  Without any measure of the upload rates from other peers, it has been found 
beneficial if seeds give preference to recently unchoked peers [17].  Periodically 
(typically every third time the set of unchoked peer is re-evaluated), each client uses 
an optimistic unchoke policy to probe for better pairings (or in the case of a seed, 
allow a new peer to download pieces). 

3   Piece Selection 

Section 3.1 defines candidate policies, Section 3.2 describes our simulation model, 
and Section 3.3 evaluates the performance of the piece selection policies defined in 
Section 3.1. 

3.1 Candidate Policies 

To allow playback to begin well before the entire media file is retrieved, pieces must 
be selected in a way that effectively mediates the conflict between the goals of high 
piece diversity and the in-order requirements of media file playback.  Assuming that 
peer j is about to request a piece from peer i, we define two baseline policies: 

• Rarest:  Among the set of pieces that peer i has and j does not have, peer j 
requests the rarest piece among the set of all pieces held by peers that j is 
connected to.  Ties are broken randomly. 

• In-order:  Among the set of pieces that peer i has, peer j requests the first piece 
that it does not have itself. 

We propose using simple probabilistic policies.  Perhaps the simplest such 
technique is to request an in-order piece with some probability and the rarest piece 
otherwise.  Other techniques may use some probability distribution to bias towards 
earlier pieces.  We have found that the Zipf distribution works well for this purpose.  
The specific probabilistic policies considered here are as follows: 

• Portion (p):  For each new piece request, client j uses the in-order policy with a 
probability p and the rarest policy with a probability (1–p). 

• Zipf (θθθθ):  For each new piece request, client j probabilistically selects a piece 
from the set of pieces that i has, but that j does not have.  The probability of 
selecting each of these pieces is chosen to be proportional to 1/(k+1–k0)

θ, where 
k is the index of the piece, and k0 the index of its first missing piece. 



Note that parameters p and θ can be tuned so that the policies are more or less 
aggressive with respect to their preference for earlier pieces.  For the results presented 
here the parameters are fixed at the following values: p =50%, p = 90%, and θ = 1.25.  

3.2 Simulation Model 
A similar approach is used as in prior simulation studies of BitTorrent-like protocols 
[18, 16]; however, rather than restricting peers to a small number of connections, it is 
assumed that peers are connected to all other peers in the system.  It is further 
assumed that pieces are split into sufficiently many sub-pieces that use of parallel 
download is always possible when multiple peers have a desired piece. 

It is assumed that a peer i can at most have ni concurrent upload connections and 
that no connections are choked in the middle of an upload.  The set of peers that a 
peer i is uploading to may change when (i) it completes the upload of a piece, or (ii) 
some other peer becomes interested and peer i is not utilizing all its upload 
connections.  The new set of upload connections consists of (i) any peer currently in 
the middle of an upload, and (ii) additional peers up to the maximum limit ni.  
Additional peers are selected from the set of interested peers.  To simulate optimistic 
unchoking, with a probability 1/ni a random peer is selected, and with a probability of 
(ni–1)/ni the peer which is uploading to peer i at the highest rate is selected.  Random 
selection is used to break ties.  This ensures that seeds only use random peer selection. 

For simulating the rate at which pieces are exchanged, it is assumed that 
connection bottlenecks are located at the end points (i.e., either by the upload 
bandwidth U at the sender or by the download rate D at the receiver) and the network 
operates using max-min fair bandwidth sharing (using TCP, for example).  Under 
these assumptions each flow operates at the highest possible rate that ensures that (i) 
no bottleneck operates above its capacity, and (ii) the rate of no flow can be increased 
without decreasing the rate of some other flow operating at the same or lower rate. 

3.3 Performance Comparisons 
Throughout this paper it is conservatively assumed that there is a single persistent 
seed and that all other peers leave the system as soon as they have received the entire 
file (i.e., act only as leechers).  In a real system peers are likely to continue serving 
other peers as long as they are still playing out the media file, and some peers may 
choose to serve as seeds beyond that time.  With a larger aggregate available 
download bandwidth and higher availability of pieces the benefits of more aggressive 
piece selection techniques are likely to be even greater than presented here. 

Without loss of generality, downloading of a single file is considered, with size and 
play rate both equal to one using normalized units.  With these normalized units, the 
volume of data transferred is measured in units of the file size and time is measured in 
units of the time it takes to play the file data.  Hence, all rates are expressed relative to 
the play rate, and all startup delays are expressed relative to the playback time.  The 
file is split into 512 pieces, and unless stated otherwise, peers are assumed to have 
three times higher download capacity than upload capacity.  Each peer is assumed to 
upload to at most four peers simultaneously.  Throughout this section, policies are 
evaluated with regard to the lowest possible startup delay. 



This section initially considers a simple scenario in which peers do not leave the 
system until having fully received the file, requesting peers arrive according to a 
Poisson process, and peers are homogenous (i.e., have the same upload and download 
bandwidth).  Alternative scenarios and workload assumptions are subsequently 
considered. 

To capture the steady state behavior of the system, the system is simulated for at 
least 4000 requests.  Further, measurements are only done for requests which do not 
occur near the beginning or the end of each simulation.  Typically, statistics for the 
first 1000 and the last 200 requests are not included in the measurements; however, to 
better capture the steady state behavior of the in-order policy a warmup period longer 
than 1000 requests is sometimes required.1  Each data point represents the average of 
10 simulations.  Unless stated otherwise, this methodology is used throughout this 
paper.  To illustrate the statistical accuracy of the results presented here, Fig. 1 
includes confidence intervals capturing the true average with a confidence of 95%.  
Note that the confidence intervals are only visible for the in-order policy.  Subsequent 
results have similar accuracy and confidence intervals are therefore omitted. 

Fig. 1 shows the average startup delay as a function of the total client bandwidth 
(U + D).  The peer arrival rate is λ = 64 and the seed has an upload bandwidth equal 
to that of the leechers.  The most significant observation is that the Zipf(1.25) policy 
consistently outperforms the other candidate policies.  In systems with an upload 
capacity at least twice the play rate (i.e., U ≥ 2) peers are able to achieve startup 
delays two orders of magnitude smaller than the file playback time and much shorter 
than with the rarest-first policy. 

Fig. 2 presents the cumulative distribution of achievable startup delays for this 
initial scenario.  Note that Zipf(1.25) achieves low and relatively uniform startup 
delays.  The high variability in startup delays using the in-order policy are due to 
groups of peers becoming synchronized, all requiring the same remaining pieces, 
which only the seed has.  Being limited by the upload rate of the seed these peers will, 
at this point, see poor download rates.  With many peers completing their downloads 
at roughly the same time, the system will become close to empty, before a new group 
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Fig. 2.  Cumulative distribution function of the 
best achievable startup delay. (U = 2, D = 6, λ = 
64, and ϕ = 0). 

  

Fig. 1.  Average achievable startup delay 
under constant rate Poisson arrival process. 
(D/U = 3, λ = 64, and ϕ = 0). 
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of peers repeats this process.  This service behavior causes the number of peers in the 
system using the in-order policy to follow a saw-tooth pattern.  In contrast, the 
number of concurrent leechers, using the other policies, is relatively stable. 

Fig. 3(a) shows that, as expected, in-order and portion(90%) do well in systems 
with low arrival rates; however, Zipf(1.25) outperforms these policies at moderate and 
higher arrival rates.  The performance of Zipf(1.25) is relatively insensitive to the 
arrival rate.  Note also that the decrease in average delay observed for high arrival 
rates for the in-order policy may be somewhat misleading as the achievable startup 
delay in this region is highly variable, as illustrated in Fig. 2. 

Fig. 3(b) shows that the results are relatively insensitive to the download/upload 
bandwidth ratio for ratios larger than 2.  In this experiment the upload rate U is fixed 
at 2 and the download rate D varied.  Note that typical Internet connections generally 
have ratios between 2 and 8 [19].  The increasing startup delays using the in-order 
policy are caused by a larger share of seed bandwidth being spent on serving recently 
arrived peers (which can be served by almost every other peer). 

Fig. 3(c) illustrates that higher seed bandwidth allows the more aggressive (with 
respect to fetching pieces in order) portion and in-order policies to achieve better 
performance.  For these results it is assumed that the maximum number of upload 
connections of the seed is proportional to its capacity.  

In the second scenario that we consider, peers arrive according to a Poisson 
process, but each peer may leave the system prematurely.  The rate at which each peer 
departs, prior to its complete reception of the file, is denoted by ϕ.  Fig. 4 illustrates 
that the results are insensitive to the rate peers depart the system.  This insensitivity to 
early departures is a characteristic of peers not relying on retrieving pieces from any 
particular peer and has been verified by reproducing very similar graphs to those 
presented in Fig. 1, 2, and 3. 

In the third scenario that we consider, as motivated by measurement studies done 
on real file sharing torrents [20], peers are assumed to arrive at an exponentially 
decaying rate λ(t) = λ0e

-γt, where λ0 is the initial arrival rate at time zero and γ is a 
decay factor.  By varying γ between 0 and ∞ both a pure Poisson arrival process and a 
flash crowd in which all peers arrive instantaneously (to an empty system) can be 
captured.  Fig. 5 shows the impact of γ on performance.  λ0 is determined such that 
the expected number of arrivals within the first 2 time units is always 128.  We note 
that with a decay factor γ = 1, 63.2% of all peer arrivals occur within the first time 
unit.  With a decay factor γ = 6.9, the corresponding percentage is 99.9%.  For these 
experiments no warmup period was used and simulations were run until the system 
emptied.  Note that the performance of in-order and portion(90%) quickly becomes 
very poor, as the arrival pattern becomes burstier (i.e., for large γ and λ0 values). 

The fourth and final scenario that we consider assumes Poisson arrivals, as in the 
first scenario, but with two classes of peers: low bandwidth peers (UL = 0.4, DL = 1.2) 
and high bandwidth peers (UH = 2, DH = 6).  Fig.  6 shows that the average startup 
delay for the high bandwidth peers significantly increases as the fraction of low 
bandwidth peers increases.  The figure for low bandwidth peers looks very similar, 
with the exception that startup delays are higher (e.g., the minimum startup delay 
using Zipf(1.25) is roughly 0.08).  Similar results have also been observed in a 
scenario where all peers are assumed to have a total bandwidth of 8 (U = 2 and D = 6), 



but a specified fraction of the peers make only 20% of their upload bandwidth 
available (i.e., UL = 0.4 and UH = 2). 

(c)  Impact of the seed bandwidth (U = 2, D = 
6, λ = 64, ϕ = 0). 
 
Fig. 3.  Impact of system parameters on the 
achievable startup delay.  

  

(a)  Impact of the peer arrival rate λ (U = 2, D 
= 6, γ = 0, ϕ = 0). 

 (b)  Impact of the ratio between the client 
download and upload bandwidth D/U (U = 2, 
λ = 64, ϕ = 0). 

Fig. 4. Average achievable startup delay 
under a constant rate Poisson arrival process 
with early departures (U = 2, D = 6, λ = 64).    

  

Fig. 5.  Average achievable startup delay with 
an exponentially decaying arrival rate (U = 2, 
D = 6, λ(t) = λ0e

-γt, λ0 = 128γ / (1 – e-2γ)). 
  

Fig. 6.  Average achievable startup delay 
under a constant rate Poisson arrival process 
with both low and high bandwidth clients (λ = 
64, ϕ = 0, UL = 0.4, DL = 1.2, UH = 2, DH = 6).  
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4. Dynamically Determining Startup Delay 

In highly unpredictable environments, with large and changing sets of peers, it is 
difficult to predict future system conditions.  Therefore, one cannot expect any on-line 
strategy for selecting a startup delay to give close to minimal startup delays, without 
the potential of frequent playback interruption owing to pieces that have not been 
received by their playout point.  To deal with such missing pieces, existing error 
concealment techniques can be applied by the media player, but at some cost in media 
playback quality.  In this section we present a number of simple policies for 
determining when to start playback and evaluate how they perform when used in 
conjunction with the Zipf(1.25) piece selection policy. 

4.1 Simple Policies 
Possibly the simplest policy is to start playback once some minimum number of 
pieces have been received. 

• At-least (b):  Start playback when b pieces have been received, and one of those 
pieces is the first piece of the file. 

Somewhat more complex policies may attempt to measure the rate at which in-
order pieces are retrieved.  We define an “in-order buffer” that contains all pieces up 
to the first missing piece, and denote by dseq, the rate at which the occupancy of this 
buffer increases.  Note that dseq will initially be smaller than the download rate (as 
some pieces are retrieved out-of-order), but can exceed the download rate as holes are 
filled.  The rate dseq can be expected to increase over time, as holes are filled more and 
more frequently.  Therefore, it may be safe to start playback once the estimated 
current value of dseq allows the in-order buffer to be filled within the time it takes to 
play the entire file (if that rate was to be maintained).  With k pieces in the in-order 
buffer dseq must therefore be at least (K–k) / K times as large as the play rate r.  Using 
this “rate condition” two rate-based policies can be defined. 

• LTA (b):  The current value of dseq is conservatively estimated by (Lk/K)/T, 
where T is the time since the peer arrived to the system.  With the LTA(b) 
policy a client starts playback when at least b pieces have been retrieved and 
(Lk/K)/T ≥ r(K–k)/K.  (See Fig. 7.) 

• EWMA (b, αααα):  The current value of dseq is estimated by (L/K)/τseq, where τseq 
denotes an exponentially weighted moving average of the time between 
additions of a piece to the in-order buffer.  With the EWMA(b, α) policy a client 
starts playback when at least b pieces have been retrieved and (L/K)/τseq ≥ r(K–
k)/K. 

τseq is initialized at the time the first piece of the file is retrieved to the time since 
the peer’s arrival to the system.  When multiple pieces are inserted into the in-order 
buffer at once, they are considered to have been added at times equally spaced over 
the time period since the previous addition.  For example, if the 10th, 11th and 12th 
pieces of the file are added to the in-order buffer together (implying that at the time 
the 10th pieces was received pieces 11 and 12 had previously been received), then τseq 
is updated three times, with each inter-arrival time being one third of the time since 
the 9th piece was added to the in-order buffer. 



4.2 Performance Comparisons 
Making the same workload assumptions as in Section 3.3, the above startup policies 
are evaluated together with the Zipf(1.25) piece selection policy.  While policies may 
be tuned for the conditions under which they are expected to operate, for highly 
dynamic environments, it is important for policies to adapt as the network condition 
changes. 

To evaluate the above policies over a wide range of network conditions the four 
scenarios from Section 3.3 are used.  Most comparisons are of: (i) at-least(20), (ii) at-
least(60), (iii) at-least(160), (iv) LTA(20), and (v) EWMA(20, 0.1).  Fig. 8 through 11 
present the average startup delay and the percentage of pieces that are not retrieved in 
time for playback.  Again, note that such pieces could be handled by the media player 
using various existing techniques, although with some degradation in quality. 

Fig. 8 and 9 present results for the first scenario.  Fig. 8 shows that the dseq 
estimate, used by LTA(20) and EWMA(20,0.1), allows these policies to adjust their 
startup delay based on the current network conditions.  These policies increase their 
startup delay enough so as to ensure a small percentage of late pieces, for reduced 
client bandwidths.  This is in contrast to the at-least policy which always requires the 
same number of in-order pieces to be received before starting playback (independent 
of current conditions).  Fig. 9 shows the impact of using different b-values with the 
LTA policy.  As can be observed, most benefits can be achieved using b equal to 10 
or 20.  These values allow for relatively small startup delays to be achieved without 
any significant increase in the percentage of late pieces.  While omitted, results for the 
second scenario suggest that the results are relatively insensitive to departure rates. 

Fig. 10 presents the results for the third scenario.  Here, the exponential decay 
factor (measuring the burstiness with which peers arrive) is varied four orders of 
magnitude.  Fig. 11 presents the results for scenario four, in which arriving peers 
belong to one of two classes, high and low bandwidth clients.  For this scenario, the 
portion of low bandwidth peers is varied such that the network conditions change 
from good (where most peers are high bandwidth clients) to poor (where the majority 
of peers are low bandwidth clients).  As in previous scenarios, we note that both 
LTA(20) and EWMA(20,0.1) adjust well to the changing network conditions, while 
the at-least policy is non-responsive and do not adjust its startup delays.  This is best 
illustrated by the relatively straight lines and/or high loss rates observed by this 
policy. 

Fig. 7.  Startup condition of the LTA policy, using the amount of in-order data received 
by each time T. 
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Designed for highly dynamic environments we find the LTA(b) policy promising.  
It is relatively simple, uses a single parameter, and is somewhat more conservative 
than EWMA(b,α), which may potentially give too much weight to temporary changes 
in the rate at which the in-order buffer is being filled. 

5   Conclusion 

This paper considers adaptations of the BitTorrent-like approach to peer-assisted 
download that provide a form of streaming delivery, allowing playback to begin well 
before the entire file is received.  A simple probabilistic piece selection policy is 
shown to achieve an effective compromise between the goal of high piece diversity, 
and in-order piece retrieval.  Whereas one cannot expect any on-line strategy for 
selecting startup delays to give close to minimal startup delays, we find that a simple 
rule based on the average rate at which in-order pieces are retrieved to give promising 
results. 

(a) Average startup delay.                                 (b) Percentage of late pieces. 
 
Fig. 9.  Impact of parameter b in the LTA policy (D/U = 3, λ = 64, and ϕ = 0). 
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Fig. 8.  Performance with constant rate Poisson arrival process (D/U= 3, λ= 64, and ϕ= 0). 
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(a) Average startup delay.                                 (b) Percentage of late pieces. 
 
Fig. 10.  Performance with an exponentially decaying arrival rate (U=2, D=6, λ(t) = λ0e

-γt, 
λ0 = 128γ / (1 – e-2γ)). 
 

0.001

0.01

0.1

1

0.01 0.1 1 10 100
Exponential Decay Factor

A
ve

. 
U

se
d 

S
ta

rt
up

 D
el

ay
  .

EWMA+20
LTA+20
20
60
160

0

10

20

30

40

50

0.01 0.1 1 10 100
Exponential Decay Factor

%
 L

a
te

 P
ie

ce
s 

 .

EWMA+20
LTA+20
20
60
160

Fig. 11.  Performance with heterogeneous clients (λ = 64, ϕ = 0, UL = 0.4, DL = 1.2, UH = 2, 
DH = 6).  

(a) Average startup delay for high bandwidth 
clients. 

(b) Percentage of late pieces for high 
bandwidth clients. 

(c) Average startup delay for low bandwidth 
clients. 

(d) Percentage of late pieces for low 
bandwidth clients. 
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