QUIC Throughput and Fairness over Dual Connectivity

David Hasselquist Christoffer Lindström Nikita Korzhitskii Niklas Carlsson Andrei Gurtov

QUIC

- New transport protocol
 - Introduced 2013 by Google
 - Continued by IETF to become HTTP/3
- Multi-layer
 - Reliable in userspace over UDP
 - Rapid deployment
 - o-RTT
 - Per-stream flow control

QUIC

- New transport protocol
 - Introduced 2013 by Google
 - Continued by IETF to become HTTP/3
- Multi-layer
 - Reliable in userspace over UDP
 - Rapid deployment
 - o-RTT
 - Per-stream flow control
- Widespread adoption
 - Used by Google, YouTube, Facebook, and more...

Dual Connectivity

- Multi-connectivity technique
- Accelerating transition to 5G
- Multiple future uses
 - Throughput
 - Reliability

Dual Connectivity

- Multi-connectivity technique
- Accelerating transition to 5G
- Multiple future uses
 - Throughput
 - Reliability

Splits traffic at link layer in PDCP sublayer

Multipath

Application		
Multipath TCP		
IP	IP	
PDCP	PDCP	
RLC	RLC	
MAC	MAC	
Physical	Physical	

Dual Connectivity

Application		
TCP		
IP		
PDCP		
RLC	RLC	
MAC	MAC	
Physical	Physical	

Carrier Aggregation

Application		
TCP		
ΙP		
PDCP		
RLC		
MAC		
Physical		

Motivation

- Dual Connectivity invisible to QUIC and TCP
 - Jitter, reordering can significantly impact performance
- Understanding two "new" technologies together
 - Dual Connectivity parameters
 - Network conditions (bandwidth, delay, loss)

Contributions

- First performance evaluation of QUIC and Dual Connectivity
 - Throughput
 - Fairness

Contributions

- First performance evaluation of QUIC and Dual Connectivity
 - Throughput
 - Fairness
- Comparison with TCP counterparts
 - 2 QUIC implementations (aioquic, ngtcp2)
 - NewReno and CUBIC
 - LTE bandwidth trace

Contributions

- First performance evaluation of QUIC and Dual Connectivity
 - Throughput
 - Fairness
- Comparison with TCP counterparts
 - 2 QUIC implementations (aioquic, ngtcp2)
 - NewReno and CUBIC
 - LTE bandwidth trace
- Insights for network operators

Testbed throughput

- Two machines, 2 interfaces each
- PDCP proxy

Machine 2 (client side)

Testbed fairness

- 3 QUIC servers/clients
 - 1 Dual Connectivity
 - 2 Single Connectivity

Machine 2 (client side)

Testbed fairness

- 3 QUIC servers/clients
 - 1 Dual Connectivity
 - 2 Single Connectivity
- Jain's fairness index (JFI)

Machine 2 (client side)

Parameters

- DC batch size
- DC ratio (batch split)
- Bandwidth ratio
 - With and without matching DC ratio
- Delay ratio
 - Low and high delay
- Random loss
 - With and without packet duplication

Parameters

- DC batch size
- DC ratio (batch split)
- Bandwidth ratio
 - With and without matching DC ratio
- Delay ratio
 - Low and high delay
- Random loss
 - With and without packet duplication

DC batch size 100 DC ratio 5:1

80 packets -> 20 packets -> ...

Parameters

• DC batch size

DC ratio (batch split)

- Bandwidth ratio
 - With and without matching DC ratio
- Delay ratio
 - Low and high delay

- Random loss
 - With and without packet duplication

DC batch size 100 DC ratio 5:1

80 packets -> 20 packets -> ...

DC batch size

DC batch size

DC batch size

DC ratio (batch split)

DC ratio (batch split)

DC ratio (batch split)

Random loss

Random loss

QUIC configuration/version

- QUIC implementation
 - Second QUIC implementation more aggressive, achieves higher throughput in general but unfair
 - Differences observed due to execution speed and pacer implementation

QUIC configuration/version

- QUIC implementation
 - Second QUIC implementation more aggressive, achieves higher throughput in general but unfair
 - Differences observed due to execution speed and pacer implementation

- Little to no differences when using:
 - CUBIC instead of NewReno
 - Trace-based bandwidth variation

• First performance evaluation of QUIC over DC

- First performance evaluation of QUIC over DC
- QUIC performs similarly, but not identical, to TCP over DC

- First performance evaluation of QUIC over DC
- QUIC performs similarly, but not identical, to TCP over DC
- QUIC can utilize the increased throughput/reliability of DC
 - If link properties similar and batch size small
 - Otherwise better to turn DC off

- First performance evaluation of QUIC over DC
- QUIC performs similarly, but not identical, to TCP over DC
- QUIC can utilize the increased throughput/reliability of DC
 - If link properties similar and batch size small
 - Otherwise better to turn DC off
- Optimal systemwide fairness
 - If symmetric link conditions and not duplicating packets

Thanks for listening!

QUIC Throughput and Fairness over Dual Connectivity

David Hasselquist, Christoffer Lindström, Nikita Korzhitskii, Niklas Carlsson, Andrei Gurtov

