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Abstract. Player behaviors can have a significant impact on the out-
come of individual events, as well as the game itself. The increased avail-
ability of high quality resolution spatio-temporal data has enabled anal-
ysis of player behavior and game strategy. In this paper, we present the
implementation and evaluation of an imitation learning method using
recurrent neural networks, which allows us to learn individual player be-
haviors and perform rollouts of player movements on previously unseen
play sequences. The method is evaluated using a 2019 dataset from the
top-tier soccer league in Sweden (Allsvenskan). Our evaluation provides
insights how to best apply the method on movement traces in soccer, the
relative accuracy of the method, and how well policies of one player role
capture the relative behaviors of a different player role, for example.

1 Introduction

In recent years the availability of tracking data has grown considerably, through
the use of wearable GPS trackers and advances in optical object tracking. This
has made it possible for analysts to provide deeper insights than before. For
example, in soccer, work has been done on such issues as player and team anal-
ysis [3, 2], player ghosting [26], and predicting ball position [23].
An important factor that can be learned from this data is player movement. Once
we can learn and predict player movement, interesting questions can be asked
and answered. For instance, one may obtain insights on a particular player’s
movement patterns in a particular situation and thereby have a better chance to
find strategies to counter that player. It may also be possible to find players that
have similar patterns and may therefore be seen as possible substitutes for one
another. By substituting the patterns of two players it may also be possible to
see how different players act in and solve different game situations. Comparing
a player to a league average player or to a league average player with a certain
role, may give insights on a player’s creativity, but could also be used in training
to show a player when good or bad decisions are made. Further, defensive and
offensive effectiveness in different situations may be investigated.
In this paper we present a method to predict player movement based on imi-
tation learning (section 4). Through experiments (section 5) we give technical
insights as well as validation and player comparisons. The method is evaluated
using a 2019 dataset from the top-tier soccer league in Sweden (Allsvenskan).



Our results highlight how to best apply the method on movement traces from
soccer so to achieve good accuracy, validate the accuracy of the models (e.g., as
function of time since rollout starts and player role), and provide insights regard-
ing how well different player-specific policies (learned using our model) capture
the relative behaviors of different player roles (e.g., similarities and differences
between different player roles) and illustrate how different player behaviors can
be compared with the use of rollout using different player profiles.

2 Related Work

In many sports (but for the sake of brevity we focus on soccer), work has started
on game play. For instance, in soccer, there is work on rating actions [9, 36],
pass prediction [21, 5, 7, 39, 15], shot prediction [29], expectation for goals given
a game state [8] or a possession [11], or more general game strategies [28, 17,
12, 14, 4, 16, 1]. Game play information can be used to predict the outcome of
a game by estimating the probability of scoring for the individual goal scoring
opportunities [10], by relating games to the players in the teams [30], or by using
team rating systems [24]. It can also be used to measure player performance by
investigating in metrics [37], skills [22, 40, 31, 41], performance under pressure [6]
and on the correlation with market value [18]. Tracking data is used for player
and team analysis [3, 2], game analysis [13], and predicting ball position [23]. An
interactive system allowing for querying and analyzing tracking data is described
in [38]. The work closest related to ours is [27, 26] where imitation learning is
used to learn the general behavior of inferred roles or in a multi-agent setting.
In our work we use imitation learning to learn the behavior of specific players.

3 Background

In this work we use two learning phases each using a version of imitation learning.
In imitation learning (e.g., [32]) a policy π is trained to imitate the behavior of an
expert. The setting for the learning contains states representing what an agent
perceives at a given time step, and actions, that allow us to go from one state
to another. The expert π∗ generates the observed state-action pairs which the
learned policy should imitate. In the first phase we use behavioral cloning (e.g.,
[35]), where the policy maps states to actions. In the second phase we learn a
policy that maps a state and a set of contexts to a trajectory with horizon T
which consists of a set of T states (and actions). The latter mapping is also
called a rollout, and is achieved by sequentially executing π given an initial
state. Two distributions of states are used to train the policies. A distribution
of states visited by the expert is defined as P ∗ = P (x|π∗), while a distribution
of states induced by policy πθ, parameterized by θ, is given by P (x|θ). The
distribution P ∗ is provided from observations of the expert and the cost is given
by C(π∗(x), π(x)). As it may not be possible to know or observe the true cost
function for a task, a surrogate loss `, is adopted, which can be minimized instead
of C. The learning goal for behavioral cloning (first phase) is then to find the



parameters, which make the policy imitate the expert with minimal surrogate
loss. The best policy π̂θ is then given by π̂θ = argminθ Ex∼P∗`(π∗(x), πθ(x)). In
general imitation learning (second phase), the distribution of states is instead
given by rollouts and the best policy is π̂θ = argminθ Ex∼P (s|θ)`(π

∗(x), πθ(x)).

4 Approach

Model. In our setting the expert in the imitation learning is a soccer player that
we want to model. A state x ≡ (s, c) is comprised of two parts: the system state
s describing the modelled player, and the context c describing all other players
and the ball. In our work a state is represented by a state vector. For each entity
in a state, i.e., all players on the field and the ball, we store the position on the
field as Cartesian coordinates. The entities in each state are sorted so that their
order in the state is consistent over the duration of a sequence. This is needed
for learning and interpreting changes of an entity over time. The players in each
state are grouped per team, and within their team they are sorted according to
their lineup index provided by the league. Lineup indices are consistent through
games, and thus also consistent through any subsequence within a game. The
modelled player pm, is placed at the beginning of the state vector. This is done
in order to explicitly show the model which player that is being modelled, since
its position in the lineup may differ between games. pm is followed by all players
in his team, all players in the opponent team and finally the ball. Further, an
action in a state results in a change in position.
The policies used in our experiments are implemented in Keras (https://keras.io/)
as multi-variable regression models. Given a state xt where t represents the order
in a sequence of states, a policy π predicts an action ât = π(xt) which describes
how pm’s position has changed in t + 1. When a policy predicts an action ât
on state xt, it receives as input a sequence of state vectors representing states
xt−w, ..., xt. This sequence can be thought of as the memory of the model, as
information from the states in this sequence can be used for deciding on the
prediction of the action. The size w of this sequence is called the window. Our
model is implemented using a Long Short-Term Memory (LSTM) network with
two LSTM layers with 512 nodes in each layer (similar to [26, 27]). The model
has a total of 3,253,250 trainable parameters.
Sequences are rolled out by feeding consecutive states into a policy and iteratively
making predictions on those while updating the next system state given the
current action. The predicted sequence X̂ is initiated with the first w state
vectors of the observed sequence X: X̂0:w = X0:w The predicted sequence X̂
can then be rolled out by predicting an action ât = π(x̂t) using {x̂t−w..., x̂t}.
The following system state st+1 in x̂t+1 is updated with the result of ât. This
process is applied iteratively on each x̂ ∈ X̂, from t = w to t = T , where T
is the horizon. Each state is updated with the predicted action, which means
that any deviation (or error) introduced by the policy is propagated through the
sequence. A policy π is evaluated by rolling it out on a set of sequences S over
a horizon of T time steps. During the rollout of each sequence X, the Euclidean



distance dt between pm’s position in xt and x̂t is calculated for each time step
t. The distance dt is referred to as the error. The mean error at t for a set of
sequences S can be obtained by averaging the errors for all sequences in S at
time step t. The global error is calculated by averaging the mean errors for all
time steps in a rollout.

Algorithm 1 Sequence training

Input: Training sequences Str, Validation sequences Sv,
Input: Pre-trained policy π0,
Input: Training horizon Th, Epochs N
Output: Policy π
1: D ← ∅
2: S0 ← Str
3: for j = 1 to Th do
4: Sj ← Sj−1

5: for X = {x0, ..., xT } in Sj−1 do
6: for t = 0 to Th − 1 do
7: Predict ât = π0(xt)
8: Calculate x̂t+1 = calculate state(ât, xt, xt+1)

9: Add (x̂t+1, at+1) to D
10: Replace xt+1 in X with the generated state x̂t+1

11: for i = 1 to N do
12: πi ← πi−1

13: Train πi on D
14: Validate πi on Sv
15: return Best πi on sequence validation loss

Learning. The training process is divided into two phases. During both phases,
mean squared error is adopted to calculate loss. In the first phase the policy is
pre-trained on state-action pairs from training sequences. This is classical su-
pervised learning and teaches the policy the mapping from observed states xt
to expert actions at. The policy is trained during N epochs and the best policy
is returned, based on validation loss. The validation data Dv is made up of all
state-action pairs from the validation sequences. In the second phase the policy
is trained on (partially) rolled out sequences as described in Algorithm 1. The
approach is based on DAgger [33] and the imitation learning algorithms used in
[26, 27]. In the first part of the algorithm (lines 3-10) the set of training data
from the first phase is augmented by (partially) rolling out those sequences.
This is done by using the pre-trained policy π0 to gradually make one-step pre-
dictions on each time step t in each sequence X of the training sequences Str,
adding all generated state-action pairs to a new dataset D, and then iterating
over the sequences again with the states generated in the last round. This pro-
cess is performed Th times as specified by the training horizon parameter. The
training horizon should be lower or equal than the sequence horizon; Th ≤ T .
The calculate state function on line 8 calculates a predicted state x̂t+1 where the



Table 1. Summary of dataset.

Season Period Games Players Events Goals Other shots

2019 March 31 - June 2 79 276 1,668 193 1,475

system state of x̂t+1 is based on the current system state st and action ât, and
the context of x̂t+1 is the context ct+1 of xt+1.
In the second part (lines 11-14) the policy is trained on this augmented data
set and validated by rolling out on full sequences in a validation set using their
global errors as validation loss. Finally, the best policy is returned based on
sequence validation loss, which is the global error given by rolling out on the
validation sequences. Although many single-agent imitation learning applications
use dynamic oracles [33, 27] to generate one-step corrections a∗t for each sampled
state x̂t, dynamic oracles are expensive and require complex training schemas,
and there has been research on circumventing the need for dynamic oracles
when learning to roll out sequences [25, 19]. Algorithm 1 follows their example
by using the observed expert demonstrations to teach the policy how to behave
in the sampled states.

5 Experiments

5.1 Data and data preparation

Data. The dataset used in this paper was provided by Signality, a startup com-
pany that delivers sports analytics for customers such as the top-tier soccer
league in Sweden. The dataset captures all 79 games played before the summer
break of the 2019 season, and includes tracking data, game metadata, and man-
ually annotated event data. The tracking was created by applying Signality’s
automated object detection and recognition technology on game video record-
ings. The tracking data has a sample rate of 25 Hz and contained trajectories
of all players and the ball. Each trajectory contains position, speed and a tra-
jectory identifier at every time step. All positions are represented by Cartesian
coordinates (x,y) ∈ [0,1] × [0,1]. Each trajectory is assigned a jersey number
as soon as it is recognized by the system. The tracking data also contains basic
statistics such as each player’s accumulated distance, passes and ball possession.
The game metadata includes information such as arena information, pitch size,
and team lineup, as well as information about the players and teams in the game.
This data is used to create a mapping from trajectory identifiers to player iden-
tities, roles and lineup. The manually annotated data contains game events such
as shots, yellow cards, medical treatment, substitutions, and goals. These events
are used to, e.g., find sequences of interest to train and evaluate policies. We
preprocessed the data by padding missing values or entities with the value -1, by
scaling the coordinates to the size of an average Swedish soccer pitch (105×64
m2), and downsampling the sample rate to 5 Hz, or one frame per 200 ms.
Training and validation data. In this paper we focus on situations related to
goals and shots. The training and validation data are therefore sequences related



to such situations. We extracted sequences starting 10s before and ending 10s
after an annotated shot, and for which each state in the sequence contains the
observed coordinates for pm. Each sequence contains up to 100 observed states.
The modelled team can either be the defending team or the attacking team in the
extracted sequences. Table 1 summarizes the key characteristics associated with
the dataset. For the analysis presented here, we focus on the 150 players (out of
276) with the most games (in this case 12-24 games per player). From the 1,668
annotated events, play sequences for the 150 players were added randomly to
both the training and validation dataset. For the training dataset, we extracted
randomly two sequences from each game half (when at least three annotated
sequences existed) and assigned the rest of the sequences to the training set.
(When only two sequences existed, one was assigned for the evaluation, and
when only one existed it was only used for training.) In total, 5,188 random
sequences were used for validation and 21,284 sequences were used for training.
All arenas and lineups are represented during both training and validation.

Visualization. To reason regarding the behavior of a policy, rollouts are visual-
ized as plots on a soccer pitch. Each dot is one observed data point. The spacing
between each dot in a trajectory is 200 ms. Yellow dots are the ground truth,
or the observed player trajectory. Turquoise dots are the rolled out policy, with
the first dot coinciding with the player’s actual initial state. The big dot of a
trajectory shows the final position of that player. Red and blue dots represent
positions of the other players, and white dots observed ball positions.

5.2 Technical evaluation insights

The calculations are resource intensive and take time. For this reason, we use
limited player samples to first determining a promising learning methodology.
Here, we highlight the insights obtained from three such steps.

Absolute vs. relative actions. Actions can be represented using absolute
actions, i.e, using the coordinates of consecutive player positions (e.g., [26]), or
relative actions, i.e, using the difference between the consecutive positions (e.g.,
[34]). We investigate the influence of the representation on the learned policy. For
these experiments, we used five random players, and each policy was trained for
each action type and player. For both training and validation we used a window
size of 20 time steps. Over the 9,500 samples associated with these players the
absolute method had an average error of 9.01m with a standard deviation of
7.22m. The corresponding error using the relative method was 6.89m (σ=5.84m).
We note these values (both averages and standard variations) are smaller, that
the 95% confidence intervals (i.e., [8.87,9.16] and [6.77,7.01]) are non-overlapping,
and that the null hypothesis that the average errors are the same can be rejected
with a t-score of 22.25 (>1.96). In general, we have found that the relative actions
also result in smoother rollout behavior from the start. This is illustrated in
Figure 1, which shows example rollouts using the two methods. Motivated by
the smaller errors and smoother rollouts, in the following experiments, we use
only the relative actions.



(a) Absolute (b) Relative

Fig. 1. Example rollouts.

We note that [26] has shown that it is possible to get smooth results with absolute
actions, and we may be able to obtain this with other parameters, an extended
state description, or more data. Further, a drawback of using relative actions
without a dynamic oracle [27] is that the policy is taught to move in the same
direction that the expert did in a certain time step even if it during the rollout
in sequence training has deviated significantly from the original trajectory.

Baseline comparisons. We note that our methodology differs from most prior
work on imitation learning in that we circumvent the need for dynamic oracles
when learning to roll out sequences. While this still allows us to imitate the
general behavior of players, this naturally results in the absolute positional error
increasing over time. To put these errors in perspective, we compared the learned
policies with policies generated using a random walk algorithm (providing a kind
of upper bound) and the results obtained when evaluating the policies on the
training data itself (providing a kind of rough lower bound). For this analysis we
used the same set of five players as above. For the random walk, random steps
were sampled from a normal distribution specified by the mean and standard
deviation of movement observed in the dataset. With these settings, we obtained
a global error of 10.17m (random walk) and 4.75m (training, relative actions),
respectively. Despite a relatively unfair comparison, these results suggest that
our relative action approach shows promising results in that it has errors closer
to what the policy achieves on the training data itself than a random walk.
Trajectories that are confined to a small area naturally exhibit lower errors for
the random walk, while the opposite is true for longer trajectories. Furthermore,
although the difference in global error for the learned policy and the random
walk policy is not that high, a qualitative assessment of the rollouts makes it
clear that for the random walk the rollouts are random, and the policy does
not follow the general movement of the sequence at all, whereas the method
presented here does (e.g., Figure 1).

Window size. To investigate the influence of the window size, multiple policies
were trained with variations on this parameter. The window size limits the pol-
icy’s memory and gives an upper bound on the longest time frame for retained
information. Further, from a performance perspective, longer window sizes re-



Table 2. Impact of window size.

Window Mean Stdev Conf interval

10 7.60 6.23 [7.47, 7.73]

20 7.14 5.70 [7.02, 7.26]

30 7.42 6.05 [7.30, 7.55]

40 7.72 6.04 [7.60, 7.85]

50 7.23 6.30 [7.10, 7.36]

quire more computation during training and prediction [20]. Table 2 shows ex-
ample results for five different window sizes. Interestingly, we have observed the
highest accuracy with an intermediate window size of 20 time steps (our de-
fault window). While the relative errors for different window sizes are relatively
similar, the window size of 20 time steps results in somewhat smaller averages
than the other window sizes (statistically significant at the 95% confidence level
compared to all windows except 50). It is also interesting to note that both the
averages and the standard deviations are smallest for these intermediate win-
dow sizes. These results suggest that the policies are not able to fully utilize the
additional information captured by the larger window sizes. In the following, we
use a window size of 20 time steps.
Multi-player-based pre-training. We have observed significant value using
multi-player based pre-training. To illustrate this, here we present evaluation re-
sults showing how pre-training on other players’ observations compares to only
pre-training on player pm’s observations, in terms of rollout error on validation
sequences from pm. For these experiments, we used five (new) random players
and trained the modeled players using only data for the player itself (as in the
prior experiments presented in this section) or using data for all players, respec-
tively. To avoid influence of goalkeepers (who have much different movement
patterns), we only used data for non-goalkeepers here. Again, we use a window
size of 20 time steps and evaluate over 50 time steps, and use the relative ac-
tions. When only pre-training using the player itself we obtain an error of 7.12m
(σ=5.96m), and when using pre-training using multiple players we obtain an
error of 6.73m (σ=5.59m). Over 7,800 samples, this results in non-overlapping
confidence intervals (i.e., [6.99,7.25] vs. [6.61,6.85]) and a t-value of 4.22 (>1.96).

5.3 Validation and player comparisons

Motivated by the above findings, in the remainder we use the relative actions, a
20 time step window, and multi-player pre-training for our learning and evalu-
ation. For this section, we present results over all 150 players. Overall, over the
259,400 samples considered we observe an average error of 6.27m (σ=5.77m).
Error accumulation. Figure 2(a) shows the Cumulative Distribution Function
(CDF) distributions of the error in the absolute player position after 2, 5, or
10 seconds have elapsed. It should be noted that the shots typically happen 6-8
seconds into the sequences, and can cause significant changes in players’ actions
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Fig. 2. CDFs of the relative errors.

Table 3. Error for different player roles.

Position Mean (Stdev) Players Samples

Goalkeepers (G) 3.30 (3.30) 13 25,700

Defensive (D) 6.49 (5.69) 63 108,300

Midfielder (M) 6.69 (6.07) 45 76,350

Offensive (O) 6.71 (6.05) 29 49,050

on the pitch. For this reason, it is perhaps not surprising that the tail of the
distribution (with larger errors) increases significantly between the 5 second and
10 second time stamps.

Player role breakdown. In general, we have observed similar prediction errors
for all categories except goalkeepers. This is illustrated by the tight clustering
of the other categories (D,M,O) CDFs in Figure 2(b), but can also be seen from
looking at the average errors of the different categories (Table 3). Here, the de-
fender (D) category includes all ”backs”, (M) includes ”midfielders”, and the
offensive (O) category includes ”forwards” or ”wings” as annotated by Allsven-
skan.

Direction errors. Despite the model targeting general behavior, rather then
definite prediction, we have found that it often does a reasonable job predicting
the direction of the player movement. Here, we present prediction results for the
general direction, as defined by in which out of four directions the player moves
the furthest: forward (i.e., towards the opposition’s end), backwards, inwards
(i.e., towards the middle of the field), or outwards. These general directions are
split by four lines separated by 90◦. Table 4 presents the confusion matrices for
the movements after 2s, 5s, and 10s. For all cases, the highest values are along
the diagonal, and the method has stable F1-scores of 0.53, 0,52, and 0.53.

Cross-evaluation. To investigate whether the policies have learned the behav-
ior of the player it was trained on, policies trained on different players were
cross-evaluated on each others’ validation sequences. Table 5 shows the errors
when using the model of one player to predict the movements of a different
player. We note that the highest values are shown along the diagonal (or the
players of the same player role). These results suggest that the best policies (in
terms of global error) are achieved when using the policies for the specific player.
We also noted that policies from players with similar roles often exhibit similar



Table 4. Confusion matrix for directional prediction errors over 2s, 5s, and 10s.

Predictions
In Out Fwd Bkwd

T
ru

th

In 0.24 0.20 0.29 0.27
Out 0.08 0.39 0.26 0.27
Fwd 0.09 0.16 0.67 0.08

Bkwd 0.09 0.20 0.08 0.62

(a) 2s (F1=0.53)

Predictions
In Out Fwd Bkwd

T
ru

th

In 0.26 0.18 0.30 0.26
Out 0.08 0.42 0.25 0.25
Fwd 0.09 0.19 0.62 0.10

Bkwd 0.09 0.21 0.09 0.62

(b) 5s (F1=0.52)

Predictions
In Out Fwd Bkwd

T
ru

th

In 0.20 0.20 0.30 0.30
Out 0.07 0.46 0.24 0.23
Fwd 0.09 0.19 0.64 0.09

Bkwd 0.09 0.19 0.10 0.62

(c) 10s (F1=0.53)

Table 5. Cross-evaluation using ten random players - errors.

Observed expert player
G1 D1 D2 D3 D4 M1 M2 M3 O1 O2

M
o
d
el

p
la

y
er

(P
o
li
cy

)

G1 3.56 8.33 7.82 10.22 10.96 8.83 11.54 10.01 10.02 7.75
D1 7.1 6.86 6.46 7.96 7.63 7.35 9.51 7.28 7.82 7.22
D2 6.71 8.05 5 7.25 7.77 8.03 10.04 8.01 8.19 8.75
D3 4.63 7.85 5.63 7.19 7.74 8.13 8.69 7.34 7.24 6.8
D4 14.17 16.05 10.98 13.82 6.81 12.15 13.18 12.74 12.08 10.84
M1 4.24 8.04 5.94 7.08 7.67 5.75 8.48 6.4 7.07 5.82
M2 5.61 8.69 6.75 7.4 7.26 7.14 8.17 6.16 7.46 7.27
M3 4.98 7.54 5.79 7.02 7.22 6.27 8.17 5.56 6.58 5.08
O1 5.73 8.69 7.23 8.14 7.65 6.76 8.31 6.39 6.31 6.33
O2 4.63 8.22 7.92 8.99 8.62 8.75 9.9 8.06 8.74 5.6

behavior. The latter observations show that the policies in fact do capture dif-
ferent player behaviors. This opens the door for interesting future work in which
one player may be exchanged for another player, in a given situation. This is
illustrated in Figure 3. Here, we show the predicted (and actual) movement of an
offensive player (Figure 3(a)), as well as the predicted movement of a defensive
player put into the same situation (Figure 3(b)). In this situation the opposition
shoots, and we note that the defensive player would run backwards much further
towards the own goal.

6 Conclusion

In this paper we presented a method to predict player movement based on im-
itation learning, evaluated it using a large-scale 2019 dataset from the top-tier
soccer league in Sweden (Allsvenskan). Our evaluation provides insights into how
to best apply the method on movement traces in soccer. For example, we show
that there is value in using relative actions, that a limited time window often is
sufficient to achieve good accuracy, and that there is value in using data also from
other players during the pre-training phase. We also validate the accuracy of the
models (e.g., with regards to time and player role) and provide insights regard-
ing how well different policies capture the relative behaviors of different player
roles (e.g., similarities and differences between different player roles), gleaning
some insights into how different player behaviors can be compared with the use



(a) Offensive player (b) Defensive player

Fig. 3. Example rollouts of the same play with different policies.

of rollout using different player profiles. The latter highlight the value of these
types of policies and open interesting directions for future work, including in-
vestigations on the effect of pre-training only on similar roles as the modelled
player. Further, another direction for future research is multi-agent modelling.
By cross-updating all player states between each time step the multi-agent ap-
proach would model the full dynamics and interactions of the players and not
just a single player given a situation.
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