
Quality-adaptive Prefetching for Interactive Branched
Video using HTTP-based Adaptive Streaming

1 Linköping university, Sweden

2 University of Saskatchewan, Canada

3 NICTA, Australia

Vengatanathan Krishnamoorthi1, Niklas Carlsson1,

Derek Eager2, Anirban Mahanti3, Nahid Shahmehri1

Proc. ACM Multimedia, Orlando, FL, USA, Nov. 2014

We have all seen a movie that (in our taste) is...

2

We have all seen a movie that (in our taste) is...

3

too sad

We have all seen a movie that (in our taste) is...

4

too sad
too violent

We have all seen a movie that (in our taste) is...

5

too sad
too violent

too scary
…

We have all seen a movie that (in our taste) is...

6

too sad
too violent

too scary
…

… or where we may have wanted our favorite character

to make a different choice...

We have all seen a movie that (in our taste) is...

7

too sad
too violent

too scary
…

… or where we may have wanted our favorite character

to make a different choice...

We have all seen a movie that (in our taste) is...

8

too sad
too violent

too scary
…

… or where we may have wanted our favorite character

to make a different choice...

We have all seen a movie that (in our taste) is...

9

too sad
too violent

too scary
…

… or where we may have wanted our favorite character

to make a different choice...

What if we can personalize the storyline based on the

users preferences or path choices?

10

What if we can personalize the storyline based on the

users preferences or path choices?

11

What if we can personalize the storyline based on the

users preferences or path choices?

12

What if we can personalize the storyline based on the

users preferences or path choices?

13

What if we can personalize the storyline based on the

users preferences or path choices?

14

… already many examples how creative content creators

provide interactive experiences and story lines …

What if we can personalize the storyline based on the

users preferences or path choices?

15

YouTube Interlude

… already many examples how creative content creators

provide interactive experiences and story lines …

… and even books!

What if we can personalize the storyline based on the

users preferences or path choices?

16

YouTube Interlude

… already many examples how creative content creators

provide interactive experiences and story lines …

… and even books!

What if we can personalize the storyline based on the

users preferences or path choices?

17

YouTube Interlude

… already many examples how creative content creators

provide interactive experiences and story lines …

… and even books!

What if we can personalize the storyline based on the

users preferences or path choices?

18

YouTube Interlude

… already many examples how creative content creators

provide interactive experiences and story lines …

… and even books!

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

• Regardless of interactivity, user experience and user
satisfaction is greatly influenced by:
– Playback stalls and quality fluctuations

• Current interactive branched players split a video
into many sub videos and then link them

• Issues
– Playback stalls when playing a new video

– Non-adaptive playback

• Solution
– Combine branched video and HAS

 [Krishnamoorthi et al., ACM CCR 2013]

Seamless Playback without Stalls

HTTP-based Adaptive Streaming (HAS)

31

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

32

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

33

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

34

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

35

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

36

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

37

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

38

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

HTTP-based Adaptive Streaming (HAS)

39

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

Chunk1

HTTP-based Adaptive Streaming (HAS)

40

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

Chunk1

Chunk2

HTTP-based Adaptive Streaming (HAS)

41

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

Chunk1

Chunk2 Chunk3

HTTP-based Adaptive Streaming (HAS)

42

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

Chunk1

Chunk2

Chunk4

Chunk3

HTTP-based Adaptive Streaming (HAS)

43

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

Chunk1

Chunk2

Chunk4

Chunk3

Chunk5

HTTP-based Adaptive Streaming (HAS)

44

• HTTP-based streaming

– Video is split into chunks

– Easy firewall traversal and caching

– Easy support for interactive VoD

• HTTP-based adaptive streaming

– Multiple encodings of each fragment (defined in manifest file)

– Clients adapt quality encoding based on buffer/network conditions

Chunk1

Chunk2

Chunk4

Chunk3

Chunk5

HAS-based Interactive Branched Video

45

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

46

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

47

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

48

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

49

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

50

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

51

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

52

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

53

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

54

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

HAS-based Interactive Branched Video

55

• Branched video and branch points

– The video can include branch points, with multiple branch choices

– User selects which segment to play back next

• Segments

– Arbitrary sequence of chunks from one or more videos

• Use of HAS allow adaptive prefetching

– Goal: Seamless playback even if user decision at last possible moment

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation of the framework

• Experimental evaluation of our policies, which provide
insights into the importance of careful adaptive policies

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation of the framework

• Experimental evaluation of our policies, which provide
insights into the importance of careful adaptive policies

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation of the framework

• Experimental evaluation of our policies, which provide
insights into the importance of careful adaptive policies

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation* of the framework

• Experimental evaluation of our policies, which provide
insights into the importance of careful adaptive policies

*Software: http://www.ida.liu.se/~nikca/mm14.html

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation* of the framework

• Experimental evaluation of our policies, which provide insights
into the importance of careful adaptive policies

*Software: http://www.ida.liu.se/~nikca/mm14.html

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation* of the framework

• Experimental evaluation of our policies, which provide insights
into the importance of careful adaptive policies

*Software: http://www.ida.liu.se/~nikca/mm14.html

Contributions

• We develop a simple analytic model which allows us to define
the prefetching problem as an optimization problem
– Maximizes expected playback quality while avoiding stalls

• Based on our findings, we design optimized policies that
determine:
1. When different chunks should be downloaded
2. What quality level should be selected for each of these chunks
3. How to manage playback buffers and (multiple) TCP connections
such as to ensure smooth playback experience without excessive
workahead (buffering)

• The design and implementation* of the framework

• Experimental evaluation of our policies, which provide insights
into the importance of careful adaptive policies

*Software: http://www.ida.liu.se/~nikca/mm14.html

Problem Description and Constraints

• Problem: Maximize quality, given playback
deadlines and bandwidth conditions

Problem Description and Constraints

• Problem: Maximize quality, given playback
deadlines and bandwidth conditions

Problem Description and Constraints

• Objective function

playback quality

Problem Description and Constraints

• Objective function

Problem Description and Constraints

• Objective function

Current segment

Problem Description and Constraints

• Objective function

Beginning of next segment

• Download order: round robin (optimal)

Problem Description and Constraints

Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

first chunk next Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

first chunk next Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

first chunk next Current segment

• Download order: round robin (optimal)

Problem Description and Constraints

first chunk next Current segment

• Download order: round robin (extra workahead)

Problem Description and Constraints

extra workahead first chunk next Current segment

• Download order: round robin (extra workahead)

Problem Description and Constraints

extra workahead first chunk next Current segment

• Download order: round robin (extra workahead)

Problem Description and Constraints

extra workahead first chunk next Current segment

• Download order: round robin (extra workahead)

Problem Description and Constraints

extra workahead first chunk next Current segment

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

first chunk next Current segment

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

first chunk next Current segment

Selected path

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

Selected path

current segment

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

current segment

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

current segment

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

current segment

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

22

current segment first chunk next

• Once branch point has been traversed, move on
to next segment ...

Problem Description and Constraints

22

current segment first chunk next

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

Playback schedule

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

Playback schedule

Download schedule

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Problem Description and Constraints

Download completion time

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Problem Description and Constraints

Download completion time

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Download completion times

Problem Description and Constraints

Playback deadlines

Download completion time

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Time of playback deadline

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Time of playback deadline

Playback deadlines

Problem Description and Constraints

Startup delay

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Playback deadlines

Problem Description and Constraints

Playtime of earlier chunks

• Playback deadlines

– for seamless playback without stalls

– Current segment: e.g., 2 and 3

Startup delay

Playback deadlines

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– First chunks next segment: e.g., 4, 7, and 10

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– First chunks next segment: e.g., 4, 7, and 10

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– First chunks next segment: e.g., 4, 7, and 10

Download completion times

Download completion times

Problem Description and Constraints

• Playback deadlines

– for seamless playback without stalls

– First chunks next segment: e.g., 4, 7, and 10

Download completion times

Time at which branch point is reached

Playback deadline (shared)
for chunks 4, 7, and 10

Problem Description and Constraints

Download completion times

Download completion times

• Download times , rate estimations, and
parallel connections

– Schedule new downloads and new TCP connections
at the end of a chunk download

– Assume that an additional TCP connection will not
increase the total download rate

– New connections are initiated only if it is not
expected to lead to playback deadline violations

Problem Description and Constraints

• Download times , rate estimations, and
parallel connections

– At the end of a chunk download, schedule new
downloads and new TCP connections

– Assume that an additional TCP connection will not
increase the total download rate

– New connections are initiated only if it is not
expected to lead to playback deadline violations

Problem Description and Constraints

• Download times , rate estimations, and
parallel connections

– At the end of a chunk download, schedule new
downloads and new TCP connections

– Assume that an additional TCP connection will not
increase the total download rate

– New connections are initiated only if it is not
expected to lead to playback deadline violations

Problem Description and Constraints

• Download times , rate estimations, and
parallel connections

– At the end of a chunk download, schedule new
downloads and new TCP connections

– Assume that an additional TCP connection will not
increase the total download rate

– New connections are initiated only if it is not
expected to lead to playback deadline violations

Problem Description and Constraints

• Download times , rate estimations, and
parallel connections

– At the end of a chunk download, schedule new
downloads and new TCP connections

– Assume that an additional TCP connection will not
increase the total download rate

– New connections are initiated only if it is not
expected to lead to playback deadline violations

Problem Description and Constraints

Concurrent Download Example

Concurrent Download Example

Concurrent Download Example

Concurrent Download Example

Concurrent Download Example

Concurrent Download Example

Concurrent Download Example

Prefetching Policies

• At download completion
– Decide number of chunks to download next

– Decide quality level of chunks

– Maximize expected weighted playback

• Exponential number of candidate schedules

• Our optimized policies restrict the number of
candidate schedules to consider
– Differ in number of candidate schedules and how

aggressive they are (in choosing qualities)

Prefetching Policies

• At download completion
– Decide number of chunks to download next

– Decide quality level of chunks

– Maximize expected weighted playback

• Exponential number of candidate schedules

• Our optimized policies restrict the number of
candidate schedules to consider
– Differ in number of candidate schedules and how

aggressive they are (in choosing qualities)

Prefetching Policies

• At download completion
– Decide number of chunks to download next

– Decide quality level of chunks

– Maximize expected weighted playback

• Exponential number of candidate schedules

• Our optimized policies restrict the number of
candidate schedules to consider
– Differ in number of candidate schedules and how

aggressive they are (in choosing qualities)

Prefetching Policies

• At download completion
– Decide number of chunks to download next

– Decide quality level of chunks

– Maximize expected weighted playback

• Exponential number of candidate schedules

• Our optimized policies restrict the number of
candidate schedules to consider
– Differ in number of candidate schedules and how

aggressive they are (in choosing qualities)

Prefetching Policies

• At download completion
– Decide number of chunks to download next

– Decide quality level of chunks

– Maximize expected weighted playback

• Exponential number of candidate schedules

• Our optimized policies restrict the number of
candidate schedules to consider
– Differ in number of candidate schedules and how

aggressive they are (in choosing qualities)

Prefetching Policies

• At download completion
– Decide number of chunks to download next

– Decide quality level of chunks

– Maximize expected weighted playback

• Exponential number of candidate schedules

• Our optimized policies restrict the number of
candidate schedules to consider
– Policies differ in number of candidate schedules

and how aggressive they are (in choosing qualities)

Comparison Between Policies
Policy Connections Schedules

considered
Objective

All schedules 1≤ci≤Cmax QM, where
M=ne+|ξb|-m

-

Optimized non-
increasing quality

1≤ci≤Cmax

Optimized maintainable
quality

1≤ci≤Cmax
Q

M+Q-1

Q-1

i=1

ne

∑ qili + ∑ qili

i=ne+1

ne+|ξb|

• Total number of schedules: QM
• Optimized non-increasing quality:

– Constraint: Qualities of consecutive chunks are non-increasing

• Optimized maintainable quality:
– Constraint: Chosen quality must be sustainable for the remaining

chunks

Comparison Between Policies
Policy Connections Schedules

considered
Objective

All schedules 1≤ci≤Cmax QM, where
M=ne+|ξb|-m

-

Optimized non-
increasing quality

1≤ci≤Cmax

Optimized maintainable
quality

1≤ci≤Cmax
Q

M+Q-1

Q-1

i=1

ne

∑ qili + ∑ qili

i=ne+1

ne+|ξb|

• Total number of schedules: QM
• Optimized non-increasing quality:

– Constraint: Qualities of consecutive chunks are non-increasing

• Optimized maintainable quality:
– Constraint: Chosen quality must be sustainable for the remaining

chunks

Comparison Between Policies
Policy Connections Schedules

considered
Objective

All schedules 1≤ci≤Cmax QM, where
M=ne+|ξb|-m

-

Optimized non-
increasing quality

1≤ci≤Cmax

Optimized maintainable
quality

1≤ci≤Cmax
Q

M+Q-1

Q-1

i=1

ne

∑ qili + ∑ qili

i=ne+1

ne+|ξb|

• Total number of schedules: QM
• Optimized non-increasing quality:

– Constraint: Qualities of consecutive chunks are non-increasing

• Optimized maintainable quality:
– Constraint: Chosen quality must be sustainable for the remaining

chunks

Comparison Between Policies
Policy Connections Schedules

considered
Objective

Single connection 1

Q

Greedy bandwidth 1≤ci≤Cmax

i=1

ne

∑ qili + ∑ qili

i=ne+1

ne+|ξb|

∑ qili
i=j

j+m

• Single connection: baseline comparing to policies
which do not use multiple connections

• Greedy bandwidth: bandwidth aggressive as
opposed to aggressive quality choices

• Naïve: benchmark to regular branched video players

Comparison Between Policies
Policy Connections Schedules

considered
Objective

Single connection 1

Q

Greedy bandwidth 1≤ci≤Cmax

i=1

ne

∑ qili + ∑ qili

i=ne+1

ne+|ξb|

∑ qili
i=j

j+m

• Single connection: baseline comparing to policies
which do not use multiple connections

• Greedy bandwidth: bandwidth aggressive as
opposed to aggressive quality choices

• Naïve: benchmark to regular branched video players

Comparison Between Policies
Policy Connections Schedules

considered
Objective

Single connection 1

Q

Greedy bandwidth 1≤ci≤Cmax

i=1

ne

∑ qili + ∑ qili

i=ne+1

ne+|ξb|

∑ qili
i=j

j+m

• Single connection: baseline comparing to policies
which do not use multiple connections

• Greedy bandwidth: bandwidth aggressive as
opposed to aggressive quality choices

• Naïve: benchmark to regular branched video players

Test Scenario

Test Scenario

Worst case scenario
• always pick the last segment
• at last possible moment

Test Scenario

Worst case scenario
• always pick the last segment
• at last possible moment

Test Scenario

• Default scenario:
– Chunks per segment: 5

– Branches per branch point: 4

– Branch points: 3

• Results are averages over 30 experiments

Worst case scenario
• always pick the last segment
• at last possible moment

Test Scenario

• Default scenario:
– Chunks per segment: 5

– Branches per branch point: 4

– Branch points: 3

• Results are averages over 30 experiments

Test Scenario

• Default scenario:
– Chunks per segment: 5

– Branches per branch point: 4

– Branch points: 3

• Results are averages over 30 experiments

Segment length

Test Scenario

• Default scenario:
– Chunks per segment: 5

– Branches per branch point: 4

– Branch points: 3

• Results are averages over 30 experiments

Branch options

Test Scenario

• Default scenario:
– Chunks per segment: 5

– Branches per branch point: 4

– Branch points: 3

• Results are averages over 30 experiments

Branch points

Test Scenario

• Default scenario:
– Chunks per segment: 5

– Branches per branch point: 4

– Branch points: 3

• Results are averages over 30 experiments

Branch points

Policy Comparison

• Naïve policy: does not perform prefetching

– Stalls at every branch point

– Note: High playback rate is misleading on its own

Policy Comparison

• Naïve policy: does not perform prefetching

– Stalls at every branch point

– Note: High playback rate is misleading on its own

Policy Comparison

• Naïve policy: does not perform prefetching

– Stalls at every branch point

– Note: High playback rate is misleading on its own

Policy Comparison

• Optimized maintainable quality provides best tradeoff
– Much lower stall probability

– Tradeoff is somewhat lower playback quality

Policy Comparison

• Optimized maintainable quality provides best tradeoff
– Much lower stall probability

– Tradeoff is somewhat lower playback rate

Policy Comparison

• Optimized maintainable quality provides best tradeoff
– Much lower stall probability

– Tradeoff is somewhat lower playback rate

Policy Comparison

• Optimized maintainable quality provides best tradeoff
– Much lower stall probability

– Tradeoff is somewhat lower playback rate

Policy Comparison

• Optimized non-increasing quality is more aggressive

– Higher playback rate

– More stalls

Policy Comparison

• Optimized non-increasing quality is more aggressive

– Higher playback rate

– More stalls

Policy Comparison

• Optimized non-increasing quality is more aggressive

– Higher playback rate

– More stalls

Policy Comparison

• Single connection does not use parallel connections
– Good (slightly higher) playback rate

– Much more stalls

Policy Comparison

• Single connection does not use parallel connections
– Good (slightly higher) playback rate

– Much more stalls

Policy Comparison

• Single connection does not use parallel connections
– Good (slightly higher) playback rate

– Much more stalls

• Greedy bandwidth aggressively grabs bandwidth

– Lower playback rate

– More stalls

Policy Comparison

• Greedy bandwidth aggressively grabs bandwidth

– Lower playback rate

– More stalls

Policy Comparison

• Greedy bandwidth aggressively grabs bandwidth

– Lower playback rate

– More stalls

Policy Comparison

• Quality decreases with larger RTTs

– Playback rate decrease with RTT

– Stall probability increase with RTT

Impact of Round-trip Times (RTTs)

• Quality decreases with larger RTTs

– Playback rate decrease with RTT

– Stall probability increase with RTT

Impact of Round-trip Times (RTTs)

• Quality decreases with larger RTTs

– Playback rate decrease with RTT

– Stall probability increase with RTT

Impact of Round-trip Times (RTTs)

Impact of Segment Lengths
Segment length

• Quality increases with more chunks per segment

• Very many stalls if segments are too short

Impact of Segment Lengths
Segment length

• Quality increases with more chunks per segment

• Very many stalls if segments are too short

Impact of Segment Lengths
Segment length

• Quality increases with more chunks per segment

• Very many stalls if segments are too short

100%

Impact of Segment Lengths
Segment length

Branch options

Impact of Branch Options

• Stalls frequent when too many branch options

• Single connection struggles the most

Branch options

Impact of Branch Options

• Stalls frequent when too many branch options

• Single connection struggles the most

Branch options

Impact of Branch Options

• Stalls frequent when too many branch options

• Single connection struggles the most

Branch options

Impact of Branch Options

Impact of Competing Flows

TCP connection 1

TCP connection N

• Player adapts playback rate based on competing traffic

• Parallel connection polices see increased benefits when

competing traffic

– E.g., Single connection policy has much more stalls when competing flows

Impact of Competing Flows

TCP connection 1

TCP connection N

• Player adapts playback rate based on competing traffic

• Parallel connection polices see increased benefits when

competing traffic

– E.g., Single connection policy has much more stalls when competing flows

Impact of Competing Flows

TCP connection 1

TCP connection N

• Player adapts playback rate based on competing traffic

• Parallel connection polices see increased benefits when

competing traffic

– E.g., Single connection policy has much more stalls when competing flows

Impact of Competing Flows

TCP connection 1

TCP connection N

• Player adapts playback rate based on competing traffic

• Parallel connection polices see increased benefits when

competing traffic

– E.g., Single connection policy has much more stalls when competing flows

Impact of Competing Flows

TCP connection 1

TCP connection N

• Player adapts playback rate based on competing traffic

• Parallel connection polices see increased benefits when

competing traffic

– E.g., Single connection policy has much more stalls when competing flows

Impact of Competing Flows

TCP connection 1

TCP connection N

Capped Workahead

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin buffer > Tmin

• Most HAS players perform ON-OFF switching
based on two buffer thresholds: Tmin and Tmax

• If buffer > Tmin

– Start playback

• If buffer > Tmax

– Suspend download

• If buffer < Tmin

– Resume download

Capped Workahead

buffer > Tmax

buffer > Tmin buffer > Tmin

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

 Example

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

 Example

Tsingle = 8
 = 4
branches = 2

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

 Example

Tsingle = 8
 = 4
branches = 2

Tmin = 16
Tmax = 20

Capped Workahead

• How to handle workahead when video
contains branches?

• Perform ON-OFF switching based on number
of branches after the closest branch point

• Tmin = Tsingle (# branches)

• Tmax = Tsingle+ 

 Example

Conclusion

• Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

• Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

• Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Conclusion

• Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

• Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

• Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Conclusion

• Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

• Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

• Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Conclusion

• Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

• Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

• Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Conclusion

• Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

• Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

• Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Software: http://www.ida.liu.se/~nikca/mm14.html

www.liu.se

Quality-adaptive Prefetching for Interactive Branched
Video using HTTP-based Adaptive Streaming

Vengatanathan Krishnamoorthi, Niklas Carlsson, Derek Eager,

Anirban Mahanti, Nahid Shahmehri

Software: http://www.ida.liu.se/~nikca/mm14.html

