Generalized Playback Bar for Interactive Branched Video

Eric Lindskog Jesper Wrang Madeleine Backstrom Linn Hallonqvist

Niklas Carlsson

Linképing University, Sweden

ABSTRACT

During viewing of interactive branched video, users are asked to
make viewing choices that impact the storyline of the video play-
back. This type of video puts the users in control of their viewing
experiences and provides content creators with great flexibility
how to personalize the viewing experience of individual viewers.
However, in contrast to with traditional video, where the use of
a playback bar is default for most — if not all - players, there cur-
rently does not exist any generic playback bar for branched video
that helps visualize the upcoming branch choices. Instead, most
branched video implementations are typically custom-made on a
per-video basis (e.g., see custom-made Netflix and BBC movies) and
do not use a playback bar. As an important step towards addressing
this void, we present the first branched video player with a gen-
eralized playback bar that visualizes the tree-like video structure
and the buffer levels of the different branches. The player is imple-
mented in dash.js and is made public with this publication, is the
first of its kind, and allows both the playback bar and the presen-
tation of branch choices to be customized with regards to visual
appearance, functionality, and the content itself. Furthermore, the
design is generic (making it applicable to any video) and allows
content creators to easily create large numbers of branched movies
using a simple metafile format. Finally, and most importantly, we
perform a three-phase user study in which we evaluate the playback
bar, compare with alternative designs, and other branch-related
features. The user study highlights the value of a branched video
playback bar, and provides interesting insights into how it and other
design customization features may best be integrated into a player.

CCS CONCEPTS

« Information systems — Multimedia streaming; - Human-
centered computing — Interactive systems and tools.

KEYWORDS

Branched video; non-linear video; interactive film; progress bar;
user interface; dash.js implementation; user study

ACM Reference Format:

Eric Lindskog Jesper Wrang Madeleine Backstrom Linn Hallonqvist
Niklas Carlsson. 2019. Generalized Playback Bar for Interactive Branched
Video. In Proceedings of the 27th ACM International Conference on Multimedia
(MM ’19), October 21-25, 2019, Nice, France. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3343031.3350951

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM ’19, October 21-25, 2019, Nice, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6889-6/19/10...$15.00
https://doi.org/10.1145/3343031.3350951

1 INTRODUCTION

Interactive storytelling using branched video streaming [18] (some-
times also called non-linear, hypervideo, and multi-path video stream-
ing [5, 17, 25-28, 30, 38]) allows users to make viewing choices that
impact the storyline (or plot sequences) while watching a video.
This puts viewers in control of their own viewing experience.

At an abstract level, the potential plot sequences that a user can
select from while viewing these videos can typically be captured
by a tree structure. Here, each vertex corresponds to a branch point,
at which the user is asked to make a path choice, and the edges
represent video segments that are played out between these branch
points (or the start and end of the video playback sequence).

More concretely, during a typical playback session, the user is
normally presented path choice at-or-before each branch point, and
the playback path is adapted based on the user’s branch selections.
This results in a customized plot sequence based on the user’s path
choices. Further personalization of the plot sequences can easily be
achieved by presenting different users with different path choices.

The above examples illustrate some of the flexibility and power
that branched videos streaming provides. However, despite attempts
by production houses such as Netflix and BBC, for example, with
the exception of the recent success of Netflix’s Black Mirror episode
“Bandersnatch” (released Dec. 2018) [37], branched video has yet
to become mainstream. We believe that one reason for this is that
most of these videos use per-video custom-made user interfaces
that gives each video a unique feel. Instead, we argue that it is
important that users are presented with a generalized interface
that easily can be reused for many videos and that the interface
provides a clear visual way to extract information about upcoming
branch choices, playback progress and buffer levels. In the context
of traditional “linear” video, these are important aspects that we
all expect modern video players to provide. Yet, as of today, there
currently does not exist any generic playback bar for branched
video that helps visualize these aspects.

In this paper, we present (i) the design and implementation of a
novel branched video player that includes a generalized playback
bar, and (ii) the results and insights from a three-step user study
in which we evaluate the use of such a playback bar, compare
alternative designs, and evaluate the integration of the playback
bar and other branch-related features.

The player is implemented in the dash.js (open source) player
and is made public (at www.ida.liu.se/~nikca89/papers/mm19.html)
with this publication. It is the first of its kind and includes a gen-
eralized tree-based progress bar that provides information about
upcoming branch choices, the playback progress, and the current
buffer levels. Our solution provides an overview of the path choices
to be made, simplifies navigation within the set of candidate story-
lines, and (as regular players) aid users in understanding when a
stall is due to the current playback buffer being empty (e.g., due to
bad network connectivity) so as to avoid users unjustifiably blaming
the player for such instances. The design is made generic enough

*This is the authors’ version of the work. It is posted here by permission of ACM for your personal use, not for redistribution.
The paper was published in ACM Multimedia '19, Nice, France, Oct. 2019. https://dx.doi.org/10.1145/3343031.3350951

Figure 1: Branch selection (top) and playback bar (bottom),
when watching Puss in boots: Trapped in an Epic Tale [29],
by Netflix. Here, pages in a storybook represent choices, and
the animated main character helps make the choice.

that it can be used for any branched video structure (assuming the
underlying linear video(s) can be played by dash.js) and enables
content creators to easily create large numbers of branched movies
using a simple metafile format. Furthermore, the player is designed
to allow easy customization of both the playback bar and the presen-
tation of branch choices. This includes customization with regards
to both visual appearance, functionality, and the content itself.

Our user study was performed using 32 participants and included
three parts; each designed to answer different subsets of research
questions. The first part used a combination of methods to measure
potential user-perceived efforts and selection delays associated with
using a playback bar. In the second part we evaluate the perceived
value added by such a playback bar and other user-perceived trade-
offs. Finally, in the third part, a series of test feature experiments
and discussion questions are used to investigate the best ways to
integrate the playback bar and various branch-related example fea-
tures into the player interface. Overall, the user study highlights the
value of a branched video playback bar (e.g., for building a better
understanding of the player state, upcoming branches, and various
other branch related aspects) and shows that these benefits comes
at a negligible increase in the users perceived effort.

Outline: Section 2 provides background. Sections 3 and 4 present
system design and playback bar features, respectively. User study
and results are presented in Section 5. Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

Commercial examples: Use of branched video for interactive plot
sequences in which users can select their own path through a movie
has primarily been limited to custom-made solutions or innovative
use of special features intended for other purposes. Examples of the
first type include custom-made movies by big production houses
(e.g., Netflix, BBC) and videos produced using Eko [8]. While these
videos typically do not have a branched playback bar, some videos
do allow users to keep track of their choices. For example, Netflix
interactive video Puss in Boots: Trapped in an Epic Tale, frequently
prompts viewers to choose between two alternatives pages in a
book and overviews the users’ past choices (Figure 1). While intu-
itive, this interface is movie specific and may not generalize well to
other movies or scenarios. As an example of the second type we
mention the use of annotations in YouTube to link viewers to alter-
native videos that can be viewed next to create a type of multi-path
experience in which a new movie is loaded for each segment. With

the YouTube approach, a new video needs to be loaded each time
you make a choice, and there is no built in prefetching of upcom-
ing branches. Most importantly, none of these services provide a
playback bar that captures the video structure and how much video
content have been buffered for each path.

Related work: HyperCafe [30] was one of the first systems to
demonstrate how users can interactively switch between multiple
videos. This was achieved using textual information and hyperlink
objects. Since then, various types of annotations and links have been
used to create non-linear video [25, 27], generalize the multi-video
concepts to 360° videos [28], build novel navigation maps using geo-
referenced 360° videos, and integrate videos and game engines [35],
for example. These and other similar systems are often designed
to illustrate some annotation and editing principles for linking
videos; however, usability is seldom taken into account [22]. Other
earlier work focused on multicast-based optimizations for popular
content [5, 38], or the design of authoring and media representation
tools for the development of interactive media [24, 26, 31].

Other research on branched (or non-linear) video streaming have
focused on other technical challenges. For example, Krishnamoorthi
etal. [17, 18] explored how the rate adaptive features of HAS can be
used to optimize the prefetching of upcoming branches so to maxi-
mize the expected quality of experience. While it would be possible
to extend their (open source) player [18], their player was imple-
mented using Adobe’s OSMF framework, making it increasingly
less useful by modern browsers, as OSMF sees decreasing support
and use. We therefore selected to implement our own branched
video player within the dash.js framework. We also note that their
player used a very simple user interfaces in which numbered branch
choices are listed in a single textbox and the user simply selects a
branch by pressing the corresponding number on the keyboard. Oth-
ers have considered prefetching and cache management problems
for hypervideos (similar to the YouTube example above) [21, 23].
Yet others have designed tag-based systems that allow tagged parts
of different videos to be automatically stitched together into a single
playback sequence [16], or provided prefetching frameworks for
related contexts where users may quickly switch between multiple
videos [4, 19, 33, 36]. Finally, we note that it has been shown that
annotating the timeline of the playback bar (of linear players) with
buffer state and adding bookmarks for such prefetched segments
can improve users’ playback experiences.

3 SYSTEM DESIGN

For the best possible playback experience, we believe that it is
important that the solution is both rate adaptive and interactive. In
this work, we therefore extend a rate adaptive open source player
(dash.js) to allow playback of interactive branched video streaming.

Adaptive streaming: Almost all video streaming over the Inter-
net is done using various HTTP-based Adaptive Streaming (HAS)
systems [3, 14, 15, 32]. These techniques typically break the video
into shorter chunks (e.g., 2-10 seconds long), each encoded into
multiple video qualities, and then let the player adapt the requested
video quality of each chunk so as to maximize the expected Quality
of Experience (QoE) given current network conditions and buffer
levels. While QoF is a subjective measure, it is well understood that
playback stalls and the encoding quality used for each played chunk

Figure 2: The mapping of a linear video to a branched video

significantly affect QoE [1, 2, 7, 13, 14, 20]. For this reason, most
of these techniques try to maintain sufficient buffer conditions so
to avoid stalls, while simultaneously maximizing the video quality
and keeping the number of quality switches to a minimum.

Dash.js: For our implementation, we extend the dash.js player [6].

dash.js is an open source project driven by the DASH Industry Fo-
rum based on the Dynamic Adaptive Streaming over HTTP (DASH)
standard [32]. The player is implemented in JavaScript and is built
inside a webpage that can be viewed in the major browsers. It
works by binding an HTML video element to the DASH implemen-
tation and requires a Media Presentation Description (MPD) file to
be loaded. This metafile contains information such as the chunk
lengths and encodings used, the different resolutions and bitrates
available, and other information needed to determine what content
can be requested, displayed, and where to request it from.

Extending dash.js for branched video: dash.js does not sup-
port branched videos by default and there currently is no universal
branched video format. For these reasons, we extended the source
code of dash.js and implemented our own methods and formatting
to allow playback of branched video.

First, using the format suggested by Krishnamoorthi et al. [17,
18], we assume that all video segments (each corresponding to the
playback sequence between two branch points in the branched
video; i.e., a branch) have been concatenated into a single linear
video (see Figure 2), and then introduce an extra metafile that
specifies (i) a unique identifier for each segment, (ii) the start and
end of each segment (as defined by playpoints in the underlying
linear video), (iii) the branch options that follows each segment
(if one or more option exist), and (iv) a descriptive name of the
segment (that can be used when the segment is a branch option).
The metafile uses JSON format and can easily be customized for
each user or user category. However, in all cases it must contain
a list of segment objects, where each such object has five fields:
id, startTime, length, branches, and displayName. Note that this
format easily allows segments that overlap in the original (linear)
video to be defined as unique segments, and the unique identifiers
provide us with fast (constant time) lookup and iterative execution.

During playback, the player keeps track of the current playpoint
and uses the information in the metafile to determine the next
branch point, present branch options for that branch point, and
prefetch data from the start of each upcoming candidate segment,
so to allow seamless playback of the next segment to play. Ideally,
to avoid playback stalls at a branch point, at least the first chunk
of each candidate segment of an upcoming branch point should be
prefetched ahead of that branch point being reached [18]. However,
since dash.js does not have a built in way to request out-of-order
chunks during playback, we had to implement an extension that
intercepted all requests sent by dash.js, and that made additional
requests when approaching a branch point. For prefetching, our
solution starts by downloading the first segment of each segment

(in round-robin fashion) and then continue prefetching along the
default path, but note that further optimizations are possible that
weight the different candidate paths and adjust playback quality of
each candidate segment so to optimize the expected quality [18].

Finally, when reaching a branch point, the playpoint jumps to
the startpoint of the segment corresponding to the branch selected
by the user. In the case no branch have been selected, there are
two options: (i) pick the default path, or (ii) stall playback until
a choice is made. While we have implemented both options and
users appears to prefer (i), as explained later, for the purpose of the
experiments presented here we used option (ii).

A novel customizable playback bar: We have implemented a
customizable playback bar that allows us to easily test and compare
different candidate features (described in Section 4).

The playback bar was written in JavaScript using a canvas ele-
ment for drawing the graphics. The canvas has support for different
transforms and allows us to render both simple and complex 2D
shapes and bitmaps inside of the browser. For our example imple-
mentations, the bar can either be placed directly under the video or
overlayed (as a see-through object) at the bottom of the video. In
the second case, the bar can be shown at all times or conditioned on
the mouse placement, the current playpoint, or some other criteria.
We then created two classes of visual objects: segments and branch
points. To allow flexibility in the design of the playback bar, we
allow the placement, size, and shape of these objects to be both
manipulated and transformed during playback. In general, we took
some inspiration of existing popular linear players (e.g., YouTube
and Netflix), and used a dark grey color to indicate content that
have not yet have been buffered, light grey to indicate content that
have been buffered but not yet played, and red to indicate that the
content have been played. However, rather than a single playback
bar for the entire video, we use one (sub)bar per segment.

4 PLAYBACK BAR FEATURES

This section outlines some of the design alternatives we have con-
sidered and their implementation.

4.1 How much of the tree to show?

One question that arises when designing a progress bar for branched
video is how much of the tree structure that should be displayed.
With traditional linear video, progress is almost always displayed
relative to the full playback duration; start to finish. This provides a
quick overview of the current status and allows users to quickly skip
to different parts of the video (e.g., by clicking on the playback bar
or using fast forward/rewind). However, with branched video, the
potential graph structure can be large. We must therefore consider
the tradeoff between providing an overview of all playback paths
and focusing on the part currently most relevant to the user. Here,
we compare three alternative features addressing this tradeoft.

o Full structure: Motivated by the success of traditional play-
back bars, in default mode we show the full structure.

o Simple zoom-and-follow: This feature only displays the seg-
ment currently being played, the most recently played seg-
ment, and all upcoming branches up-to a depth D.

o Prune non-selected paths: This feature removes all branches
that are no longer reachable from the current playpoint.

Ideally, the progress bar should not take up too much of the
potential viewing area and should not interfere with the viewing
of the video. For structures with many branch points, the simple
zoom-and-follow features therefore provides an advantage, as it
limits the part of the tree structure that needs to be shown.

Focusing more on the current and nest-coming segments can
also help avoid that users look too far ahead or reveals too much
information about differences in how far away different story end-
ings may come. Clearly, a zoomed in version can allow the content
creator to hide such hints. On the other hand, its narrower time
focus may cause users to loose part of the benefits that comes from
providing an overview of the graph structure.

4.2 Positioning, visibility, and timing

Other important aspects are the positioning of the playback bar,
how it is integrated, and when it is best displayed. In early imple-
mentations, we placed the playback bar beneath the video. However,
feedback in initial user studies (using SUS and thinking aloud with
11 participants on an early prototype, to help ensure that we studied
the right questions) suggested that it should be integrated with the
rest of the video player. Here, we therefore focus on implemen-
tations in which a semi-transparent playback bar is placed inside
the lower part of the video element. The playback bar can also be
hidden between branch points, and are only shown whenever there
is a branch point within the next T seconds. We expect that this
parameter T is best set such that the playback bar appears when
the user is prompted to make a path decision. However, for the user
study presented here, we considered the two extreme points when
the playback bar always is shown (corresponds to T—c0) and when
it never is shown (corresponds to T=0).

Another important timing-related aspect is whether to pause
(stall) playback of the video when reaching a branch point for which
the user has not yet selected a path. While it is relatively easy to
define a default path (e.g., the first path), for the purpose of the user
study, we chose to pause playback at these instances, providing
users with more time to familiarize themselves with the playback
bar (and allowing us to better measure users’ decision times).

4.3 Visual appearance of branches

Generalized shape of branches: We (i) generalized the presenta-
tion of segments to be based on an arbitrary function that connects
two (branch) points, and (ii) used functions that result in a quick
visual separation of the alternative branches. Examples of functions
that met our criteria include the arctangent function, the square
root function, the error function, the hyperbolic tangent function,
and a shifted logarithmic function that passes through the origin.
Assuming such function f(x), for our implementation, we first
determine the desired start point (x?, y?) and end point (xil,y}) for
each segment i, and then scale the y-values to go through these

(x=x7)
=40+ (y} - y?)ff—(;_fcq)-

Focus-based visual distortion: We also considered transfor-
mations of the 2D space in such a way that additional visual focus
is put on the region of most current interest. For this purpose, we
implemented and tested a basic fish-eye effect (magnifying the area
around the current playpoint) and a basic mouse-eye effect (mag-
nifying the area around where the user has the mouse cursor);

two points: yf“‘led(x)

both designed to provide visual distortion for wide panoramic im-
ages. While fish-eye effects can be implemented in a few different
ways [11], the most common way (called hemispherical) creates a
spherical view of the image where the center of the image appears
closer and larger than the surrounding objects, and corresponds to
using an ultra-wide angle lens on a camera. The choice to try the
use of these effects was motivated by past work that has showed
that they can make it easier to interact with larger interfaces and
things that require wide field-of-view (in our case a potentially
larger structure) [12].

4.4 Integration and branch choice labeling

Figure 3 shows a basic (default) player implementation with large,
clickable, transparent buttons that are overlayed on-top of the video
itself when close to a branch point. For the best possible integration,
we have found (as part of the study presented here) that many users
appreciate additional augmenting features that clearly demonstrate
the connection between branch selection buttons and the playback
bar. We next summarize the main features that at least some users
found helpful clarifying this connection and/or that further helped
integrate the playback bar into the branch decision process.

e Matching branch labeling: This feature adds a “branch choice”
letter (e.g., “A”, “B”, “C”) to each of the segments following
the upcoming branch point as shown in the playback bar, as
well as to the corresponding path selection buttons.

e Highlight path when hovering over button: This feature visu-
ally connects a button to a branch in the playback bar by
highlighting the branch in a bright blue color whenever the
viewer hovers over the button associated with that branch.
This is implemented by changing the background color of the
highlighted branch, and allows the viewer to easily visualize
the different paths that the alternative branches enable.

o Clickable playback bar: This feature allows the user to select
a playback path by simply clicking on the segment within
the playback bar corresponding to its desired path choice.
With this feature, we always highlight the path associated
with the branch over which the user hovers, but allow it to
be run either with or without the default playback buttons.

o Explicitly place buttons in tree: With this feature, the choice
buttons in the player are placed directly over the appropriate
branches in the tree. (In this case we use smaller buttons so
as to line them up with the branch segments.)

All these features are optional and do not need to be used simul-
taneously. The best selection of features will differ from designer
to designer and from user to user.

4.5 Example implementations

Using the above functionalities, we have implemented and tested
many different candidate combinations. Figure 3 shows the default
player used in our user evaluation. Here, both the branch choices
and a transparent playback bar are placed on top of the video,
branches are using an arc-tangent function, and there is no other
scaling or transformation made to the playback bar. Furthermore,
none of the branch choice labeling features from Section 4.4 were
used in the default player. As our baseline comparison (Sections 5.2-
5.4) we use an identical player without a playback bar. We also

60 loco

Figure 3: Default player when the user is hoering the right
choice at the second branch point.

Flgure 4 nghhght path when hovermg overbutton in this
case, the left button.

T e
Flgure 5: Prune non- selected paths; in this case Just after the
first story choice has been made.

include example figures for two of the most popular features in
our per-feature analysis: highlight path when hovering over button
(Figure 4) and prune non-selected paths (Figure 5). These features
are described in Sections 4.4 and 4.1, and evaluated in Section 5.5.

5 USER STUDY

5.1 High-level overview

The user study consisted of three parts, each part focusing on a
separate aspect. In the first part, we use a combination of standard
questions (i.e., NASA-TLX and SEQ; see Section 5.2) and measure-
ments of the users’ actual response times when presented a branch
choice to evaluate how the playback bar itself may add most/least
to the complexity and perceived effort of the users. For this part, we
consider users’ interactions with the default interfaces (Section 4.5)
with and without playback bar. To ensure that we captured how the
interfaces were perceived by first-time users (e.g., with regards to
ease of use, intuitiveness, and complexity), we did not include any
training phase, but instead introduced the interfaces using mini-
mal instructions. The second part uses head-to-head comparison
questions of the two player implementations to identify potential
tradeoffs associated with the playback bar (Sections 5.3 and 5.4).
Before asking these questions, we made sure that the users had
understood the main difference between the interfaces evaluated
in the first part of the study. Finally, in the third part, we evalu-
ate and report the users’ opinions about most of the key features
one-by-one (Section 5.5). At this point of the study, the users had
gained a better appreciation for the problems that a playback bar
may be able to address and were able to provide valuable feedback
on different feature alternatives.

System setup: For our experiments, we hand-crafted and used
different branched video storyline examples. All storylines used Big
Buck Bunny [9] as the underlying linear video but differed by the
segments and branch points defined in their respective metafiles.
Here, we used an encoding for a screen size of 1920x1080, with 30
frames per second, and encoded with H.264 (MPEG-4 AVC).

The program x264 [34] was used to encode the video into four
qualities: 1080p, 900p, 720p and 480p. We used MP4Box [10] to

encapsulate the raw H.264 files in separate MP4 containers and
split the files into segments. We gave each quality a unique id and
used 4 second segments for each quality. The program automatically
generates an MPD file that can be used directly in dash.js.

Equipment and screen setup: The user study was performed
on a laptop (Asus Zenbook UX430) with a 14-inch, non-touch,
1920x1080 screen, Intel processor (i7-8550U), running Windows
10. For each individual playback session, we setup the player to
use the full screen and placed the cursor within the main viewing
area. This ensured that users of the default implementation with
the playback bar always were exposed to the playback bar.

Participants: Using emails and in-person contacts, we recruited
32 participants (10 female, 22 male), ages 20-30 (u = 22.7, o = 1.9),
at a local university. The participants included a mix of majors, had
varied, but limited, prior exposure to branched video (~ half had
no prior experience; rest had seen 1-5 videos, and often mentioned
Bandersnatch as their first such video), and all gave written consent
to participate in the study. The study took approximately 30-45 min-
utes and participants received a sandwich and a non-alcoholic drink
(e.g., coffee or soda). Our participant sample provides a relatively
well-defined group (university students in the typical age-range of
20-30 years old). We acknowledge that this may bias the results.
We further note that some users explicitly compared with their
Bandersnatch experience, influencing their expectations.

Potential influence during the study: To avoid influencing
the participants’ answers, we made sure to not ask any leading
questions. In some cases, a participant struggled to understand or
observe some of the features presented to him/her. In these cases,
instead of directly pointing out and explaining the feature, we
showed the participants the video again to give him/her another
chance to notice the feature. The few times that the participant
still did not notice the feature, we provided hints on where on the
screen to focus, after which everyone noticed the feature. In the
cases that a participant did not understand a question (provided in
writing) and asked us about any question, we tried to clarify the
question without influencing the participant’s answer. For example,
a few participants said that they had not noticed any information
about buffering when viewing the video and therefore did not
understand our question regarding how much the playback bar
help understand this aspect. Here, we simply encouraged them to
answer the questions according to their own experience and note
that these users could select the option “don’t know”.

5.2 Perceived effort and selection delays

Ideally, the benefits of a playback bar should come at low cognitive
overhead. To understand the impact on the users’ perceived effort,
we asked the participants to watch two different branched videos
(“A” and “B”) using the default player implementations with and
without a playback bar. Both videos had three binary branch points;
only the storylines differed. During the viewing of the videos we
recorded the time to make each branch decision (from the time
branch options were presented) and any stall times due to users
failing to select a branch option until after the branch point is
reached (here, causing the video to stall until a decision is made),
and after each playback session we asked the user to fill out NASA-
TLX and Single Ease Question (SEQ).

! !
127 With =71
10 7| without

s

Mental Physmal Tem oral Permeved leflculty Frustrahon
Effort on Success

Mean score
T

NASA-TLX Question
Figure 6: NASA-TLX effort scores (1-20 scale; low-to-high).

Table 1: Summary of SEQ (scale 1-7; low-to-high).
Implementation | Mean (¢ + o) | 95% interval
With PBB 6.63+0.83 (6.33,6.92)
Without PBB 6.5620.76 (6.29,6.83)

To account for differences in the order that the implementations
were introduced and what video were used together with each
implementation, we ran equally many experiments in which each
player implementation was run first, and among these experiments,
video “A” was used first half of the times (and “B” the other half).
Furthermore, to reduce any time-based biases, each of the four
possible player-video combinations were tested first according to a
round-robin schedule. This ensures that we had a balanced dataset
after every fourth participant. With 32 participants, our final dataset
included eight complete rounds.

Figure 6 summarizes the average effort scores (1-20 scale; low-
to-high) obtained with NASA-TLX, with two-sided 95% confidence
intervals. While the average scores may suggest a slight increase
for all metrics except the perceived success, the 95% confidence
intervals are overlapping in all cases. None of these perceived dif-
ferences are therefore significant. These results are encouraging as
they suggest that any additional effort potentially introduced by
the playback bar is minimal.

A similar analysis was performed on the SEQ. Table 1 summarize
these results. Here, we note that the SEQ range is 1-7 (with 7 being
the most positive answer possible). We again note small differences
that are non-significant for the confidence levels considered here. It
is also encouraging to see that the two implementations have aver-
age scores of 6.63 and 6.56, respectively, giving a slight edge to the
implementation with the playback bar, and both implementations
have the highest possible median score (7 out of 7).

To better understand whether the playback bar adds extra delay
to the decision process, Figure 7 shows the CDFs of the branch
selection times when using the player with and without the play-
back bar. Here, we also included a “stall region” line indicating the
average measured time (4.75+0.09 seconds) at which playback was
frozen (“stalled”) when reaching the branch point before a decision
was made. (Branch options presented approximately 5 seconds be-
fore the branch point.) In general, we observed somewhat larger
decision times when using the playback bar. This may indicate that
some users spent some extra time trying to understand how to use
the playback bar. We also saw significantly higher delays for the
first branch (average of 5.62 seconds) compared to for the second
branch (3.90 seconds) and for the first played video (average of
5.22 seconds) compared for the second played video (4.31 seconds).
These results suggest that it sometimes take some time to get used
to the branched video concept.

1

T
0.8 - i
L 06) 4
a 7
© 04l J 16 i
4 [=2
()
0.2+ i— With — 4
S Without ——-
0L T R R T ek e
0 4 8 12 16 20 24

Time to branch decision (seconds)

Figure 7: CDFs of the branch selection times.

Table 2: Increase in understanding of different aspects pro-
vided by the playback bar. (scale 1-20; low-to-high).

Aspect of consideration Score (1 + 0)
The branched video concept 13.6 £ 5.2
The video structure and choices at hand 14.0 + 4.7
Whether there will be upcoming branches 183 + 2.7
Remaining playback time 16.8 £ 4.3
Amount data buffered 133 +6.9

5.3 Perceived value added by the playback bar

After having completed the first part of the study, we made sure that
the users were aware of the difference between the two example
implementations that they had just used to view branched video
(i.e., the playback bar). We then asked explicit questions regarding
to what degree they felt that the playback bar helped increase their
understanding for different aspects related to branched videos.

Table 2 shows the average scores of the understanding added by
the playback bar due to different aspects. For consistency, we used
the same 20-point scale (without visible numbers) and low-to-high
score labeling as NASA-TLX. In addition to the listed aspects, we
believe that a playback bar helps clients understand when a stall
is due to low buffer conditions, but did not include any questions
regard this aspect, as such stalls did not occur with our setup. This
may also help explain why nine participants answered “don’t know”
regarding the improvement of their understanding of the “amount
data buffered”. These participants were not included in the calcu-
lation of the average scores. One participant also answered “don’t
know” regarding whether the playback bar helped increase the
understanding of the “branched video concept”.

It is encouraging to see that the average scores were consistently
above 13 (out of 20) for all five considered aspects, with the highest
scores being reported for whether there will be upcoming branches
(score = 18.3) and how much playback time remains (score = 16.8).
This shows that the playback bar helped the participants gain some
understanding of the branch videos that otherwise may not be
readily available to them, even from their relatively brief playback
sessions. Of course, it should be noted that the two highest scoring
aspects also come with a downside, as such an understanding may
reveal to the user that the ending is near, for example, and may
therefore impact their path choices. Hiding the playback bar after
branch choices and using some variation of the basic zoom-and-
follow feature (not yet introduced to the users at this point in the
study) may therefore provide a better balance than the example
implementation evaluated first.

5.4 Other user-perceived tradeoffs

At this point of the study we also asked the participants to evaluate
the two example implementations regarding (i) the speed of picking

1 1 1 1

20 =
With 71 Without
o 16 . r
S N
@ 12 | r
/ /
= R g
4 AN / -
/

I
Accuracy Best User
help experience

Figure 8: Comparison of video player with/without playback
bar (1-20 scale; low-to-high).

a desired path, (ii) the accuracy of picking a desired path, (iii) the
help provided to make a good decision, and (iv) the perceived user
experience. Again, we remind the reader that the two example
implementations were not designed to optimize any of the above
criteria, but rather to make users aware of the playback bar and
allow a more well-informed discussion about how it could best be
designed and integrated (Sections 4.2 and 4.4). For example, we
used much larger buttons than most users would desire (to make
sure that first-time users quickly were made aware of their choices,
as we did not tell them that they would need to make choices) and
exposed users to the playback bar even when the they were not
expected to make branch choices (to make sure that the users were
made aware of the playback bar).

Figure 8 summarizes our average results; again using a 1-20
scale (low-to-high) and 95% confidence intervals. Here, we only
observe significant differences for the perceived user experience
(e.g., non-overlapping confidence intervals and only 7 out of 32
users preferring the implementation with the playback bar). While
this user preference result at first may seem disheartening, it is
important to note that we intentionally (over) exposed users to the
playback bar by not hiding it between branch points, for example,
expecting that users needed some time to build an increasing ap-
preciation for the general concept. Furthermore, the question was
asked relatively early in the study, after the participants only had
seen the two example implementations, and the majority of the
users repeatedly (in the later part of the study; Section 5.5) brought
forward that they wanted the possibility to hide the playback bar
during regular playback. Based on the per-feature evaluation and
discussion (Section 5.5) it appears that simply making the playback
bar disappears from the video whenever the viewer keeps the mouse
pointer still (or alternatively whenever the user is not presented
any branch options) should increase these scores significantly.

With the exception for the perceived user experience, the average
differences are again small, and the results align well with our
previous results. For example, as for the measured branch selection
delays, the self-reported “speed” differences are small both in terms
of averages (Figure 8) and in terms of users reporting same-or-
higher scores for the implementation with playback bar (16 out of
32). Despite not seeing any significant differences in the average
“accuracy” scores, 21 out of 28 (or 25 out of 32 if including 4 “don’t
know” answers) report same-or-higher score for player with the
playback bar. Finally, on the “best help” question, 23 out of 32 users
give same-or-higher score for the playback bar implementation.

Interestingly, the playback bar typically scored relatively higher
when shown as the second implementation. Among the users that
gave same-or-higher score for player with the playback bar, 10 out
of 16, 15 out of 25, 12 out of 23, and 6 out of 8, respectively, used
the playback bar implementation second. This may further suggest

Table 3: Summary of like/dislike evaluation results. Here,
we use (**) to indicate when a result is significant.

Feature Like | Dislike | pontknow
Simple zoom-and-follow 13 13 6
Prune non-selected paths 26 ** 4 2
Fish-eye 1 28" 3
Mouse-eye 3 26 ** 3
Matching branch labeling 8 21 3
Highlight path when hovering over button 18 ** 8 6
Clickable playback bar, without any buttons 0 28 4
Explicitly place buttons in tree 16 14 2

that users need some time to digest the branched video concept
and that they build a higher appreciation for branched videos as
they interact more with the video content and the player. For this
and prior mentioned reasons (e.g., regarding the naive integration
of the playback bar into the player) it is perhaps not surprising
that the implementation without a playback bar had higher user
experience scores (at this time of the study).

5.5 Feature-by-feature analysis

Finally, we evaluated each candidate feature outlined in Section 4
one at a time. For each feature, we first presented the player with the
particular feature turned on. We then confirmed with the user that
he/she had noticed and understood the effect of the feature, asked
whether the user liked/disliked the feature, and finally asked the
user to motivate and explain his/her answer. Table 3 summarizes the
results of all features with a clear like/dislike test. In the following
we discuss these and other features, one at a time.

Tree-size related questions and what to show: Here, we
compared the simple zoom-and-follow and prune non-selected paths
against showing the full structure (default). The simple zoom-and-
follow feature received mixed reactions; half liked it and half did
not. The primary reasons that users liked this feature was that
it is “more dynamic”, “does not reveal the structure of the entire
tree” (e.g., ability to look too far into the future), being more area
efficient, and that it has a “nice pace”. In contrast, the users that
did not like this feature commented that they felt that it “draws
more attention” and increased the stress in their decisions (e.g., as
branches move relative the player, and that this subconsciously
increases the cognitive load), and others did not like the feature as
they prefer a better overview of past and future choices.

The prune non-selected paths feature received very positive scores
(26 out of 30 with a distinct opinion liked it). Here, the users stated
that they liked that it “removes unnecessary information”, “reduces
the remaining tree size”, “focus on the part of interest”, “reduces the
chance regretting past choices”, and that it “feels more realistic”.

We also asked participants about the maximum number of branch
choices per branch point and the maximum number of branch
points per video session. The majority of users argued for at most
2 or 3 path choice per branch point and nobody suggested more
than 4. (9 prefer 2; 10 prefer 2-to-3; 4 prefer 2-to-4; 3 prefer 3; and
1 said 3-4.) In contrast, we saw high variability in the maximum
number of branch points per video. However, in general, most users
responded that the number depends highly on the length and type
of video. Many argued that they would not want to have to make
choices too often, as they typically would prefer to sit back and

relax, but would be okay with more choices if they felt that their
choices mattered and improved the storyline.

Visual appearance of branches: We first asked users to select
their preference among the branch shapes defined by four different
mathematical functions. Here, most users (15 out of 32) selected our
default function arctan, 11 out of 32 desired the use of 90-degree
branches, 3 out of 32 could not decide between the 90-degree option
and arctan, 3 out of 32 selected acos, and nobody wanted to use
straight lines between the branch points (abs). This shows that our
default choice (arctan) indeed is a good choice. Second, we note that
almost no user liked the fish-eye feature (1 out of 32 users) or mouse-
eye feature (3 out of 32 users), suggesting that such distortions may
not help the users in this context. The more positive answers for
mouse-eye may suggest that these type of features may be better
used to explore the branch structure at the time of video creation
or when the video is paused, for example.

Integration and branch choice labeling: Out of the four fea-
tures considered here, highlight path when hovering over button
received the most positive reviews (picked by 18 out of 26 with a
distinct opinion). The users that liked this feature said that it was
“simple”, “made it clear what path you consider choosing”, “made
the user feel more in control”, and “connects the purpose of the
playback bar to the buttons”. The users that did not like this feature
felt that it “did not contribute anything useful”, “was not that notice-
able”, “takes focus away from the video”, “reveals information about
the number of candidate paths”, or felt that “a similar feature may
be better used for the purpose of informing users what paths they
have already watch” (e.g., when watching a video the second time).
We note that the comments again are highly diverse, highlighting
that there likely is no silver bullet that will be best for all users.

Perhaps not surprisingly, nobody liked the idea of completely
replacing the branch selection buttons with a clickable playback bar.
However, interestingly, more than half (16 out of 30 with a distinct
opinion) liked the feature that explicitly placed the buttons in the
tree shown on the playback bar. Some of the users that liked this
feature felt that this approach was less distracting than the large
see-through buttons, whereas users that did not like the feature felt
it blocked the playback bar, or that it draws focus from the screen.
Finally, only a few users (8 out of 29 with a distinct opinion) liked
the feature that adds matching branch labels (e.g., “A” and “B”) to
both buttons and branches. Instead, some users argued that it may
be best to give users one way to select a path and that using the
playback bar for branch selection may take some getting used to.

Positioning, visibility, and timing: As noted above, many
users felt that the buttons were too large and that the playback
bar should be hidden between branch points. This is perhaps not
surprising and matches well with how the size and time parameters
were selected in the two example players used for the study (i.e., so
to help ensure that users quickly would be made aware of the branch
choices and playback bar). Naturally, in a production environment,
a more subtle design likely would be desirable.

We showed example videos with branch options presented 3, 5,
and 7 second before the branch points. Out of the 32 participants,
16 prefer 3 sec, 8 prefer 5 sec, 2 prefer 7 sec, 4 said that either
of alternatives 3 or 5 sec would be good, and 2 said that 5 or 7
sec would be good. These results suggest that users tend to prefer
shorter path selection times (main reason: less view interference).

Table 4: Fraction of branch choices not made within users’
selected threshold.

With PBB Without PBB
Threshold | Users | First | Second | First | Second
3 seconds 16 0.69 0.81 0.81 0.75
3-5 seconds 4 0.25 - - 0.00
5 seconds 5 0.33 0.20 0.30 0.17
5-7 seconds 2 0.00 0.00 0.00 0.00
7 seconds 2 - 0.25 0.00 -

Interestingly, many users mentioned that they would have liked
if the video simply continued along a (pre-selected) default path in
the case that they did not make a choice in time of the branch point.
This is similar to the ideas assumed in prior work by Krishnamoorthi
et al. [18] and what is used by Eko [8]. To investigate what fraction
of the users would have made their choice within different decision
periods, we refer back to Figure 7. Combining all measurements,
only 29.7% of the selections were done within 3 sec; 66.4% within 5
sec; and 86.7% within the first 7 sec.

Finally, Table 4 shows the fraction of times that the observed
branch selection times (of different categories) are larger than the
threshold suggested by the participant. Here, we break down the
results per threshold, per player implementation used, and whether
the data point is from the first or second experiment. We note a
significant number of violating cases, suggesting that users perhaps
were too optimistic of their ability to make fast decisions.

6 CONCLUSIONS

In this paper, we first presented a novel open-source player (made
available with this publication) implemented using dash.js, which
includes a generalized playback bar that visualizes the tree-like
branched video structure and the buffer levels of the different
branches. The player allows both the playback bar and the pre-
sentation of branch choices to be easily customized with regards
to visual appearance, functionality, and the content itself. Second,
we presented the results of a three-step user study in which we
evaluated the playback bar and compared with alternative designs
and branch-related features. The user study highlights that the
branched playback bar can add value at the cost of very limited
perceived client effort. Our findings also suggest that further im-
provements are possible by hiding the playback bar between branch
points and enhance the playback bar with high-scoring features
such as prune non-selected paths and highlight path when hovering
over button. Based on the study, we have implemented a version in
which (i) the playback bar is hidden whenever the mouse is still, (ii)
playback continues along the default path (when a path selection is
not made before reaching a branch point), (iii) a count-down timer
has been added to show how much time the user has left to make
a decision (before a branch point), and (iv) both the choice but-
tons and branches in the playback bar have been made smaller and
more discrete. Creating larger content catalogues and evaluating
such further improved players on larger and more diverse client
populations provide interesting avenues for future work.
Acknowledgements: The authors are thankful to the partici-
pants of the study and to our shepherd Axel Carlier and the anony-
mous reviewers for their feedback. Early designs also benefited
from discussions with Derek Eager and Anirban Mahanti. This
work was funded in part by the Swedish Research Council (VR).

REFERENCES

(1]

[2

—

3

[11]
[12]

[13]

[14

[15]

[16]

[17]

(18]

[19

2018. ITU-T P.1203: Objective video QoE standard. (2018). https://www.itu.int/
rec/T-REC-P.1203

2018. VQEG: Objective video quality assessment. (2018). https://www.its.bldrdoc.
gov/vqeg/projects/audiovisual-hd.aspx

S. Akhshabi, A. C. Begen, and C. Dovrolis. 2011. An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP. In Proc. ACM
MMsys.

N. Carlsson, D. Eager, V. Krishnamoorthi, and T. Polishchuk. 2017. Optimized
Adaptive Streaming of Multi-video Stream Bundles. IEEE Trans. on Multimedia
19, 7 (7 2017), 1637-1653.

N. Carlsson, A. Mahanti, Z. Li, and D. L. Eager. 2008. Optimized Periodic Broadcast
of Nonlinear Media. IEEE Trans. on Multimedia 10, 5 (2008), 871-884.

dash.js. 2019. (2019). https://github.com/Dash-Industry-Forum/dash.js/wiki

F. Dobrian, V. Sekar, A. Awan, 1. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H.
Zhang. 2011. Understanding the Impact of Video Quality on User Engagement.
In Proc. ACM SIGCOMM.

Eko. [n. d.]. Eko (interactive video website). ([n. d.]). helloeko.com

S. Goedegebure, A. Goralczyk, E. Valenza, N. Vegdahl, W. Reynish, B. V. Lommel,
C. Barton, J. Morgenstern, and T. Roosendaal. [n. d.]. Big Buck Bunny (video).
([n. d.]). https://peach.blender.org/download/

GPAC. [n. d.]. MP4Box (multimedia packager). ([n. d.]). https://gpac.wp.imt.fr/
mp4box/

C. Gutwin and C. Fedak. 2004. A Comparison of Fisheye Lenses for Interactive
Layout Tasks. In Proc. of GI. 53-60.

C. Gutwin and C. Fedak. 2004. Interacting with Big Interfaces on Small Screens: A
Comparison of Fisheye, Zoom, and Panning Techniques. In Proc. of GI. 145-152.

T. Hossfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia. 2015. Identifying
QoE optimal adaptation of HTTP adaptive streaming based on subjective studies.
Computer Networks (2015).

T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. 2012. Confused,
Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. ACM IMC.

T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. 2014. A Buffer-
Based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service. In Proc. ACM SIGCOMM.

D. Johansen, P. Halvorsen, H. D. Johansen, H. Riiser, C. Gurrin, B. Olstad, C.
Griwodz, A. Kvalnes, J. Hurley, and T. Kupka. 2012. Search-based composi-
tion, streaming and playback of video archive content. Multimedia Tools and
Applications 61 (2012), 419-445.

V. Krishnamoorthi, P. Bergstrom, N. Carlsson, D. Eager, A. Mahanti, and N.
Shahmehri. 2013. Empowering the Creative User: Personalized HTTP-based
Adaptive Streaming of Multi-path Nonlinear Video. ACM CCR (2013), 53-58.

V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri. 2014.
Quality-adaptive Prefetching for Interactive Branched Video Using HTTP-based
Adaptive Streaming. In Proc. ACM Multimedia. 317-326.

V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri. 2015.
Bandwidth-aware Prefetching for Proactive Multi-video Preloading and Improved

&
22

HAS Performance. In Proc. ACM Multimedia. 551-560.

S. Krishnan and R. Sitaraman. 2012. Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-experimental Designs. In Proc. IMC.
B. Meixner. 2016. A pattern-based evaluation of download and cache management
algorithms for annotated interactive non-linear videos. Multimedia Systems
(2016), 1-35.

B. Meixner. 2017. Hypervideos and interactive multimedia presentations. Comput.
Surveys 50 (2017).

B. Meixner and C. Einsiedler. 2016. Download and Cache Management for HTML5
Hypervideo Players. In Proc. ACM HT. 125-136.

B. Meixner and H. Kosch. Sep. 2012. Interactive Non-linear Video: Definition and
XML Structure. In Proc. ACM DocEng.

B. Meixner,]J. Kostler, and H. Kosch. 2011. A Mobile Player for Interactive
Non-linear Video. In Proc. ACM Multimedia. ACM, 779-780.

B. Meixner, K. Matusik, C. Grill, and H. Kosch. 2014. Towards an easy to use
authoring tool for interactive non-linear video. Multimedia Tools and Applications
(2014), 1251-1276

B. Meixner, B. Siegel, P. Schultes, F. Lehner, and H. Kosch. 2013. An HTML5
Player for Interactive Non-linear Video with Time-based Collaborative Annota-
tions. In Proc. ACM International Conference on Advances in Mobile Computing &
Multimedia. 490-499.

L. A. R Neng and T. Chambel. 2010. Get Around 360° Hypervideo. In Proc.
MindTrek. 119-122.

Netflix. 2017. Puss in boots: Trapped in an Epic Tale (screenshot). (2017). https:
//www.netflix.com/title/80151644

N. Sawhney, D. Balcom, and I. Smith. 1997. Authoring and navigating video in
space and time. IEEE Multimedia 4, 4 (1997), 30-39.

U. Spierling, S. A. Weif3, and W. Miiller. Dec. 2006. Towards Accessible Authoring

Tools for Interactive Storytelling. In Proc. ACM TIDSE.
T. Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP —: Standards

and Design Principles. In Proc. ACM MMSys. 133-144.

L. Toni and P. Frossard. 2017. Optimal Representations for Adaptive Streaming
in Interactive Multiview Video Systems. IEEE Trans. om Multimedia 19, 12 (Dec.
2017).

VideoLAN. [n. d.]. x264 (software library). ([n. d.]). https://www.videolan.org/
developers/x264.html

M. Wijnants, J. Leén, P. Quax, and W. Lamotte. 2014. Augmented video viewing:
transforming video consumption into an active experience. In Proc. ACM MMSys.
164-167.

M. Wijnants, P. Quax, G. R. Ruiz, W. Lamotte, J. Claes, and J.-F. Macq. 2015.
An optimized adaptive streaming framework for interactive immersive video
experiences. In Proc. IEEE BMSB. 1-6.

Wikipedia. 2019. (2019). https://en.wikipedia.org/wiki/Black_Mirror:
_Bandersnatch

Y. Zhao, D. L. Eager, and M. K. Vernon. 2007. Scalable on-demand streaming of
nonlinear media. IEEE/ACM Trans. on Networking 15, 5 (Oct 2007), 1149-1162.

	Abstract
	1 Introduction
	2 Background and related work
	3 System design
	4 Playback bar features
	4.1 How much of the tree to show?
	4.2 Positioning, visibility, and timing
	4.3 Visual appearance of branches
	4.4 Integration and branch choice labeling
	4.5 Example implementations

	5 User study
	5.1 High-level overview
	5.2 Perceived effort and selection delays
	5.3 Perceived value added by the playback bar
	5.4 Other user-perceived tradeoffs
	5.5 Feature-by-feature analysis

	6 Conclusions
	References

