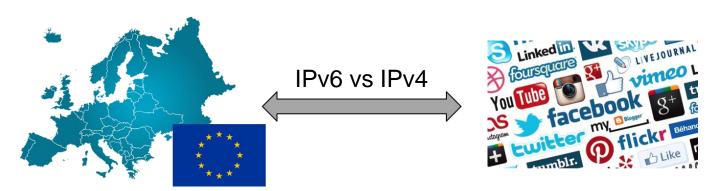
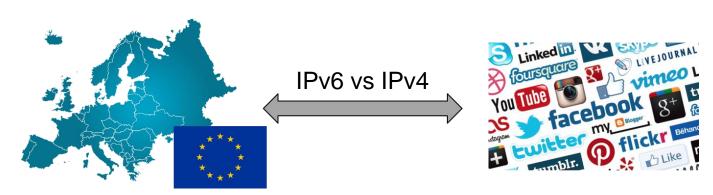
Hypothesis-based Comparison of IPv6 and IPv4 Path Distances

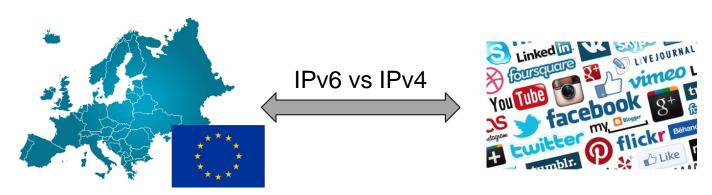
David Hasselquist, Linköping University, Sweden Christian Wahl, TUM, Germany and Linköping University, Sweden Otto Bergdal, Linköping University, Sweden Niklas Carlsson, Linköping University, Sweden

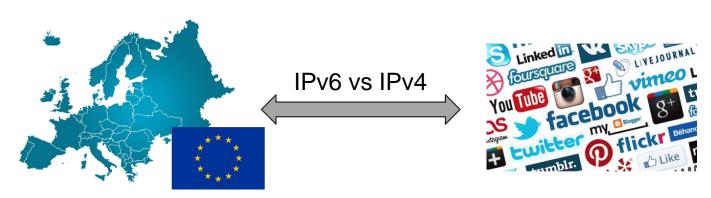
Proc. IEEE MASCOTS Workshop, Nov. 2020


Motivation

Are there even performance incentives to use IPv6?


- Much work have focused on the IPv6 adoption
 - Relatively less work on its end-to-end performance
- Client performance important
 - Ideally: Short end-to-end paths and round-trip-times (RTTs)
 - Earlier work (mostly 5-10 years old) suggest IPv6 is catching up ...




• First report on using IPv6 for experiments on PlanetLab Europe

- First report on using IPv6 for experiments on PlanetLab Europe
- Hypothesis-based methodology and the results from applying this on datasets collected using traceroutes from PlanetLab Europe nodes

- First report on using IPv6 for experiments on PlanetLab Europe
- Hypothesis-based methodology and the results from applying this on datasets collected using traceroutes from PlanetLab Europe nodes
- Findings shows (among other things) that
 - IPv6 paths currently faster than the corresponding IPv4 paths, and
 - pairings for which this is the case is quickly increasing across a wide range of domain popularities and domain categories

- First report on using IPv6 for experiments on PlanetLab Europe
- Hypothesis-based methodology and the results from applying this on datasets collected using traceroutes from PlanetLab Europe nodes
- Findings shows (among other things) that
 - IPv6 paths currently faster than the corresponding IPv4 paths, and
 - pairings for which this is the case is quickly increasing across a wide range of domain popularities and domain categories
- Findings suggest that there is incentive to use IPv6 ...

Running IPv6 experiments on PlanetLab Europe ...

PlanetLab Europe

- Originally an excellent testbed to run distributed experiments
- Today, many nodes are old, out of date, and often not even reachable

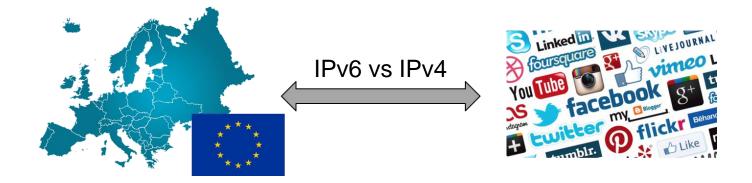
PlanetLab Europe

295: Nodes we had access to

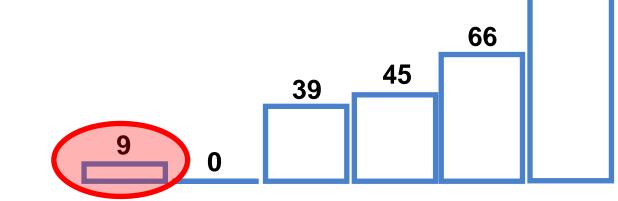
66: Responded to at least one ping in 8 days (ping every 10 min)

45: Responding to every ping (for 8 days)

39: Allowed access via ssh


0: Allowed use of IPv6 (even if IPv6 implemented at node)

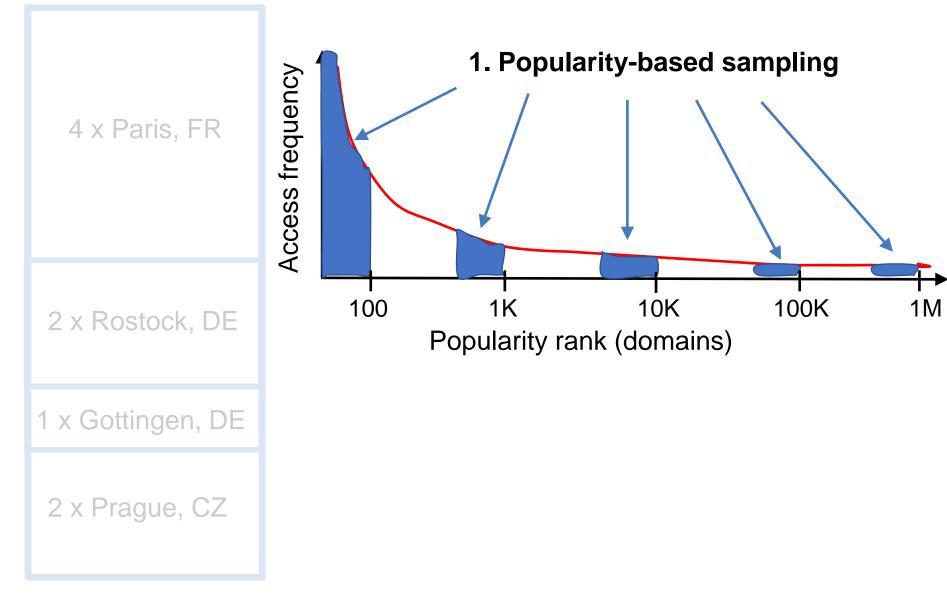
9: Fortunately, 9 nodes implement IPv6 and PlanetLab support gave use access to all these machines


66 39 0 0

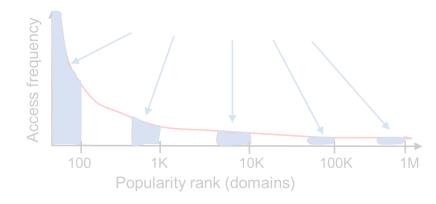
295

Collection methodology

Collection methodology



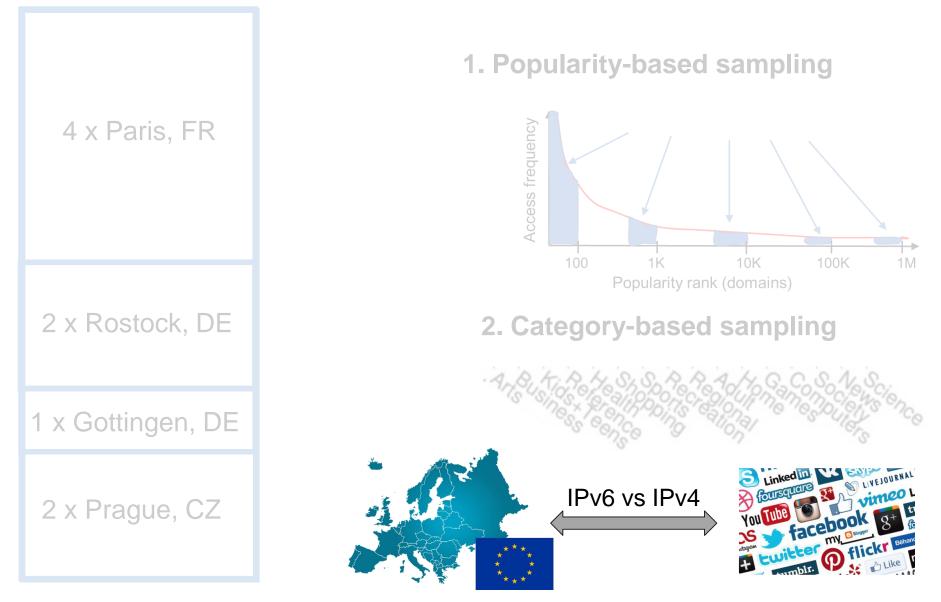
295



Domain sampling (from Alexa)

Domain sampling (from Alexa)

1. Popularity-based sampling

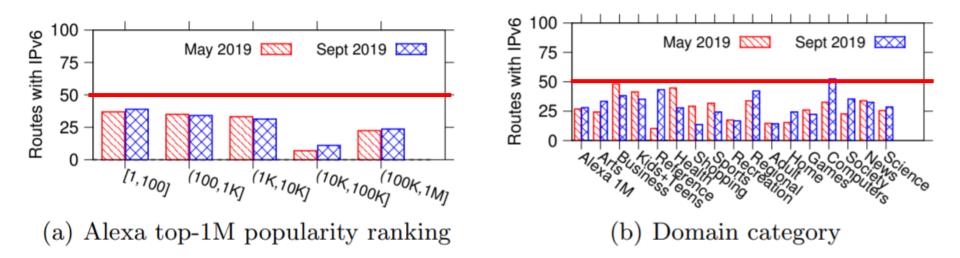


2. Category-based sampling

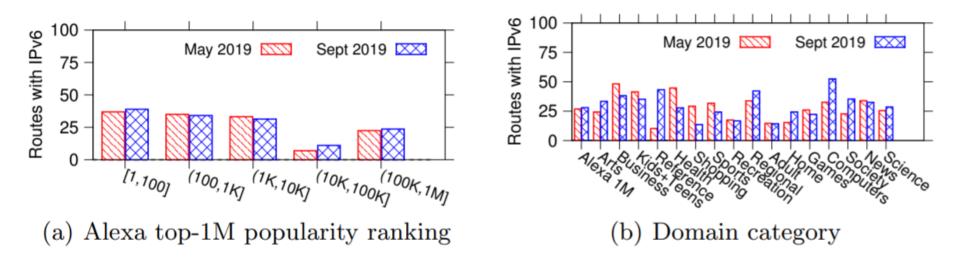
Pairwise traceroutes

Main datasets

Short name	Duration	Dates (all 2019)	Method	Nodes	Traceroutes	Success
May 2019	1 week	May 14-20	Baseline	8	1,966,793	74%
Paris	4 weeks	Aug. 11 - Sept. 8	Paris	6	$265,\!206$	22%
Sept. 2019	1 week	Sept. 18 - 24	Baseline	8	1,773,553	78%


For each pair ...

- Both IPv6 and IPv4 (close in time)
- Repeat many times from each location ...
- Tried different traceroute techniques
 - Here, focus on Baselines version: May 2019 vs Sept. 2019



IPv6 deployment

• Only one category has more than 50% deployment ("Computers")

IPv6 deployment

- Only one category has more than 50% deployment ("Computers")
- Small overall increase (1.44%)

Methodology + Results

		Med	ian w	inner (%)	Aver	age w	vinner (%)	95%	conf.	win. (%)
	Metric	v. 4	v.6	tie	v. 4	v.6	tie	v.4	v.6	none
19	1				21.1	78.7	0.2	19.9	77.5	2.6
ay	AS hops	14.3	59.3	26.4	17.1	79.6	3.3	16.0	78.0	6.0
Μ	RTTs	46.0	54.0	0.0	47.2	52.8	0.0	33.1	44.7	22.2
19	IP hops				20.2	79.8	0.0	19.4	79.0	1.6
ep'	AS hops	10.3	55.4	34.3	15.4	81.5	3.1	13.3	78.7	8.1
Š	RTTs	36.2	63.8	0.0	31.3	68.7	0.0	25.7	59.0	15.3

- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)

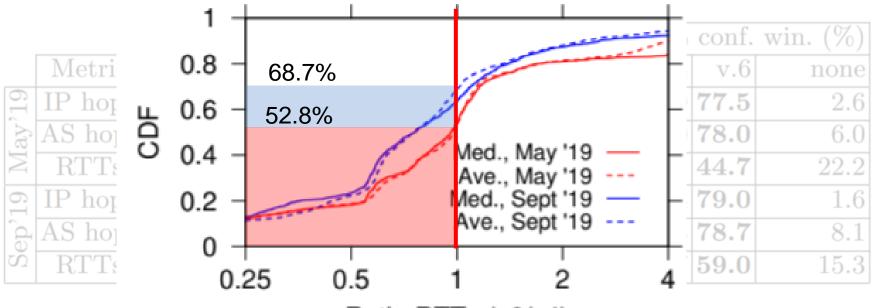
		Med	ian w	inner (%)	Aver	Average winner $(\%)$			conf.	win. (%)
	Metric	v. 4	v.6	tie	v.4	v.6	tie	v.4	v.6	none
19	1				21.1	78.7	0.2	19.9	77.5	2.6
ay	AS hops	14.3	59.3			79.6		16.0	78.0	6.0
Μ	RTTs	46.0	54.0	0.0	47.2	52.8	0.0	33.1	44.7	22.2
19	IP hops				20.2	79.8	0.0	19.4	79.0	1.6
ep'	AS hops	10.3	55.4	34.3	15.4	81.5	3.1	13.3	78.7	8.1
Š	RTTs	36.2	63.8	0.0	31.3	68.7	0.0	25.7	59.0	15.3

- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)

		Med	ian w	inner (%)	Aver	rage w	vinner (%)	95% conf. win. (%)		
	Metric	v. 4	v.6	tie	v.4	v.6	tie	v.4	v.6	none
19	IP hops				21.1	78.7	0.2	19.9	77.5	2.6
ay	AS hops	14.3	59.3	26.4	17.1	79.6	3.3	16.0	78.0	6.0
Μ	RTTs	46.0	54.0	0.0	47.2	52.8	0.0	33.1	44.7	22.2
19	IP hops				20.2	79.8			79.0	
ep'	AS hops	10.3	55.4	34.3	15.4	81.5			78.7	8.1
Š	RTTs	36.2	63.8	0.0	31.3	68.7	0.0	25.7	59.0	15.3

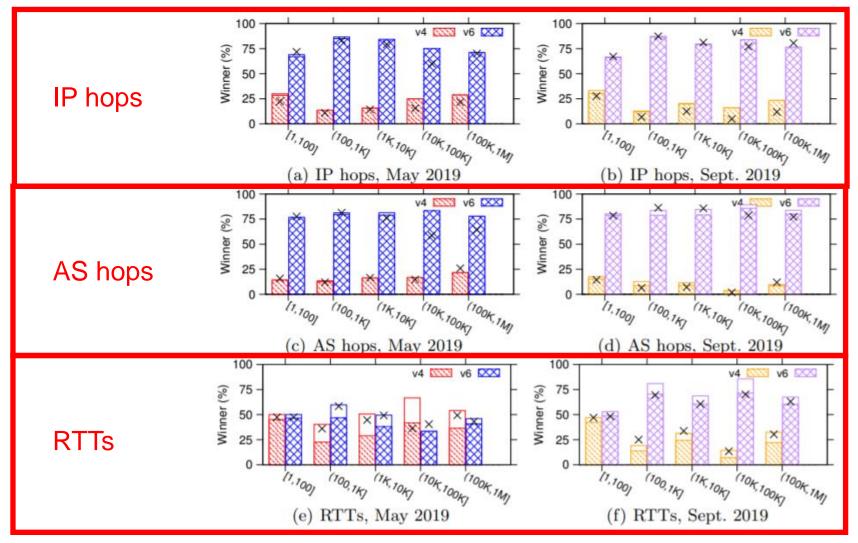
- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)

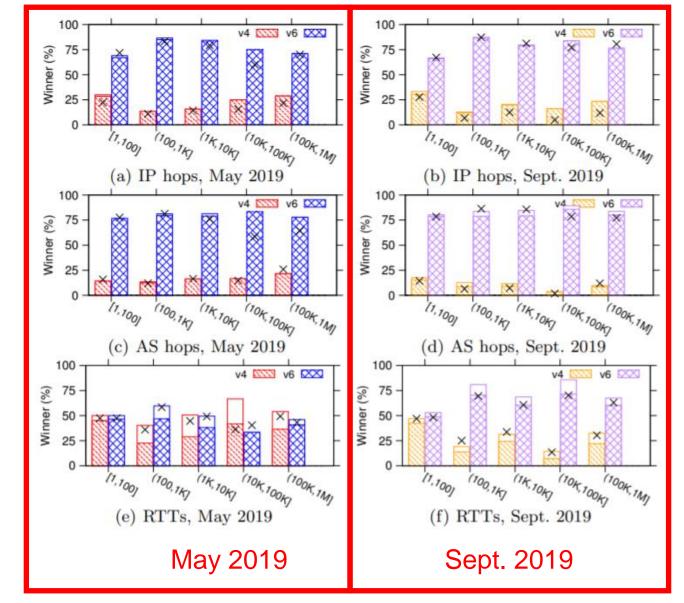
		Med	ian w	inner (%)	Aver	rage w	vinner (%)	95% conf. win. (%)		
	Metric	v. 4	v.6	tie	v.4	v.6	tie	v.4	v.6	none
19	IP hops	15.4	77.5	7.0	21.1	78.7	0.2	19.9	77.5	2.6
ay	AS hops	14.3	59.3	26.4	17.1	79.6	3.3	16.0	78.0	6.0
Μ	RTTs	46.0	54.0	0.0	47.2	52.8	0.0	33.1	44.7	22.2
19	IP hops				20.2	79.8	0.0	19.4	79.0	1.6
ep'	AS hops	10.3	55.4	34.3	15.4	81.5	3.1	13.3	78.7	8.1
Š	RTTs	36.2	63.8	0.0	31.3	68.7	0.0	25.7	59.0	15.3

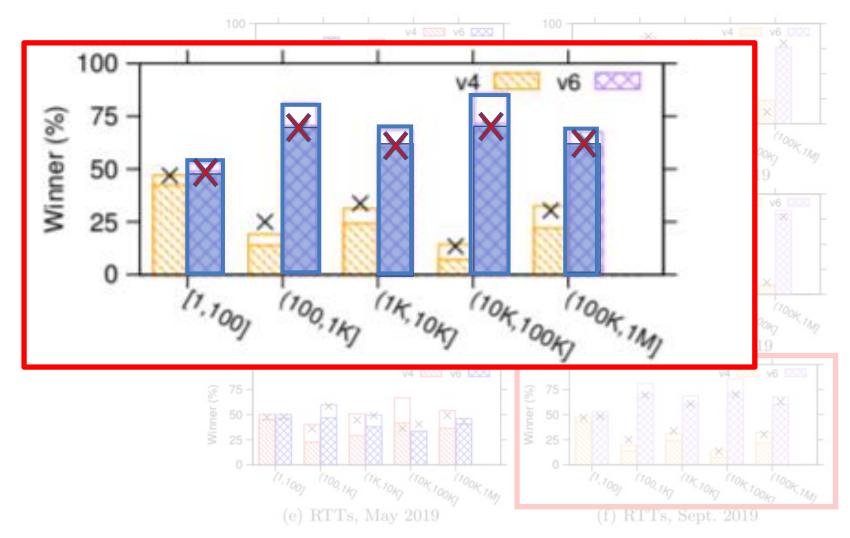

- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)
- IPv6 most frequent "winner" in all cases

		Med	ian w	inner (%)	Aver	age w	vinner (%)	95%	conf.	win. (%)
	Metric	v.4	v.6	tie	v.4	v.6	tie	v.4	v.6	none
19	IP hops	15.4	77.5	7.0	21.1	78.7	0.2	19.9	77.5	2.6
ay'	AS hops	14.3	59.3			79.6		16.0	78.0	6.0
Ν	RTTs	46.0	54.0	0.0	47.2	52.8	0.0	33.1	44.7	22.2
19	IP hops	14.4	77.6	8.0	20.2	79.8	0.0	19.4	79.0	1.6
ep'	AS hops	10.3	55.4	34.3	15.4	81.5	3.1	13.3	78.7	8.1
Š	RTTs	36.2	63.8	0.0	31.3	68.7	0.0	25.7	59.0	15.3

- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)
- IPv6 most frequent "winner" in all cases
- IP and AS hops are significantly shorter (e.g., 95% confidence)

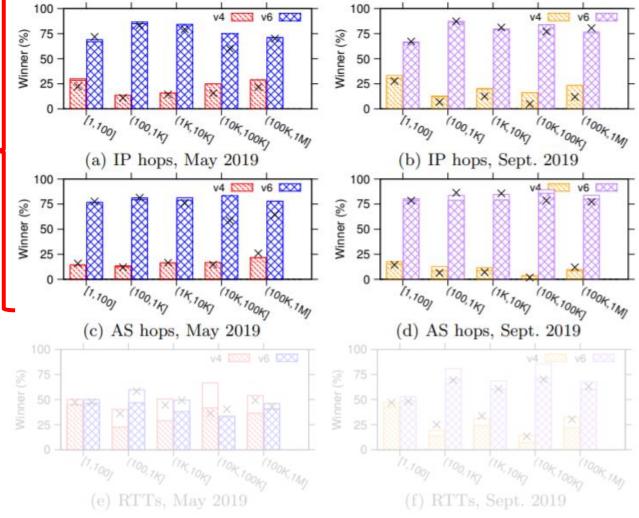

		Med	ian w	inner (%)	Aver	rage w	vinner (%)	95%	conf.	win. (%)
	Metric	v. 4	v.6	tie	v.4	v.6	tie	v.4	v.6	none
19	IP hops				21.1	78.7	0.2	19.9	77.5	2.6
ay	AS hops	14.3	59.3	26.4	17.1	79.6	3.3	16.0	78.0	6.0
Μ	RTTs				47.2	52.8	0.0	33.1	44.7	22.2
19	IP hops	14.4	77.6	8.0	20.2	79.8	0.0	19.4	79.0	1.6
ep'	AS hops	10.3	55.4	34.3	15.4	81.5	3.1	13.3	78.7	8.1
$\mathbf{\tilde{s}}$	RTTs	36.2	63.8	0.0	31.3	68.7	0.0	25.7	59.0	15.3


- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)
- IPv6 most frequent "winner" in all cases
- IP and AS hops are significantly shorter (e.g., 95% confidence)
- RTT: Relatively lower, but increasing fraction of "winners"



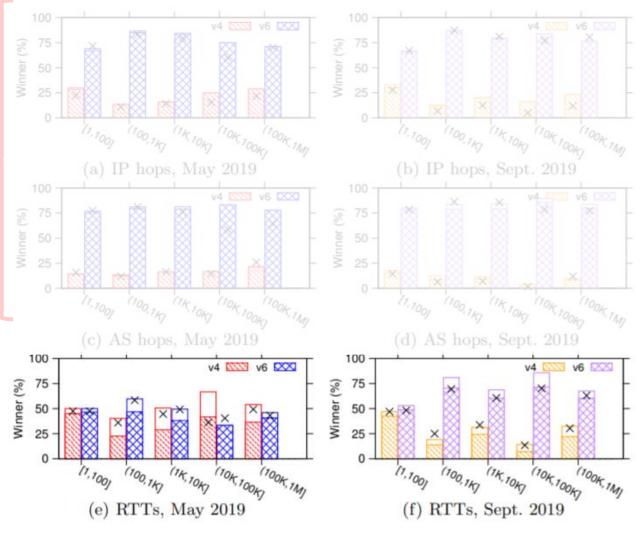
Ratio RTTs (v6/v4)

- For each pair and metric, pick a "winner" using three different statistics
 - Median, average, 95-confidence test (one-side t-test)
- IPv6 most frequent "winner" in all cases
- IP and AS hops are significantly shorter (e.g., 95% confidence)
- RTT: Relatively lower, but increasing fraction of "winners"
 - In fact, entire distribution shifted ...



IP and AS hops:

- IPv6 clear winner
- Not much change


RTTs:

IP and AS hops:

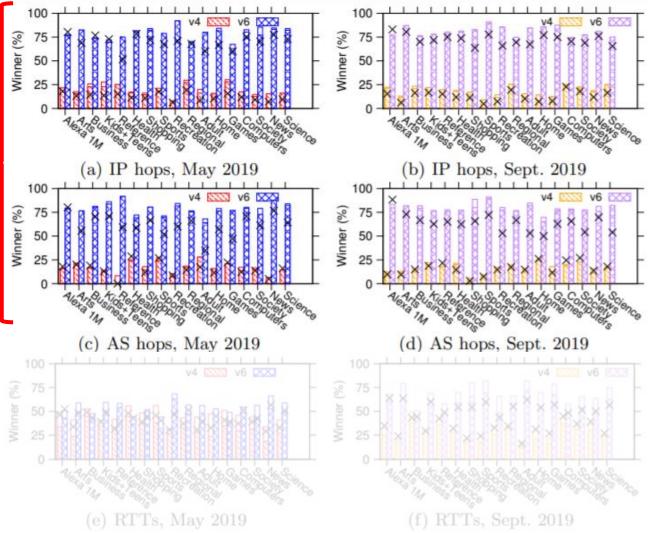
- IPv6 clear winner
- Not much change

RTTs:

Category-based comparison

- IP and AS hops:
- IPv6 clear winner
- Not much change

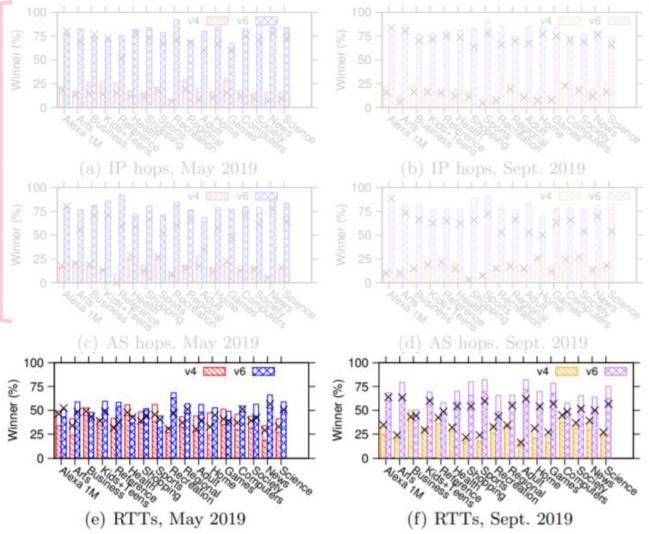
RTTs:

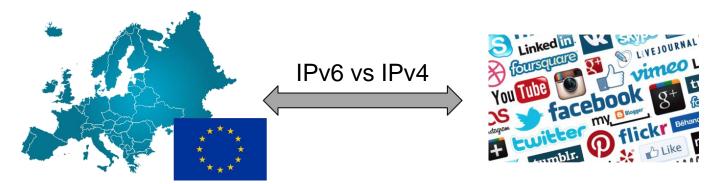


Category-based comparison

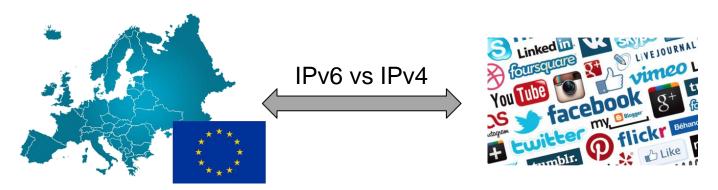
IP and AS hops:

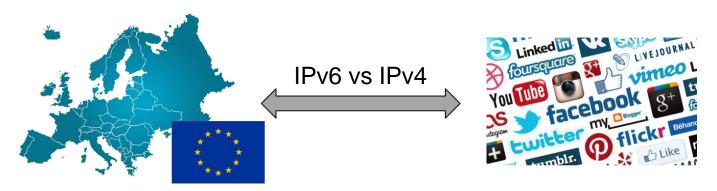
- IPv6 clear winner
- Not much change

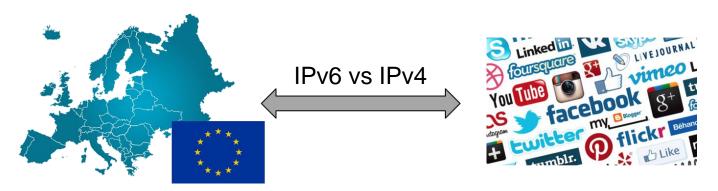

RTTs:


Category-based comparison

- IP and AS hops:
- IPv6 clear winner
- Not much change

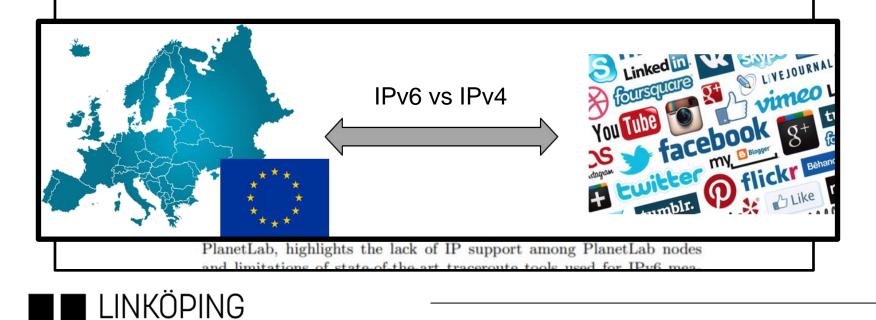



Conclusions


• First report on using IPv6 for experiments on PlanetLab Europe

- First report on using IPv6 for experiments on PlanetLab Europe
- Hypothesis-based methodology and the results from applying this on datasets collected using traceroutes from PlanetLab Europe nodes

- First report on using IPv6 for experiments on PlanetLab Europe
- Hypothesis-based methodology and the results from applying this on datasets collected using traceroutes from PlanetLab Europe nodes
- Findings shows (among other things) that
 - IPv6 paths currently faster than the corresponding IPv4 paths, and
 - pairings for which this is the case is quickly increasing across a wide range of domain popularities and domain categories


- First report on using IPv6 for experiments on PlanetLab Europe
- Hypothesis-based methodology and the results from applying this on datasets collected using traceroutes from PlanetLab Europe nodes
- Findings shows (among other things) that
 - IPv6 paths currently faster than the corresponding IPv4 paths, and
 - pairings for which this is the case is quickly increasing across a wide range of domain popularities and domain categories
- Findings suggest that there is incentive to use IPv6 ...

... which may impact the rate of further IPv6 deployment!

raper online Hypothesis-based Comparison of IPv6 and IPv4 Path Distances

David Hasselquist¹, Christian Wahl^{1,2}, Otto Bergdal¹, and Niklas Carlsson¹

¹Linköping University, Sweden ²Technische Universität München, Germany

UNIVERSITY

Niklas Carlsson (niklas.carlsson@liu.se)