

Helping Hand or Hidden Hurdle: Proxy-assisted HTTP-based Adaptive Streaming Performance

Vengatanathan Krishnamoorthi¹, **Niklas Carlsson**¹, Derek Eager², Anirban Mahanti³, Nahid Shahmehri¹

¹ Linköping University, Sweden

² University of Saskatchewan, Canada

³ NICTA, Australia

LIU EXPANDING REALITY

Video streaming

- Content delivery over the Internet is massive ...
 - Consume significant resources
 - How to make scalable and efficient?

HTTP-based streaming

- HTTP-based streaming
 - Allows easy caching, NAT/firewall traversal, etc.
 - Use of TCP provides natural bandwidth adaptation
 - Split into fragments, download sequentially
 - Some support for interactive VoD

HTTP-based adaptive streaming (HAS)

Quality

Frag1	Frag2	Frag3	Frag4	Frag5	 	 	@1300 Kbit/s
Frag1	Frag2	Frag3	Frag4	Frag5	 	 	@850 Kbit/s
Frag1	Frag2	Frag3	Frag4	Frag5	 	 	@500 Kbit/s
Frag1	Frag2	Frag3	Frag4	Frag5	 	 	@250 Kbit/s

Time

- HTTP-based adaptive streaming
 - Multiple encodings of each fragment (defined in manifest file)
 - Clients adapt quality encoding based on (buffer and network) conditions

Clients' want

- High playback quality
- Small stall times
- Few buffer interruptions
- Few quality switches

Clients' want

- High playback quality
- Small stall times
- Few buffer interruptions
- Few quality switches

HAS is increasingly responsible for larger traffic volumes
Network and service providers may consider integrating HAS-aware proxy policies

Clients' want

- High playback quality
- Small stall times
- Few buffer interruptions
- Few quality switches

Network providers' want

High QoE of customers/clients

Clients' want

- High playback quality
- Small stall times
- Few buffer interruptions
- Few quality switches

Network providers' want

- High QoE of customers/clients
- Low bandwidth usage
- High hit rate

Clients' want

- High playback quality
- Small stall times
- Few buffer interruptions
- Few quality switches

Network providers' want

- High QoE of customers/clients
- Low bandwidth usage
- High hit rate

In this paper ...

In this paper ...

In this paper ...

In this paper ...

Proxy after

Proxy after

Proxy after

Proxy after

Baseline policies

- Empty cache
- Full cache (preload all versions)
- Best effort (default, as previous example)

Quality and content-aware prefetching policies

- 1-ahead
- N-ahead
- Priority-based

Quality and content-aware prefetching policies

- 1-ahead
- N-ahead
- Priority-based

Client 2

Proxy

Quality and content-aware prefetching policies

- 1-ahead
- N-ahead
- Priority-based (based on likely switches)
 - If client switches to a higher encoding and it is not the first time that the client is requesting this quality, then prefetch: (i) current quality, (ii) one quality level below, (iii) one quality level above, and (iv) no prefetching.
 - Else prefetch: (i) current quality, (ii) one quality level above, (iii) one quality level below and (iv) no prefetching.

Quality and content-aware prefetching policies

- 1-ahead
- N-ahead
- Priority-based (based on likely switches)

Client 2

Proxy

Client-proxy cooperation policies

- Buffer oblivious (priority-based prefetching)
- Buffer aware (conservative quality during low buffer conditions)

Policy overview

Baseline policies

- Empty cache
- Full cache (preload all versions)
- Best effort (default, as previous example)

Quality and content-aware prefetching policies

- 1-ahead
- N-ahead
- Priority-based (based on likely switches)

Client-proxy cooperation policies

- Buffer oblivious (priority-based prefetching)
- Buffer aware (conservative quality during low buffer conditions)

Evaluation and Instrumentation

In this paper ...

In this paper ...

Evaluation of proxy-assisted HAS policies

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Adobe's OSMF v1.6 and v 2.0

Adobe Flash media server 4.5

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Adobe's OSMF v1.6 and v 2.0

New player (v 2.0) better for all metrics and scenarios

(also looked at buffer size)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Dummynet to control network conditions

- delays
- packet losses
- bandwidth and bottlenecks

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

- Clients: Measure performance/service
- Proxy: Implementing policies and measure performance
- Network: Capture network conditions (bottlenecks, bandwidths, delays, packet losses, etc.)

Bandwidth scenarios

Synthetic traces

Real-world traces

Client-proxy bottleneck

- Proxies provide only limited performance advantages under client-proxy bottleneck
- Some performance improvements to prefetching (but penalty to excessive prefetching)

Client-proxy bottleneck

- Proxies provide only limited performance advantages under client-proxy bottleneck
- Some performance improvements to prefetching

Client-proxy bottleneck

- Proxies provide only limited performance advantages under client-proxy bottleneck
- Some performance improvements to prefetching

- Large performance potential for proxy caching
- Significant performance improvement with the best effort policy
- Naive prefetching results in penalty
- Need for more intelligent prefetching policies (cooperative)

- Large performance potential for proxy caching
- Significant performance improvement with the best effort policy
- Naive prefetching results in penalty
- Need for more intelligent prefetching policies (cooperative)

- Large performance potential for proxy caching
- Significant performance improvement with the best effort policy
- Naive prefetching results in penalty
- Need for more intelligent prefetching policies (cooperative)

- Large performance potential for proxy caching
- Significant performance improvement with the best effort policy
- Naive prefetching results in penalty
- Need for more intelligent prefetching policies (cooperative)

- Best effort has the smallest hit rate
- Prefetching bandwidth benefit future clients
- Hits and high client-proxy bandwidth may cause costly penalties due to limited bandwidth at misses (more variability and lower hit rates)

- Best effort has the smallest hit rate
- Prefetching bandwidth benefit future clients
- Hits and high client-proxy bandwidth may cause costly penalties due to limited bandwidth at misses (more variability and lower hit rates)

- Best effort has the smallest hit rate
- Prefetching bandwidth benefit future clients
- Low proxy-server bandwidth may cause costly penalties due to slow downloads at misses (more variability and lower hit rates)

- Best effort has the smallest hit rate
- Prefetching bandwidth benefit future clients
- Low proxy-server bandwidth may cause costly penalties due to slow downloads at misses (more variability and lower hit rates)

Client-proxy cooperation

Client-proxy bottleneck

Proxy-server bottleneck

- For client-proxy bottleneck, both policies slightly outperform all baseline and quality-aware prefetching policies
- For proxy-server bottleneck, both policies vastly outperform all baseline and quality-aware prefetching policies

Example trace: Client-proxy cooperation

 Cooperative policy quickly adapt cache content such as to best serve the clients, without penalizing early clients

Example trace: Client-proxy cooperation

 Cooperative policy quickly adapt cache content such as to best serve the clients, without penalizing early clients

Conclusions

- Performance impact of HAS-aware proxy policies
 - Baseline policies
 - Quality and content-aware prefetching
 - Client-proxy cooperation
- Bottleneck location and network conditions play central roles in which policy choices are most advantageous
 - Large benefits to cooperative policies when proxy-server bottleneck
- Careful proxy design and policy selection very important
- Future work include adaptive policies
 - Bottleneck and their conditions may change

Helping Hand or Hidden Hurdle: Proxy-assisted HTTP-based Adaptive Streaming Performance

Vengatanathan Krishnamoorthi (LiU) Niklas Carlsson (LiU) Derek Eager (U of S) Anirban Mahanti (NICTA) Nahid Shahmehri (LiU)

Linköping University expanding reality

www.liu.se