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Abstract. With BitTorrent-like protocols a client may dowald a file from a
large and changing set of peers, using connectibh&terogeneous and time-
varying bandwidths. This flexibility is achieveg breaking the file into many
small pieces, each of which may be downloaded fiffarent peers.

This paper considers an approach to peer-assistel@érmand delivery of stored
media that is based on the relatively simple arekilfle BitTorrent-like
approach, but which is able to achieve a form afe@ming” delivery, in the
sense that playback can begin well before the eemtiedia file is received.
Achieving this goal requires: (1) a piece selectgirategy that effectively
mediates the conflict between the goals of higlegigdiversity, and the in-order
requirements of media file playback, and (2) arioa-ule for deciding when
playback can safely commence. We present and aealusing simulation
candidate protocols including both of these comptme

Keywords: BitTorrent-like systems, peer-assisted streaminghabilistic piece
selection.

1 Introduction

Scalable on-demand streaming of stored media cathieved using scalable server
protocols such as patching [1] and Hierarchicae&®@tr Merging [2], server replication
as with CDNs, and/or peer-to-peer techniques. Tliger concerns peer-to-peer
approaches.

A number of prior P2P protocols for scalable on-dethstreaming have used a
cache-and-relay approach [3-6]. With these tealesqeach peer receives content
from one or more parents and stores it in a loeahe, from which it can later be
forwarded to clients that are at an earlier plainpof the file. Some work of this
type concerns the problem of determining the sesesfiers (or peers) that should
serve each peer, and at what rate each serverdsbpatate [7, 8]. Related ideas,
based on application-level multicast architectunasie been used in protocols for live
streaming [9, 10].

* To appear inProc. IFIP/TC6 Networking '07 Atlanta, GA, May 2007. This work was
partially supported by the Natural Sciences andriggging Research Council of Canada.



The above approaches work best when peer connsction relatively stable.
Motivated by  highly dynamic environments where rpeeonnections are
heterogeneous with highly time-varying bandwidthd @eers may join and/or leave
the system frequently, recent work by Annapureeldgl [11] has considered the use
of BitTorrent-like protocols [12] for scalable alemand streaming. (Other recent
work has considered use of such protocols fordiveaming [13-15].)

In BitTorrent-like protocols, a file is split intemaller pieces which can be
downloaded (in parallel) from any other peer thag ht least one piece that the peer
does not have itself. In the approach proposedrmapureddyet al for on-demand
streaming of stored media files, each file is siplib sub-files, each encoded using
distributed network coding [16]. Each sub-filedewnloaded using a BitTorrent-like
approach. By downloading sub-files sequentiallgypack can begin after the first
sub-file(s) have been retrieved, thus allowingranfof “streaming” delivery.

Note that use of large sub-files results in largetgp delays, while using very
small sub-files results in close to sequential @iegtrieval, which can lead to poor
performance as will be shown in Section 3.3. Tést lchoice of sub-file sizes would
be workload (and possibly also client) dependdtitpagh the method requires these
sizes to be statically determined. The authorsiatoelaborate on how the sizes can
be chosen, or how startup delays can be dynamidatsrmined.

Rather than statically splitting each file into seqtially retrieved sub-files or
using a small window of pieces that may be exchdn@es in BitTorrent-like
protocols that have been proposed for live stregrfi8]), in this paper we propose
an approach in which any of the pieces needed jpgea may be retrieved any time
they are available. As in BitTorrent, selectionwdfich piece to retrieve when a
choice must be made is controlled by a piece sefegiolicy. For the purpose of
ensuring high piece diversity, which is an impottahjective indownloadsystems
(where the file is not considered usable untilyfWbwnloaded) [17], BitTorrent uses
ararest-firstpolicy, giving strict preference to pieces that #re rarest among the set
of pieces owned by all the peers from which it@svdloading. On the other hand, in
the context ofstreamingit is most natural to download piecesorder. The piece
selection policy proposed in this paper attemptsatbieve a good compromise
between the goals of high piece diversity, andrioteoretrieval of pieces. We also
address the problem of devising a simple on-lingcpdor deciding when playback
can safely commence.

The remainder of the paper is organized as folloB&ction 2 provides a brief
overview of BitTorrent. Section 3 defines and ee#ts candidate piece selection
policies. Section 4 addresses the problem of dicaiy determining the startup
delay. Finally, conclusions are presented in $achi

2 Overview of BitTorrent

With BitTorrent files are split intpieces which themselves are split into smaller sub-
pieces. Multiple sub-pieces, potentially of thensapiece, can be downloaded in

parallel from different peers. A peer is saichivea piece whenever the entire piece
is downloaded. A peer is consideiaterestedn all peers that have at least one piece



that it currently does not have itself. BitTorreltinguishes between peers that have
the entire file (calledseedy and peers currently downloading the file (called
leechers.

In addition to therarest-first piece selection policy, BitTorrent uses a number o
additional policies that determine which peers woad to. While each peer
establishes persistent connections with a largefgaters (e.g., 80 [17]), at each time
instance, each peer only uploads to a limited nurobgeers. Only peers that are
unchokedmay be sent data. Generally, clients re-evaltieeset of unchoked peers
relatively frequently (e.g., every 10 seconds, eatime a peer becomes
interest/uninterested, and/or each time a new catiomeis established/broken).

To discourage free-riding, BitTorrent useditafor-tat policy in which leechers
give upload preference to the leechers that protige highest download rates to
them. Without any measure of the upload rates fotier peers, it has been found
beneficial if seeds give preference to recentlyhoked peers [17]. Periodically
(typically every third time the set of unchoked peere-evaluated), each client uses
an optimistic unchokepolicy to probe for better pairings (or in the easf a seed,
allow a new peer to download pieces).

3 Piece Selection

Section 3.1 defines candidate policies, Sectiondggcribes our simulation model,
and Section 3.3 evaluates the performance of theepselection policies defined in
Section 3.1.

3.1 Candidate Policies

To allow playback to begin well before the entiredia file is retrieved, pieces must

be selected in a way that effectively mediatescibflict between the goals of high

piece diversity and thim-order requirements of media file playback. Assuming tha

peerj is about to request a piece from pigave define two baseline policies:

 Rarest: Among the set of pieces that pednas and does not have, peg¢r

requests the rarest piece among the set of alepibeld by peers thatis
connected to. Ties are broken randomly.

« In-order: Among the set of pieces that pedias, peej requests the first piece
that it does not have itself.

We propose using simple probabilistic policies. rh@ps the simplest such
technigue is to request an in-order piece with spnodability and the rarest piece
otherwise. Other techniques may use some probabitribution to bias towards
earlier pieces. We have found that the Zipf disttion works well for this purpose.
The specific probabilistic policies considered hare as follows:

» Portion (p): For each new piece request, cliposes the in-order policy with a

probabilityp and the rarest policy with a probability (-

» Zipf (8): For each new piece request, cligmrobabilistically selects a piece
from the set of pieces thathas, but thaj does not have. The probability of
selecting each of these pieces is chosen to begiopal to 1/k+1—k)°, where
kis the index of the piece, alglthe index of its first missing piece.



Note that parametens and 6 can be tuned so that the policies are more or less
aggressive with respect to their preference fdiexgrieces. For the results presented
here the parameters are fixed at the following esip=50%,p = 90%, and® = 1.25.

3.2 Simulation Model

A similar approach is used as in prior simulatitudges of BitTorrent-like protocols
[18, 16]; however, rather than restricting peera tmall number of connections, it is
assumed that peers are connected to all other pedise system. It is further
assumed that pieces are split into sufficiently ynanb-pieces that use of parallel
download is always possible when multiple peereteadesired piece.

It is assumed that a pelecan at most have, concurrent upload connections and
that no connections are choked in the middle ofipload. The set of peers that a
peeri is uploading to may change when (i) it completesupload of a piecer (ii)
some other peer becomes interested and peisr not utilizing all its upload
connections. The new set of upload connectionsistmof (i) any peer currently in
the middle of an uploadand (ii) additional peers up to the maximum limit
Additional peers are selected from the set of @gyd peers. To simulate optimistic
unchoking, with a probability @if a random peer is selected, and with a probaluifity
(n—1)M; the peer which is uploading to peeat the highest rate is selected. Random
selection is used to break ties. This ensuresstieds only use random peer selection.

For simulating the rate at which pieces are excedngt is assumed that
connection bottlenecks are located at the end gdine¢., either by the upload
bandwidthU at the sender or by the download ratat the receiverand the network
operates using max-min fair bandwidth sharing @snhCP, for example). Under
these assumptions each flow operates at the higlsstble rate that ensures that (i)
no bottleneck operates above its capacity, andh@)ate of no flow can be increased
without decreasing the rate of some other flow afpeg at the same or lower rate.

3.3 Performance Comparisons

Throughout this paper it is conservatively assunied there is a single persistent
seed and that all other peers leave the systemomsas they have received the entire
file (i.e., act only as leechers). In a real systgeers are likely to continue serving
other peers as long as they are still playing batrhedia file, and some peers may
choose to serve as seeds beyond that time. Wikarger aggregate available
download bandwidth and higher availability of pie¢he benefits of more aggressive
piece selection techniques are likely to be eveatgr than presented here.

Without loss of generality, downloading of a sinfjle is considered, with size and
play rate both equal to one using normalized unitsth these normalized units, the
volume of data transferred is measured in unithefile size and time is measured in
units of the time it takes to play the file datdence, all rates are expressed relative to
the play rate, and all startup delays are expresslative to the playback time. The
file is split into 512 pieces, and unless statdtentise, peers are assumed to have
three times higher download capacity than uploazhcity. Each peer is assumed to
upload to at most four peers simultaneously. Thhout this section, policies are
evaluated with regard to the lowest possible gtedilay.
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This section initially considers a simple scenaniavhich peers do not leave the
system until having fully received the file, reqgtieg peers arrive according to a
Poisson process, and peers are homogenous (ive.th@same upload and download
bandwidth).  Alternative scenarios and workloaduagstions are subsequently
considered.

To capture the steady state behavior of the sydfeensystem is simulated for at
least 4000 requests. Further, measurements ayedonk for requests which do not
occur near the beginning or the end of each sinamat Typically, statistics for the
first 1000 and the last 200 requests are not irdud the measurements; however, to
better capture the steady state behavior of theeder policy a warmup period longer
than 1000 requests is sometimes requirdeach data point represents the average of
10 simulations. Unless stated otherwise, this paglogy is used throughout this
paper. To illustrate the statistical accuracy lvé results presented here, Fig. 1
includes confidence intervals capturing the truerage with a confidence of 95%.
Note that the confidence intervals are only visiolethe in-order policy. Subsequent
results have similar accuracy and confidence iadsrare therefore omitted.

Fig. 1 shows the average startup delay as a functighe total client bandwidth
(U + D). The peer arrival rate ¥ = 64 and the seed has an upload bandwidth equal
to that of the leechers. The most significant olagi#on is that the Zipf(1.25) policy
consistently outperforms the other candidate pedici In systems with an upload
capacity at least twice the play rate (ild.> 2) peers are able to achieve startup
delays two orders of magnitude smaller than trefdlayback time and much shorter
than with the rarest-first policy.

Fig. 2 presents the cumulative distribution of aghble startup delays for this
initial scenario. Note that Zipf(1.25) achievesvliand relatively uniform startup
delays. The high variability in startup delaysngsthe in-order policy are due to
groups of peers becoming synchronized, all reqgitime same remaining pieces,
which only the seed has. Being limited by the aploate of the seed these peers will,
at this point, see poor download rates. With mpegrs completing their downloads
at roughly the same time, the system will beconesecko empty, before a new group

1 The in-order policy was typically simulated uskigeast 20,000 requests.



of peers repeats this process. This service beheauses the number of peers in the
system using the in-order policy to follow a sawtto pattern. In contrast, the
number of concurrent leechers, using the otheciealj is relatively stable.

Fig. 3(a) shows that, as expected, in-order antiqng®0%) do well in systems
with low arrival rates; however, Zipf(1.25) outpamns these policies at moderate and
higher arrival rates. The performance of Zipf().25 relatively insensitive to the
arrival rate. Note also that the decrease in @esdelay observed for high arrival
rates for the in-order policy may be somewhat raidileg as the achievable startup
delay in this region is highly variable, as illuged in Fig. 2.

Fig. 3(b) shows that the results are relativelyeisitive to the download/upload
bandwidth ratio for ratios larger than 2. In thigeriment the upload rat¢ is fixed
at 2 and the download ralevaried. Note that typical Internet connectionsegally
have ratios between 2 and 8 [19]. The increasiagup delays using the in-order
policy are caused by a larger share of seed batidlw&ng spent on serving recently
arrived peers (which can be served by almost evtirgr peer).

Fig. 3(c) illustrates that higher seed bandwidioved the more aggressive (with
respect to fetching pieces in order) portion anaroter policies to achieve better
performance. For these results it is assumedthigamaximum number of upload
connections of the seed is proportional to its capa

In the second scenario that we consider, peerseaaccording to a Poisson
process, but each peer may leave the system pretyatThe rate at which each peer
departs, prior to its complete reception of the,fis denoted bg. Fig. 4 illustrates
that the results are insensitive to the rate paepart the system. This insensitivity to
early departures is a characteristic of peers elgtng on retrieving pieces from any
particular peer and has been verified by reproduciery similar graphs to those
presented in Fig. 1, 2, and 3.

In the third scenario that we consider, as motivdtg measurement studies done
on real file sharing torrents [20], peers are agslito arrive at an exponentially
decaying raté\(t) = Ae", where), is the initial arrival rate at time zero agyds a
decay factor. By varying between 0 aneb both a pure Poisson arrival process and a
flash crowd in which all peers arrive instantanép an empty system) can be
captured. Fig. 5 shows the impactyobn performance.\, is determined such that
the expected number of arrivals within the firdirfe units is always 128. We note
that with a decay factoy = 1, 63.2% of all peer arrivals occur within thesfitime
unit. With a decay factoy = 6.9, the corresponding percentage is 99.9%. these
experiments no warmup period was used and simakatieere run until the system
emptied. Note that the performance of in-order podion(90%) quickly becomes
very poor, as the arrival pattern becomes burétier for largey andA, values).

The fourth and final scenario that we consider m&suPoisson arrivals, as in the
first scenario, but with two classes of peers: amdwidth peerd = 0.4,D_ = 1.2)
and high bandwidth peert)§ = 2,Dy = 6). Fig. 6 shows that the average startup
delay for the high bandwidth peers significantlgreases as the fraction of low
bandwidth peers increases. The figure for low badith peers looks very similar,
with the exception that startup delays are higleeg.( the minimum startup delay
using Zipf(1.25) is roughly 0.08). Similar resulisive also been observed in a
scenario where all peers are assumed to havel d&otdwidth of 8y = 2 andD = 6),
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4. Dynamically Determining Startup Delay

In highly unpredictable environments, with largedachanging sets of peers, it is
difficult to predict future system conditions. Théore, one cannot expect any on-line
strategy for selecting a startup delay to give eltiss minimal startup delays, without
the potential of frequent playback interruption pgito pieces that have not been
received by their playout point. To deal with sudiissing pieces, existing error
concealment techniques can be applied by the npéalj@r, but at some cost in media
playback quality. In this section we present a bemof simple policies for
determining when to start playback and evaluate ttosy perform when used in
conjunction with the Zipf(1.25) piece selectionipyl

4.1 Simple Policies

Possibly the simplest policy is to start playbagice® some minimum number of
pieces have been received.

e At-least (b): Start playback wheh pieces have been received, and one of those
pieces is the first piece of the file.

Somewhat more complex policies may attempt to nreathe rate at which in-
order pieces are retrieved. We define an “in-otmdfer” that contains all pieces up
to the first missing piece, and denotedy, the rate at which the occupancy of this
buffer increases. Note thdt., will initially be smaller than the download ratas(
some pieces are retrieved out-of-order), but caeed the download rate as holes are
filled. The rateds.,can be expected to increase over time, as hatefillad more and
more frequently. Therefore, it may be safe totspdayback once the estimated
current value ofis.q allows the in-order buffer to be filled within thigne it takes to
play the entire file (if that rate was to be maiméal). Withk pieces in the in-order
buffer ds.q must therefore be at least{) / K times as large as the play rateUsing
this “rate condition” two rate-based policies candefined.

* LTA (b): The current value oflsq is conservatively estimated byk(K)/T,
where T is the time since the peer arrived to the systawith the LTAD)
policy a client starts playback when at lebgpieces have been retrievadd
(LK/K)/T = r(K-K)/K. (See Fig. 7.)

+ EWMA (b, a): The current value afsqis estimated byL(K)/tseq Wheretse
denotes an exponentially weighted moving averagethef time between
additions of a piece to the in-order buffer. Wiile EWMA(, a) policy a client
starts playback when at ledspieces have been retrievadd (L/K)/Tseq=> r(K-
K)/K.

Tseq IS iNitialized at the time the first piece of tfike is retrieved to the time since
the peer’s arrival to the system. When multiplecps are inserted into the in-order
buffer at once, they are considered to have bedrdhdt times equally spaced over
the time period since the previous addition. Fxareple, if the 18, 11" and 12'
pieces of the file are added to the in-order bufgiether (implying that at the time
the 10" pieces was received pieces 11 and 12 had preyibasi received), themeq
is updated three times, with each inter-arrivaletibeing one third of the time since
the 9" piece was added to the in-order buffer.
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4.2 Performance Comparisons

Making the same workload assumptions as in Se@&i8nthe above startup policies
are evaluated together with the Zipf(1.25) piedectn policy. While policies may
be tuned for the conditions under which they arpeeied to operate, for highly
dynamic environments, it is important for policiesadapt as the network condition
changes.

To evaluate the above policies over a wide rangeedivork conditions the four
scenarios from Section 3.3 are used. Most comgasiare of: (i) at-least(20), (ii) at-
least(60), (iii) at-least(160), (iv) LTA(20), and)(EWMA(20, 0.1). Fig. 8 through 11
present the average startup delay and the pereenfggeces that are not retrieved in
time for playback. Again, note that such piecasid¢de handled by the media player
using various existing techniques, although witmsalegradation in quality.

Fig. 8 and 9 present results for the first scenarfeig. 8 shows that théeq
estimate, used by LTA(20) and EWMA(20,0.1), allathiese policies to adjust their
startup delay based on the current network conditioThese policies increase their
startup delay enough so as to ensure a small gagef late pieces, for reduced
client bandwidths. This is in contrast to theestdt policy which always requires the
same number of in-order pieces to be received beftarting playback (independent
of current conditions). Fig. 9 shows the impacusing differentb-values with the
LTA policy. As can be observed, most benefits barachieved using equal to 10
or 20. These values allow for relatively smallrstp. delays to be achieved without
any significant increase in the percentage ofpégees. While omitted, results for the
second scenario suggest that the results arevediathsensitive to departure rates.

Fig. 10 presents the results for the third scenalitere, the exponential decay
factor (measuring the burstiness with which peers/e is varied four orders of
magnitude. Fig. 11 presents the results for soerfaur, in which arriving peers
belong to one of two classes, high and low bandwilients. For this scenario, the
portion of low bandwidth peers is varied such ttie network conditions change
from good (where most peers are high bandwidtintd)eto poor (where the majority
of peers are low bandwidth clients). As in pregi®cenarios, we note that both
LTA(20) and EWMA(20,0.1) adjust well to the changiinetwork conditions, while
the at-least policy is non-responsive and do ngishdts startup delays. This is best
illustrated by the relatively straight lines andiuigh loss rates observed by this

policy.
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Designed for highly dynamic environments we find thirA(b) policy promising.
It is relatively simple, uses a single parameted & somewhat more conservative
than EWMA(D,a), which may potentially give too much weight tonjgorary changes
in the rate at which the in-order buffer is beiiligd.

5 Conclusion

This paper considers adaptations of the BitTorli&st-approach to peer-assisted
download that provide a form of streaming delivextjpwing playback to begin well
before the entire file is received. A simple proitiatic piece selection policy is
shown to achieve an effective compromise betweergtial of high piece diversity,
and in-order piece retrieval. Whereas one canrpea any on-line strategy for
selecting startup delays to give close to minintaftsp delays, we find that a simple
rule based on the average rate at which in-orderegi are retrieved to give promising
results.
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