CHARACTERIZING CYBERLOCKER TRAFFIC FLOWS

Aniket Mahanti

THE UNIVERSITY OF AUCKLAND NEW ZEALAND Niklas Carlsson

NGS UN

Martin

Arlitt

Carey Williamson

Introduction

- Cyberlocker services provide an easy Web interface to upload, manage, and share content.
- Recent academic and industry studies suggest that cyberlocker traffic account for a significant fraction of the Internet traffic volume.
- Usage, content characteristics, performance, and infrastructure of selected cyberlockers have been analyzed in previous work.
- In this work, we analyze flows originating from several cyberlockers, and study their properties at the transport layer and their impact on edge network.

METHODOLOGY

3

Data Collection

- Flow-level summaries were collected using Bro from a *large university edge router* between Jan. 2009 Dec. 2009
- HTTP transaction summaries used to extract IP addresses of top-10 cyberlocker services for mapping the flows.

Characterization Metrics

- Flow-level characterization
 - Flow size: The total number of bi-directional bytes transferred within a single TCP flow.
 - Flow duration: The time between start and end of a flow.
 - Flow rate: The average data transfer rate of a TCP connection.
 - Flow inter-arrival time: The time between two consecutive flow arrivals.
- Host-level characterization
 - Transfer volume: The total traffic volume transferred by a campus host during the trace period.
 - On-time: The total time the campus host was active during the trace period.

Metric value

Distribution Fitting and Model Selection

- Complexity of the empirical distribution required us to apply hybrid fits of candidate distributions, where we fit the empirical distributions piece-wise.
- Each empirical distribution was divided into pieces based on manual inspection.
- We fitted seven well-known non-negative candidate statistical distributions (*Lognormal, Pareto, Gamma, Weibull, Levy,* and *Log Logistic*) to each piece and calculated the nonlinear sum of least square error.
- The statistical distribution with the lowest error was chosen.
- After fitting all the pieces of the empirical distribution, we generated the P-P and Q-Q plots; the goodness of the fit was determined by manually inspecting these plots.

Goodness of Fit

(a) Fit of body (majority of flows) (b) Fit of tail (rare-extreme values)

DATASET OVERVIEW

Trace Summary

		Service	Host	Flows	Bytes
Characteristic	Count	Mega Network (%)	75	43	68
Flow summary log size	1 TB	RapidShare (%)	41	42	13
		zSHARE (%)	35	4	8
HTTP traffic	4 billion flows	MediaFire (%)	34	8	3
HTTP traffic volume	488 TB	Hotfile (%)	5	0	2
Top-10 cyberlockers	7 million flows (0.19%)	Enterupload (%)	30	1	2
Top-10 cyberlocker	22 TB (4.5%)	Sendspace (%)	11	1	1
traffic volume		2Shared (%)	7	0	1
Campus hosts	13,000 hosts	Depositfiles (%)	8	1	1
using cyberlockers		Uploading (%)	5	0	0
		Top-10 cyberlockers	13K	7 mil	22 TB

Campus Usage Trends

FLOW-LEVEL CHARACTERIZATION

Flow Size

- Content flows only represent 5% of the cyberlocker flows, they consume over 99% of the total traffic volume.
- Content flows are orders of magnitude larger as they transfer large content hosted on the sites.
- Significantly larger flows than typical Web object.

Flow Duration

- Content flows are long-lived, partly due to wait times and bandwidth throttling.
- Most content flows have duration less than 10 minutes due to medium-sized content downloads.

- Cyberlocker content flows are larger and long-lived and receive higher flow rates.
- There is presence of both free and premium hosts that download content from the services.

- Parallel downloading increases flow concurrency and decreases flow inter-arrivals.
- Content flow inter-arrivals are longer because there are far fewer such flows; most of the flows are due to objects being retrieved from sites.

HOST-LEVEL CHARACTERIZATION

Host Transfer Volume

- There is presence of some hosts that transfer a lot of data as well as hosts that transfer less data.
- Most of the transfer volume is due to content flows.

Heavy Hitters

- The top-100 ranked hosts account for more than 85% of the cyberlocker and cyberlocker content traffic volume.
- The high skews are well-modeled by non-linear power-law distributions.

Host On-time

- On-times of cyberlocker hosts are heavy-tailed
- Most of the time spent by hosts is for downloading content.
- Users with premium subscription may spend less time since they can download more content in less time.

CONCLUDING REMARKS

Conclusions

- Cyberlockers introduced many small and large flows.
- Most cyberlocker content flows are long-lived and durations follow a heavy-tailed distribution.
- Cyberlocker flows achieved high transfer rates.
- Cyberlocker heavy-hitter transfers followed power-law distributions.
- Increased cyberlocker usage can have significant impact on edge networks.
- Long-lived content flows transferring large amounts of data can strain network resources.

Aniket Mahanti – University of Auckland, New Zealand Niklas Carlsson – Linkoping University, Sweden Martin Arlitt – HP Labs, USA

Carey Williamson – University of Calgary, Canada

QUESTIONS?