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Abstract—The rapid expansion of cloud computing has trans-
formed data storage and processing by providing unprecedented
convenience and scalability. However, this progress is shadowed
by significant data security challenges, primarily as users must
rely on cloud service providers to enforce robust security
protocols. Homomorphic encryption (HE) offers a potential
solution by allowing computations on encrypted data, thereby
maintaining confidentiality without compromising functionality.
However, HE can be computationally intensive, raising concerns
about its practicality in real-world applications, particularly
when dealing with large files. Moreover, constantly re-encrypting
an entire file after every modification is inefficient and intro-
duces substantial performance overheads. While traditional delta
encoding can be used to optimize bandwidth by transmitting
only file modifications, it faces security and privacy concerns
as the server must access unencrypted file contents. In this
paper, we address these challenges by introducing a novel delta
encoding scheme tailored for seamless compatibility with HE,
enhancing data confidentiality while maintaining efficiency. Our
approach minimizes the overhead of re-encryption and improves
performance by encrypting and transmitting only the modified
file parts. We evaluate the performance of our scheme across
various parameters and test cases, comparing it to a state-of-
the-art delta encoding approach. Our findings demonstrate many
similarities while highlighting the tradeoffs of our HE-enabling
solution. Additionally, we explore the performance impacts of
integrating HE with our delta encoding scheme and provide
insights into the practical constraints and requirements for real-
world deployment in cloud computing environments.

I. INTRODUCTION

The widespread adoption of cloud computing has increased
data storage and processing, providing users worldwide with
unparalleled convenience and scalability. However, this con-
venience comes with inherent risks, particularly concerning
data security. When users entrust their data to cloud service
providers, they lose control over its storage and processing,
relying on the provider to uphold critical security measures [1].
These measures encompass a spectrum of concerns, from
preventing intentional misuse of user data to ensuring robust
security protocols that thwart unauthorized access.

A fundamental challenge in cloud computing lies in se-
curing the transmission and storage of sensitive information.
Traditional encryption methods offer a solution, but they often
come at a significant cost to computational efficiency and data
size. Homomorphic encryption (HE) presents a promising al-
ternative by enabling computations on encrypted data, thereby
safeguarding confidentiality while allowing for data manip-
ulation [2]. However, adopting HE introduces challenges,
including performance overhead and increased ciphertext size.

Moreover, in the context of handling large human-readable
files, bandwidth optimization becomes important. Traditional
approaches necessitate transmitting entire files, even for minor

modifications, leading to inefficiencies in data transfer and
storage. In addition, re-encrypting entire large files for small
modifications is inefficient and comes with significant perfor-
mance overheads. Delta encoding, a technique commonly used
by cloud storage providers like Dropbox and iCloud, addresses
this issue by having a client transmitting only file changes to
a server. However, concerns arise regarding the security of
delta encoding, particularly in preserving data confidentiality
and integrity [3], as data is kept unencrypted on the servers.
While there are solutions like client-side encryption [3], these
do not allow computations on the encrypted data, putting a
heavy load on the clients as well as the bandwidth.

Current delta encoding schemes often require accessing
individual characters within dynamic containers, making them
unsuitable for seamless integration with HE, which operates on
non-indexable fixed-sized ciphertexts. Given the constraints of
existing delta encoding methods, finding solutions that enable
the interoperability of HE and delta encoding is necessary.

Therefore, in this paper, we first present a new basic delta
encoding scheme designed with the use of HE in mind,
enhancing data confidentiality while preserving performance
efficiency, and evaluate the scheme under different parameters
and test cases. By evaluating and comparing with a state-of-
the-art delta encoding scheme, we show the many similarities
in our design, while being tailored specifically to enable and
leverage the benefits of HE. Next, we apply HE to our delta
encoding scheme. By studying the performance overheads
associated with this integration, we demonstrate the feasibility
of our solution and shed further light on the constraints and
requirements of deploying HE with delta encoding in real-
world cloud computing environments.

Outline: We first present background on HE and delta
encoding in Section II. Section III presents our new delta
encoding scheme, its design, performance, and comparison to a
state-of-the-art scheme. We combine HE with delta encoding
and evaluate its performance in Section IV, present related
work in Section V, and conclude in Section VI.

II. BACKGROUND

A. Homomorphic encryption

Homomorphic encryption (HE), a concept once confined to
theoretical discussions, has emerged as a practical tool in mod-
ern cryptography. HE allows for computations to be performed
on encrypted data without prior decryption. The essence of HE
lies in its ability to maintain data privacy while still enabling
useful operations on that data. This capability has garnered
significant attention, especially in fields where data privacy is
paramount, such as facial recognition [4], privacy-preserving
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blockchains [5], medicine [6]–[8], finance [9], conferencing
communication systems [10] and various machine learning
problems [8], [11]–[16]. One prominent example is the use
of HE in Microsoft’s Edge browser, where users’ encrypted
login information is compared to known leaks [17]–[19].

At its core, HE enables operations on encrypted data, pro-
ducing results as if performed on the plaintext. For instance, a
server could multiply two encrypted numbers without knowing
the actual values, delivering only the encrypted result back
to the client for decryption. This ensures that sensitive data
remains encrypted throughout processing, reducing the risk of
exposure. Initially, schemes like RSA encryption [20] allowed
for limited homomorphic operations, such as multiplication,
but not addition, thus constraining its applicability.

The field advanced significantly with Gentry’s groundbreak-
ing work in 2009 [21], introducing the first fully homomor-
phic encryption (FHE) scheme. This scheme, albeit compu-
tationally intensive, enabled both addition and multiplication
operations on encrypted data. Subsequent generations of HE
schemes have evolved to enhance efficiency, security, and
functionality. These schemes are classified based on their
capabilities, ranging from partially to fully homomorphic.

One crucial optimization in achieving FHE is the boot-
strapping process proposed by Gentry [2], effectively reducing
noise in ciphertexts and allowing for indefinite homomorphic
operations without compromising data integrity. However,
the computational cost of bootstrapping remains a challenge.
Some newer schemes have devised alternative methods to
avoid the need for expensive bootstrapping, where two promi-
nent examples are the BFV [22] and BGV [23] schemes.

The evolution of HE continues with each generation in-
troducing novel approaches and improvements. For example,
recent advancements, such as the CKKS scheme [24], have
enabled the handling of approximate values like floating-
point numbers. Despite progress, challenges persist, including
balancing security, efficiency, and practicality.

As ASCII characters can be represented using integers, we
use the BFV and BGV schemes implemented in the PAL-
ISADE [25] library, which offers multiple HE implementation
schemes, conforming to the HE standard [26]. We selected the
plaintext moduli to be 65 537, the default value in PALISADE,
and the value required to fit UTF-8 characters. The remaining
configuration values, i.e., the security level of 128 bits and a
signal value of 3.2, were also left at their default values.

B. Delta encoding

Delta encoding produces a record of changes (delta) be-
tween an original and an updated set, enabling reconstruction
of the updated set from both the original and the delta. This
process can be repeated by generating additional deltas, which
reconstruct the updated set when combined with the original.
These deltas require accompanying specific operations that
guide the delta encoding tool in reassembling the updated set.

VCDiff: Many popular delta encoding tools are built upon
the foundational standard VCDiff [27]. VCDiff integrates com-
pression and data difference to create delta compression, often

ORIGINAL: Hi World

UPDATED : Hello World!!!

Delta

COPY (0, 1)

ADD (4, "ello")

COPY (2, 6)

RUN (3, "!")

Fig. 1: Example of VCDiff encoding and generated operations.

known as delta encoding, producing delta files representing
compressed changes between two file versions.

The standard is characterized by four key features: output
compactness, data portability, algorithm generic, and decoding
efficiency. Output compactness refers to the creation of delta
files that can be further compressed through configuration. The
data portability aspect ensures platform independence of the
resulting delta. Algorithm generic allows the decoding algo-
rithm to remain independent of the encoding implementation,
enabling improvements in encoding schemes without changing
the decoding process. Finally, decoding efficiency improves
decoding performance relative to the updated file size.

These functionalities are facilitated through string matching
and window algorithms, which dictate the content of the delta,
the portions to be copied from the original text, and the
size of independently processable blocks [27]. Target window
algorithms play a crucial role in the delta encoding process,
creating non-overlapping sections called target windows within
the updated file. These target windows are segments of the
updated file that are compared against corresponding segments
of the original text. This comparison generates a sequence
of operations, allowing the reconstruction of the updated text
when combined with the original text. These operations consist
of three types: COPY, ADD, and RUN.

Figure 1 shows a simplified example of encoded operations.
The initial COPY operation, with parameters 0 and 1, specifies
the starting position in the original text and the number of
characters to copy. Here, these parameters correspond to the
character “H” at position 0 in the original text. Subsequently,
an ADD operation with parameters 4 and “ello” adds characters
absent in the original text. Another COPY operation is followed
by a RUN operation. The RUN operation differs from the
ADD operation in that the second parameter involves a single
character repeated, determined by the first parameter, which in
this case is 3. To decode the updated text, the operations are
executed sequentially with reference to the original text.

Key observation: Several VCDiff implementations provide
diverse optimizations, APIs, and interfaces. The most promi-
nent examples are Xdelta [28] and Open-VCDiff [29]. Xdelta
offers a command-line interface for VCDiff. Open-VCDiff,
maintained by Google and being open-source, adds additional
features and enhanced compression capabilities. While there
are many VCDiff implementations, its dependency on indi-
vidual character access within dynamic containers makes it
unsuitable for seamless integration with HE, which operates
with non-indexable fixed-sized ciphertexts.
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W o r l d . N e w S t a r t

S t a r t W o r l d . N e w

Last:

Incoming:

Rotated:

Fig. 2: Ciphertext right rotation of Incoming block with 6
steps to align with Last block, resulting in Rotated block.

S t a r t W o r l d . N e w

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

\0 \0 \0 \0 \0 \0 W o r l d . N e w

Rotated:

∗ Mask:

Masked:

Fig. 3: Ciphertext multiplication of Rotated block (from
Figure 2) with a Mask block, resulting in a Masked block.

III. HE-ENABLING DELTA ENCODING WITHOUT HE

As a first step towards combining HE and delta encoding,
we present a new delta encoding approach called Naive Delta
Encoding (NDE) that addresses the specific constraints posed
by the HE encryption models, and first evaluate the scheme
without using HE. While we compare with Open-VCDiff, we
note that the objective is not to outperform Open-VCDiff in
efficiency. Instead, we strive to develop a proof-of-concept
delta encoding method that aligns closely with Open-VCDiff
while being designed to leverage the use of HE.

A. Design

Client-side encoding: Based on the VCDiff standard, NDE
deterministically encodes the differences using COPY and
ADD operations. The COPY operation functions identically to
VCDiff, with two parameters specifying what to copy from
the original. However, the ADD operation differs. Instead of
storing the delta string in plaintext, the ADD operation in NDE
instead points to a homomorphically encrypted ciphertext. The
operations are stored separately from the encrypted text and
together form the delta. By alternating between these two
operations, the updated text can be encoded using the original
and delta. In general, the encoding and creation of the delta
using NDE is done using the following steps:

1) Identify the first position of mismatch between the orig-
inal text (OT) and the updated text (UT). Add the COPY
operation to the delta, specifying the initial position and
the mismatch position.

2) Find the position where OT and UT resume matching.
A predetermined variable, chunk size, dictates the
number of consecutive characters from OT required to
match in UT. This ensures that a minimal subset from
UT is utilized for the ADD operation, thereby minimizing
the total size of the delta.

\0 \0 \0 \0 \0 \0 W o r l d . N e w

H e l l o \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

H e l l o W o r l d . N e w

Masked:

+ Last:

Full:

Fig. 4: Ciphertext addition of Masked block (from Figure 3)
with Last block (from Figure 2), resulting in a Full block.

S t a r t W o r l d . N e w

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

S t a r t \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

Rotated:

∗ Mask:

New last:

Fig. 5: Ciphertext multiplication of Rotated block (from
Figure 2) with a Mask block, resulting in a New last block.

3) Include the ADD operation in the delta, using the position
and size determined for the subset in the previous step.

4) Iterate these steps until the end of the text, with each
subsequent character serving as the initial position.

Server-side decoding: The server-side decoding processes
an original ciphertext alongside a delta to generate an updated
text. As HE cannot manage dynamic strings directly and is
constrained to fixed-sized ciphertexts, the ciphertext is seg-
mented into blocks, each represented by an encrypted cipher-
text containing 4 096 8-bit characters (predetermined by the
selected HE parameters). When extending the ciphertext with
additional text, we utilize homomorphic ciphertext operations
addition, multiplication, and rotation to correctly align the
incoming block with the last empty position in the preceding
block. By orienting and dividing the incoming block, we fill
the empty spaces in the last block and create a new final block
with any remaining characters.

First, using the ciphertext rotation operation, we rotate the
incoming block such that the beginning of the incoming data
aligns with the first empty position in the last block. Figure 2
illustrates this rotation, where the Incoming block is rotated
6 steps to the right, such that the highlighted position in the
Last block aligns with the Incoming block.

Next, we use the ciphertext multiplication operation and
create a mask to extract the portion that fits inside the Last
block from the Incoming block. Figure 3 demonstrates
this masking multiplication, yielding the Masked block by
multiplying the Rotated block with the Mask. The mask,
comprising of zeros and ones, causes either null characters or
the original 8-bit character values from the Incoming block.

Following that, we use ciphertext addition to merge the
Masked block with the current Last block. Figure 4 shows
this addition, combining the two blocks without destroying
their individual components.
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Fig. 6: Delta sizes over various chunk sizes using different test cases.
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(c) replace
Fig. 7: Number of delta operations over various chunk sizes using different test cases.

Finally, any remaining part of the incoming block that
wrapped around during rotation (as shown in Figure 2) be-
comes the new final ciphertext block. Figure 5 illustrates this
process, again using ciphertext multiplication to mask the
Rotated block, transforming it into the New last block.
We note that this final step is only necessary if rotation occurs
during the decoding process. If no rotation is required, the
Incoming block directly becomes the New last block.

Key contribution: We have created a new delta encoding
scheme that takes into consideration the specific constraints
and limitations of HE. While not required, the scheme can
utilize HE operations to add, multiply, and rotate ciphertext.

B. Evaluation

Framework: To more closely resemble a real-world use
case, our evaluation framework consists of a local client and a
virtual machine in the cloud. Our local client uses Linux Mint
Cinnamon 20.2 with an 8-core Intel Core i7-2700K 3.5GHz
and 16 GB RAM, while our cloud server uses Ubuntu 20.04
with a 16-core Intel Xeon E312xx 2.5GHz and 8GB RAM.

Test cases: For testing, we use the Alice in Wonderland
book (148 480 bytes) from the Calgary collection of the
Canterbury Corpus [30]. To generate a delta between an
original version and an updated version, we employ the full
text as the updated version and derive the original by replacing
or removing various portions of the text. We categorize our
test cases into three groups: append, add, and replace,
each containing seven variations with different numbers of
changes in the text. The append category represents a user
adding text towards the end of the file, with each change
representing an addition of 1% of the original book. For the
add and replace categories, using a uniform distribution,
we randomize (1) a size between 512 and 2 048 bytes, and (2)
the starting position of the change. In the add category, text
is added at a random position, while the replace category

involves altering an existing text. In this case, we invert every
character in that region. For instance, the sentence “Hello
world” would become “dlrow olleH”, giving a change that
is unlikely to appear elsewhere in the text.

Size tuning: To determine the best chunk size parameter for
client-side encoding in NDE, we run the test cases and obtain
the delta sizes using different chunk sizes and number of
delta operations. In general, a larger chunk size leads to fewer
operations, with the ADD operations containing more data. This
is in contrast to using a smaller chunk size, which results in a
greater number of operations but with smaller ADD operations.
Since each operation requires significant computational power,
especially when performed homomorphically, and since sizes
impact the data transmitted over a network, we aim to find a
balance between computational time and delta size.

Delta size: Figure 6 shows the delta sizes for (a) the
add, (b) append, and (c) replace categories over different
chunk sizes and number of text changes. For the add and
append categories, we observe a constant delta size, regard-
less of the chunk size, and as expected, a greater number of
changes results in a larger delta. For the replace test case,
we generally observe that a larger chunk size correlates with
smaller delta sizes. However, regardless of the test case, we
do not observe a decrease in delta size when using a chunk
size larger than 32. In most cases, the decrease ends at 16.

These results show that different chunk sizes do not produce
smaller deltas in the case of simple appends or additions in
the middle of the text. However, when changes were made to
existing text, i.e., the replace test cases, the size difference
is quite clear, where larger chunk sizes produce smaller deltas.
Here, a larger chunk size is better at determining actual
changes and, as such, minimizes the delta size. Furthermore,
we observe that the decrease of delta size stops at a specific
chunk size, as it has reached the optimal value, with this stop
being earlier with fewer text changes.



TABLE I: Comparison of NDE with Open-VCDiff using
different changes and configurations for add test cases.

Test Configuration Delta size #OP Ratio

add 1
NDE 4,8,16,32 1 374 B 3 0.93 %
VCD 1 409 B 3 0.95 %

add 4
NDE 4 6 878 B 11 4.63 %
NDE 8,16,32 6 878 B 9 4.63 %
VCD 6 896 B 11 4.64 %

add 8
NDE 4 11 860 B 29 7.99 %
NDE 8 11 860 B 25 7.99 %
NDE 16,32 11 860 B 17 7.99 %
VCD 11 723 B 31 7.89 %

add 12
NDE 4 16 088 B 37 10.83 %
NDE 8 16 088 B 27 10.83 %
NDE 16,32 16 088 B 25 10.83 %
VCD 16 027 B 30 10.79 %

add 16
NDE 4 21 686 B 65 14.60 %
NDE 8.16,32 21 686 B 33 14.60 %
VCD 21 606 B 45 14.55 %

add 20
NDE 4 21 986 B 56 14.80 %
NDE 8 21 986 B 42 14.80 %
NDE 16,32 21 986 B 40 14.80 %
VCD 22 083 B 46 14.87 %

add 24
NDE 4 26 408 B 63 17.78 %
NDE 8 26 408 B 53 17.78 %
NDE 16,32 26 408 B 49 17.78 %
VCD 26 220 B 72 17.66 %

Number of operations: Figure 7 shows the number of
delta operations with different chunk sizes. For the add
category (Figure 7a), we observe a reduction in the number of
operations with larger chunk sizes, with diminishing returns
beyond a chunk size of 16, as it reaches the optimal number
of delta operations (2n+1, where n represents the number of
changes). For the append category (Figure 7b), the number
of operations remains constant at two, regardless of the chunk
size or the number of changes. For the replace category
(Figure 7c), we observe a similar trend with fewer operations
using larger chunk sizes. However, a notable exception is
observed with 24 replace changes, where a significant
increase is seen from a chunk size of 16 to 32. As the delta size
significantly drops for the same configuration (Figure 6c), this
indicates difficulties in the encoding process in determining
the actual difference, resulting in a larger delta size but fewer
operations with a chunk size of 16, while the opposite holds
true for a chunk size of 32.

Key observation: We determine the best chunk size to be
32 or less, observing little to no improvement with using a
larger chunk size. Furthermore, using different test cases, we
observe the most impact to be caused by replacing text.

C. Comparison with Open-VCDiff

To show that our HE-enabled delta encoding approach does
not add much overhead compared to basic OpenVCDiff, we
next evaluate the performance and present a comparison, again
using the test cases append, add, and replace. Here,
we limit chunk sizes only up to 32, as we observe minimal
improvements in the delta size or reduction in the number of
operations with larger chunk sizes. Tables I and II present the
comparison results for add and append scenarios, including
the delta size, number of delta operations, and delta ratio

TABLE II: Comparison of NDE with Open-VCDiff using
different changes and configurations for append test cases.

Test Configuration Delta size #OP Ratio

append 1
NDE 4,8,16,32 1 485 B 2 1.00 %
VCD 1 513 B 2 1.02 %

append 4
NDE 4,8,16,32 5 940 B 2 4.00 %
VCD 5 942 B 4 4.00 %

append 8
NDE 4,8,16,32 11 880 B 2 8.00 %
VCD 11 882 B 4 8.00 %

append 12
NDE 4,8,16,32 17 820 B 2 12.00 %
VCD 17 740 B 10 11.95 %

append 16
NDE 4,8,16,32 23 760 B 2 16.00 %
VCD 23 360 B 22 15.73 %

append 20
NDE 4,8,16,32 29 700 B 2 20.00 %
VCD 29 192 B 29 19.66 %

append 24
NDE 4,8,16,32 35 640 B 2 24.00 %
VCD 34 791 B 45 23.43 %

TABLE III: Comparison of NDE with Open-VCDiff using
different changes and configurations for replace test cases.

Test Configuration Delta size #OP Ratio

replace 1
NDE 4 1 398 B 5 0.94 %
NDE 8,16,32 1 398 B 3 0.94 %
VCD 1 432 B 3 0.96 %

replace 4
NDE 4 82 521 B 29 55.57 %
NDE 8 5 340 B 24 3.60 %
NDE 16 5 388 B 11 3.63 %
NDE 32 5 436 B 9 3.66 %
VCD 5 337 B 16 3.59 %

replace 8
NDE 4 108 161 B 53 72.83 %
NDE 8 38 344 B 15 25.82 %
NDE 16 11 755 B 17 7.92 %
NDE 32 11 803 B 17 7.95 %
VCD 11 487 B 28 7.73 %

replace 12
NDE 4 122 597 B 29 82.55 %
NDE 8 34 816 B 29 23.44 %
NDE 16 14 676 B 29 9.88 %
NDE 32 14 772 B 27 9.95 %
VCD 14 429 B 39 9.72 %

replace 16
NDE 4 132 532 B 44 89.24 %
NDE 8 20 177 B 37 13.59 %
NDE 16 20 217 B 33 13.61 %
NDE 32 20 265 B 33 13.65 %
VCD 19 966 B 49 13.44 %

replace 20
NDE 4 137 251 B 39 92.42 %
NDE 8 137 011 B 55 92.26 %
NDE 16 137 032 B 36 92.27 %
NDE 32 25 957 B 47 17.48 %
VCD 25 247 B 80 17.00 %

replace 24
NDE 4 136 905 B 39 92.19 %
NDE 8 125 948 B 34 84.81 %
NDE 16 137 004 B 5 92.25 %
NDE 32 32 046 B 49 21.58 %
VCD 31 464 B 77 21.19 %

relative to the original file size. The comparison reveals similar
delta sizes between NDE and Open-VCDiff despite the lack
of compression in NDE. This suggests that NDE is similarly
good at identifying differences, occasionally surpassing Open-
VCDiff by employing fewer operations. However, such parity
is not evident for the replace category, as shown in Ta-
ble III. For smaller chunk sizes, NDE struggles to generate
reasonable-sized deltas, while Open-VCDiff tends to produce
better delta sizes, albeit with more operations. Nevertheless,
these results demonstrate that with a carefully chosen chunk
size, NDE can perform similarly to Open-VCDiff.
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Fig. 8: Runtime (client and server) for NDE using different chunk sizes and VCDiff over 1–24 number of changes.
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Fig. 9: Encoding time for NDE using different chunk sizes and VCDiff over 1–24 number of changes.
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Fig. 10: Decoding time for NDE using different chunk sizes and VCDiff over 1–24 number of changes.

Runtime performance: While the delta sizes and number
of delta operations are similar between NDE and Open-
VCDiff, we observe larger differences in the runtime per-
formance. Figure 8 shows the normalized runtime (averaged
over 20 runs) for Open-VCDiff, as well as NDE using chunk
sizes {4, 8, 16, 32} when considering different numbers of
changes (1 to 24). Here, we normalize all runtimes relative
to Open-VCDiff with one change (which we denote as the
baseline and give a normalized value of 1). Notably, for the
add and append test cases (Figures 8a and 8b), we observe
consistent performance, regardless of the chunk size or number
of changes, with the runtimes being 2 to 3 times longer than
the baseline. On the other hand, Open-VCDiff appears to have
a more linear relation with the number of changes, indicating
that increased changes lead to longer runtimes. However, in the
replace test cases (Figure 8c), we instead observe a different
behavior. Here, NDE exhibits significantly longer runtimes,
with no discernible correlation between runtime and delta size
or number of operations. However, for NDE with a chunk size
of 32, a clear trend emerges with an increase in the number
of changes resulting in longer runtimes. Similar patterns occur
with chunk sizes of 8 and 16, but only up to 16 changes.

To better understand these timings, we study the encoding
and decoding runtimes separately. Figures 9 and 10 show the
performance results for client-side encoding and server-side

decoding, respectively. Overall, NDE mostly spends its run-
time on server-side decoding, while Open-VCDiff dedicates
more time to encoding. More specifically, for encoding, NDE
achieves better performance than Open-VCDiff for the add
and append test cases. Moreover, we see that the variable
and prolonged runtimes observed in total runtime for NDE
(Figure 8c) stem from difficulties in encoding. Conversely, for
decoding, consistent results are evident across test cases for
NDE, with relatively stable performance, while Open-VCDiff
shows a slight increase in runtimes with more changes.

Key takeaway: Many similarities can be seen when com-
paring NDE to Open-VCDiff, especially regarding delta size
and number of operations. Most of the runtime is spent on
server-side decoding for NDE, and we again see the most
impact to be related to when replacing text.

IV. DELTA ENCODING WITH HE

We next apply HE to our HE-enabled delta encoding to
compute the updated file from the encrypted original file
and the delta, and evaluate the extra overhead impact from
HE. Initially, the client generates encryption keys, including
multiplication and automorphism keys used for ciphertext
calculations and rotations. Given that the number of rotation
steps is unknown beforehand and the maximum rotation step is
211 = 2048 per ciphertext, we generate 11 automorphism keys
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Fig. 11: Client-side runtime using homomorphic encrypted NDE per configuration and 1–24 number of changes.
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Fig. 12: Server-side runtime using homomorphic encrypted NDE per configuration and 1–24 number of changes.

permitting 2x rotations, where x ∈ [1, 11]. We then aggregate
several keys based on the required rotation steps. As these keys
are reusable for multiple encodings and decoding, we consider
them as the initial setup cost between the client and server.

On the client side, we encrypt the original file and send it
to the server. We then apply changes to the file, create a delta,
and send it to the server. In practice, the original file and public
keys would already be on the server, and only the delta needs
to be sent. The client-side runtime includes creating the delta,
encrypting it, and sending the ciphertext to the server.

On the server side, after receiving the original file and the
delta, we evaluate the delta by homomorphically calculating
the updated file and then verifying the correctness of the cal-
culated file. The server runtime mainly consists of evaluating
the ciphertext between the original encrypted file and the delta.

Evaluation: Figures 11 and 12 show the runtime when
combining our delta encoding scheme with the HE algorithms
BFV and BGV for the client and server sides, respectively.
Using chunk sizes of 4 and 16 across 1 to 24 changes, we
generally observe client runtime in the tens of milliseconds,
contrasting with several seconds for the server, with increased
changes correlating with longer processing time, underscoring
the expense of HE ciphertext evaluation. Notably, an average
of only 1.5% of the total time is spent on the client side.

While we again observe larger runtimes with a greater
number of changes, we see marginal differences between the
test cases, irrespective of using a chunk size of 4 or 16. This
aligns with our expectations, as NDE encoding and decoding
operate in the millisecond range, exerting minimal influence
when coupled with HE. Finally, we observe that BFV exhibits
marginally superior encoding performance compared to its
BGV counterpart, while the opposite is true for decoding.

Key takeaway: When applying HE to delta encoding, we
observe that most of the runtime is spent decoding on the
server side, with client-side encoding being in the millisecond

range. While decoding and calculating the updated file may
take several seconds to complete, this operation may be less
time-sensitive without requiring real-time response and may
be acceptable to be performed in the background in the cloud.

V. RELATED WORK

While we are the first to study the combination of HE and
delta encoding in the cloud, some related works have focused
on one of the two aspects, often tailored to specific use cases.

HE in the cloud: Early work in 2011 by Lauter et al. [31]
demonstrated multiple practical applications of HE, some of
which were utilized within cloud services, notably in the
medical, financial, and advertising sectors. In 2014, Hrestak
and Piecek [32] evaluated the suitability of applying HE to
cloud services, noting both strengths and weaknesses. They
observed that HE might not have been fully prepared for cloud
computing at the time but recognized rapid advancements
since Gentry’s proposal of the FHE scheme [2]. Within a year
of Gentry’s proposal, the evaluation time for AES decreased
significantly from 36 hours to just three hours [33]. Shortly
after, Chauhan et al. [34] reached a similar conclusion regard-
ing the potential of HE to address privacy concerns in cloud
services, deeming current HE schemes to be insufficiently fast.
Sethi et al. [35] introduced in 2017 a practical HE suitable for
cloud services, enabling computations of basic arithmetic and
simple statistical functions like averages. This implementation
featured multi-thread support, resulting in an 80% efficiency
increase over single-threaded implementations.

Alternative methods for secure computation in the cloud in-
clude the use of a trusted execution environment [36], possibly
with the use of specialized hardware like Intel SGX [37].

Delta encoding: Numerous cloud storage solutions today
employ various techniques to optimize bandwidth and storage
efficiency. Drago et al. [38] compared Cloud Drive, Dropbox,
Google Drive, SkyDrive, and Wuala, finding that Dropbox



stands out by leveraging delta encoding alongside other fea-
tures. While Dropbox demonstrated superior bandwidth-saving
capabilities, its speed performance was only average. However,
none of the five providers utilize client-side encryption (CSE)
to prevent unencrypted data from residing on their servers,
necessitating decryption for functionality. Expanding on this,
Henzinger et al. [3] compared different cloud storage providers
implementing CSE, assessing the overhead compared to non-
CSE solutions. They observed that features like compression
and deduplication [39] imposed similar overheads across both
CSE and non-CSE services, and that delta encoding incurred
greater overheads in CSE-based setups. Notably, CSE services
exhibited higher bandwidth consumption, larger storage foot-
prints, and increased resource usage for clients and servers.
Subsequently, Henzinger et al. [40] proposed a model to
reduce bandwidth and storage requirements while leveraging
existing solutions. This model yielded a policy with a mini-
mally compromised worst-case scenario, being only twice as
slow as non-CSE solutions and generally outperforming them.

VI. CONCLUSION

In this paper, we have presented a novel delta encoding
scheme compatible with HE, preserving data confidentiality
while addressing the significant security concerns associated
with traditional delta encoding methods. Our evaluation and
comparison with Open-VCDiff demonstrate its effectiveness
and many similarities, while also emphasizing the unique
benefits of our HE-enabling solution. Our findings indicate that
while there are performance impacts associated with HE, these
may be manageable within the context of cloud computing
environments, as most of the runtime is spent on decoding
on the server side. Our approach enhances data confidentiality
without sacrificing efficiency, thereby providing a solution for
modern cloud computing environments.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. Experimenta-
tion performed in this work was partially supported by the
WASP WARA-Ops Research Arena.

REFERENCES

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, 2012.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
ACM Symposium on Theory of Computing (STOC), 2009.

[3] E. Henziger and N. Carlsson, “Delta encoding overhead analysis of
cloud storage systems using client-side encryption,” in Proc. IEEE Cloud
Computing Technology and Science (CloudCom), 2019.

[4] P. Drozdowski, N. Buchmann, C. Rathgeb, M. Margraf, and C. Busch,
“On the application of homomorphic encryption to face identification,”
in Proc. Biometrics Special Interest Group (BIOSIG), 2019.

[5] S. Yaji, K. Bangera, and B. Neelima, “Privacy preserving in blockchain
based on partial homomorphic encryption system for AI applications,”
in Proc. High Performance Computing Workshops (HiPCW), 2018.

[6] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser, “Secure large-
scale genome-wide association studies using homomorphic encryption,”
in Proc. National Academy of Sciences, 2020.

[7] M. Kim et al., “Ultrafast homomorphic encryption models enable secure
outsourcing of genotype imputation,” Cell systems, 2021.
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