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Introduction

- Cyberlocker services provide an easy Web interface to
upload, manage, and share content.

- Recent academic and industry studies suggest that
cyberlocker traffic account for a significant fraction of the
Internet traffic volume.

- Usage, content characteristics, performance, and
Infrastructure of selected cyberlockers have been
analyzed in previous work.

- In this work, we analyze flows originating from several
cyberlockers, and study their properties at the transport
layer and their impact on edge network.



METHODOLOGY
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- Flow-level summaries were collected using Bro from a large
university edge router between Jan. 2009 — Dec. 2009

- HTTP transaction summaries used to extract IP addresses of
top-10 cyberlocker services for mapping the flows.



Characterization Metrics

- Flow-level characterization

- Flow size: The total number of bi-directional bytes transferred
within a single TCP flow.

- Flow duration: The time between start and end of a flow.
- Flow rate: The average data transfer rate of a TCP connection.

- Flow inter-arrival time: The time between two consecutive flow
arrivals.

- Host-level characterization

- Transfer volume: The total traffic volume transferred by a campus
host during the trace period.

- On-time: The total time the campus host was active during the
trace period.
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Distribution Fitting and Model Selection

- Complexity of the empirical distribution required us to apply
hybrid fits of candidate distributions, where we fit the empirical
distributions piece-wise.

- Each empirical distribution was divided into pieces based on
manual inspection.

- We fitted seven well-known non-negative candidate statistical
distributions (Lognormal, Pareto, Gamma, Welibull, Levy, and
Log Logistic) to each piece and calculated the nonlinear sum of
least square error.

- The statistical distribution with the lowest error was chosen.

- After fitting all the pieces of the empirical distribution, we
generated the P-P and Q-Q plots; the goodness of the fit was
determined by manually inspecting these plots.



Goodness of Fit
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(a) Fit of body (majority of flows) (b) Fit of tail (rare-extreme values)



DATASET OVERVIEW




Trace Summary

e — (%) ®

Flow summary 1TB RapidShare (%) 41 42 13
log size zSHARE (%) 35 4 8
HTTP traffic 4 billion flows MediaFire (%) 34 8 3
HTTP traffic volume 488 TB Hotfile (%) 5 0 2
Top-10 cyberlockers 7 million flows (0.19%) Enterupload (%) 30 1 2
Top-10 cyberlocker 22 TB (4.5%) Sendspace (%) 11 1 1
traffic volume 2Shared (%) 7 0 1
Cqmpus hosts 13,000 hosts Depositfiles (%) 1 1
using cyberlockers _

Uploading (%) 5 0 0

Top-10

cyberlockers 13K 7 mil 22 TB



Campus Usage Trends
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FLOW-LEVEL
CHARACTERIZATION




Flow Size
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- Content flows only represent 5% of the cyberlocker flows,
they consume over 99% of the total traffic volume.

- Content flows are orders of magnitude larger as they
transfer large content hosted on the sites.

- Significantly larger flows than typical Web object.



Flow Duration
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Flow Duration

- Content flows are long-lived, partly due to wait times and
bandwidth throttling.

- Most content flows have duration less than 10 minutes
due to medium-sized content downloads.



Flow Rate
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- Cyberlocker content flows are larger and long-lived and
receive higher flow rates.

- There is presence of both free and premium hosts that
download content from the services.



Flow Inter-arrival

100
w
3
o Cyberlocker Model:
"f Lognormal-Gamma
o 50
= Cyberlocker
S Content Model:
S ™ T S berdker (Model) Gamma-Lognormal
o | A A

0 e ker Content (Model) :

0.0001s 0.01s 0.1s 1s 10s 1m 10m 1h 8h
Flow Inter-arrival Time

- Parallel downloading increases flow concurrency and
decreases flow inter-arrivals.

- Content flow inter-arrivals are longer because there are
far fewer such flows; most of the flows are due to objects
being retrieved from sites.



HOST-LEVEL
CHARACTERIZATION




Host Transfer Volume
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- There is presence of some hosts that transfer a lot of data
as well as hosts that transfer less data.

- Most of the transfer volume is due to content flows.



Heavy Hitters
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- The top-100 ranked hosts account for more than 85% of
the cyberlocker and cyberlocker content traffic volume.

- The high skews are well-modeled by non-linear power-law
distributions.



Host On-time
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- On-times of cyberlocker hosts are heavy-tailed

- Most of the time spent by hosts is for downloading
content.

- Users with premium subscription may spend less time
since they can download more content in less time.



CONCLUDING REMARKS




Conclusions

- Cyberlockers introduced many small and large flows.

- Most cyberlocker content flows are long-lived and
durations follow a heavy-tailed distribution.

- Cyberlocker flows achieved high transfer rates.

- Cyberlocker heavy-hitter transfers followed power-law
distributions.

- Increased cyberlocker usage can have significant impact
on edge networks.

- Long-lived content flows transferring large amounts of
data can strain network resources.
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