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Abstract—Cyberlockers have recently become a very popular
means of distributing content. Today, cyberlocker traffic accounts
for a non-negligible fraction of the total Internet traffic volume,
and is forecasted to grow significantly in the future. The under-
lying protocol used in cyberlockers is HTTP, and increased usage
of these services could drastically alter the characteristics of Web
traffic. In light of the evolving nature of Web traffic, updated
traffic models are required to capture this change. Despite their
popularity, there has been limited work on understanding the
characteristics of traffic flows originating from cyberlockers.
Using a year-long trace collected from a large campus network,
we present a comprehensive characterization study of cyberlocker
traffic at the transport layer. We use a combination of flow-
level and host-level characteristics to provide insights into the
behavior of cyberlockers and their impact on networks. We also
develop statistical models that capture the salient features of
cyberlocker traffic. Studying the transport-layer interaction is
important for analyzing reliability, congestion, flow control, and
impact on other layers as well as Internet hosts. Our results can
be used in developing improved traffic simulation models that
can aid in capacity planning and network traffic management.

I. INTRODUCTION

Over the years, there have been a range of services such

as YouTube and BitTorrent that have allowed an average user

to share content with others. While YouTube is the dominant

platform for sharing user-generated video files, BitTorrent is

the leading protocol for sharing large multimedia content. The

emergence of cyberlockers is changing this content-sharing

landscape. In contrast to BitTorrent, which splits files into

small pieces that can be downloaded in parallel from many

peers, these services rely on centralized infrastructure to serve

each client individually. As clients typically retrieve all their

content from a single server, this can result in much larger data

volumes being transferred over a single connection. Since cy-

berlockers use the same underlying protocol (HTTP) as other

Web applications, their increased popularity can significantly

alter the known characteristics of Web traffic.

A rich content repository and simple (one-click) user inter-

face that does not require installation of additional software (as

in BitTorrent) have made cyberlockers very popular for content

sharing. These services provide users with a Web interface to

upload, manage, and share files in the cloud. When a file is

uploaded to a cyberlocker site, a unique URL is generated that

can be used for downloading the file. The user may then make

the link public for sharing content. Cyberlockers offer two-

levels of service: free and premium. Free users have mandatory

wait times before a download begins, and their download

rates are throttled. These restrictions are removed for premium

users for a subscription fee. Well-known cyberlockers include

MediaFire and RapidShare, which are among the top-200 most

visited Web sites in the world (according to a July 2011 report

by Google1).

The surge in popularity of cyberlocker traffic has been

reported in the literature. Gehlen et al. [6] found that a cyber-

locker was among the top-10 Web applications and constituted

5% of the total Web traffic. Maier et al. [8] reported that a

single cyberlocker consumed 15% of total Web bandwidth in

a large residential network. Allot [1] reported that cyberlocker

traffic accounted for 19% of the total mobile broadband traffic,

while Cisco2 forecasts that cyberlocker traffic will grow at an

annual rate of 47% in the coming years.

While usage, content characteristics, performance, and in-

frastructure of selected cyberlockers have been analyzed, not

much is known about the flow-level characteristics of cyber-

locker traffic and their impact on edge networks. Previous

research on LAN and Web traffic have reported the presence

of heavy-tailed properties (see [4], [15] and the references

therein). Heavy tails have several implications on network

traffic including load balancing, server scheduling, traffic

routing, and caching. The tail behavior of cyberlocker traffic

has not been investigated yet.

Using a year-long trace collected from a large campus net-

work, we analyze flows originating from several cyberlockers,

and study their properties at the transport layer. Studying the

transport-layer interaction is important for analyzing reliabil-

ity, congestion, flow control, and impact on other layers as well

as of Internet hosts. These results provide insights into current

network traffic and may be useful in developing cyberlocker

traffic simulation models that can aid in capacity planning and

network traffic management.

We use a combination of flow-level and host-level charac-

teristics to provide insights into the behavior of cyberlockers

and their impact on networks. We analyze four flow-level

characteristics (flow size, flow duration, flow inter-arrival time,

and flow rate), two host-level characteristics (transfer volume

and on-time), and develop statistical models that capture the

salient features of cyberlocker traffic. While several studies

have analyzed these characteristics for Web and P2P traffic

(e.g., [3], [13]), none exist for cyberlockers. A major contri-

1http://www.google.com/adplanner/static/top1000/
2http://www.cisco.com/web/MT/news/10/news 100610.html
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bution of this work is the analysis and statistical modeling of

transport layer characteristics of cyberlocker traffic.

The rest of the paper is organized as follows. Section II dis-

cusses prior work. Section III describes our objectives, metrics

used, and trace collection methodology. Section IV presents

an overview of the dataset. Sections V and VI present our

characterization results and statistical models for cyberlocker

flows and hosts, respectively. Section VII concludes the paper.

II. RELATED WORK

RapidShare service architecture, usage patterns, and content

characteristics were studied by Antoniades et al. [2], with

the traces collected from two academic networks. They used

active measurements to compare RapidShare with BitTorrent

in terms of user-perceived throughput and content similarity.

Most RapidShare files on the academic networks were re-

quested once. Through targeted experiments, they found that

RapidShare evenly distributed load across storage servers.

Cuxart et al. [12] analyzed RapidShare and Megaupload

traffic using traces collected from a research network. They

studied traffic properties, usage, content distribution, and

server infrastructure. They noted that RapidShare and Megau-

pload were responsible for a significant fraction of the total

traffic, and relied on a huge server infrastructure. A non-

negligible percentage of users paid for premium accounts.

More recently, Mahanti et al. [7] analyzed the usage behav-

ior, infrastructure properties, content characteristics, and user-

perceived performance of five services: RapidShare, Megau-

pload, zSHARE, MediaFire, and Hotfile. They observed posi-

tive growth trends for cyberlockers as well as a large number

of premium downloads. Most services had their servers in

a centralized location, with the exception of Megaupload.

Premium users achieved higher throughputs than free users,

with both user types getting better rates than P2P transfers.

Our work in this paper complements these prior works. We

collect longitudinal data from a large campus network, and

analyze flow-level and host-level characteristics of cyberlocker

traffic. To the best of our knowledge, this is the first work to

analyze transport layer characteristics of cyberlocker traffic

and produce statistical models that capture their salient fea-

tures. Where possible, we compare these statistical models to

models previously proposed for Web and P2P traffic.

III. METHODOLOGY

A. Objectives and Metrics

The transport layer characteristics of network traffic can sig-

nificantly impact the effectiveness of networks. For example,

the presence of many small flows or large flows can directly

impact the effectiveness of load balancing, traffic management,

prioritization algorithms, among other things.

To better understand the inherent behaviors of cyberlocker

traffic, we apply a number of characterization metrics. While

our primary focus is on flow metrics that capture the charac-

teristics of a flow (defined as the set of packets being sent over

a TCP connection, established between two host-port pairs3),

we also consider host metrics that captures the characteristics

of a host and its usage of these services. The flow-level metrics

considered are listed and defined as follows:

• Flow size: The total number of bytes transferred within

a single TCP flow. Flow size is computed as the total

bytes transferred between connection establishment (SYN

packets) and connection teardown (FIN packets) of a

flow. Typically, TCP flows are bi-directional and flow size

accounts for the bytes in both directions.

• Flow duration: The time between the establishment and

termination of a single TCP flow. In our analysis, du-

ration is computed as the time difference between the

connection establishment (SYN packets) and connection

teardown (FIN packets) of a flow.

• Flow rate: The average data transfer rate of a TCP

connection. We compute flow rate by dividing the flow

size by its duration.

• Flow inter-arrival times: The time interval between two

consecutive flow arrivals.

In addition to understanding the traffic patterns, it is also

important to understand the impact that individual hosts (or

users) may have on the observed traffic patterns. To provide

some insights to these characteristics, we consider (and define)

the following host metrics:

• Transfer volume: The total traffic volume transferred by

a campus host during the trace period. Transfer volume

of a host is the sum of the sizes of all flows associated

with an internal campus host.

• On-time: The total time the host was active during the

trace period. We calculate a host’s on-time as the sum

of the duration of all flows associated with an internal

campus host.

B. Distribution Fitting and Model Selection

To capture the above metrics and their traffic characteristics,

we use both summary statistics (such as mean, median, stan-

dard deviation, Inter Quartile Range (IQR), and skewness), as

well as empirical distributions. We primarily use the summary

statistics to capture trends of the data.

We refer to values in the upper (biggest or most popular,

for example) 10% of the empirical distribution as the tail;

the remaining 90% of the distribution is referred to as the

body. We use the Cumulative Distribution Function (CDF) to

characterize the body of a distribution, and the Complimentary

Cumulative Distribution Function (CCDF) to analyze the tail

of a distribution.

Both the tail and the body of the distributions for the above

metrics allow us to obtain further insights into the traffic

characteristics of these services. In particular, the shape of the

tails can have big impact on performance. For this purpose,

CCDF tails are often studied to determine how quickly or

slowly they decay. A distribution where the tail decays more

3Our analysis focus on TCP, as these services are HTTP-based and do not
use UDP.



slowly than an exponential distribution is called heavy-tailed,

with a sub-class called long-tailed.

We present statistical models that capture the salient features

seen in the data. While we used a large set of distributional

models, many of them are generalizations or variations of

either the Lognormal, Pareto, or the (generalized) Gamma

distribution. In the following, we define the CDF FX for these

distributions:

Lognormal: FX(x;µ, σ2) = 0.5 + 0.5erf

(

log(x)− µ√
2σ2

)

Pareto: FX(x;α, β) = 1−
(α

x

)β

(Generalized) Gamma: FX(x; a, b, c) =
γ(a

c
, (x

b
)c)

Γ(a
c
)

Here, erf is the error function, Γ is the gamma function,

γ is the lower incomplete gamma function, and µ, σ2, α,

β, a, b, and c are the fitted parameters of the respective

distributions. The complexity of the empirical distribution

required us to apply hybrid fits of candidate distributions,

where we fit the empirical distributions piece-wise. Each

empirical distribution was divided into pieces based on manual

inspection. We fitted seven well-known non-negative candidate

statistical distributions (Lognormal, Pareto, Gamma, Weibull,

Levy, and Log Logistic) to each piece and calculated the non-

linear sum of least square error. The statistical distribution

with the lowest error was chosen. After fitting all the pieces

of the empirical distribution, we generated the P-P and Q-Q

plots. The goodness of the fit was determined by manually

inspecting these plots. These plots are omitted from the paper

for brevity. While the piece-wise model fitting method allows

the use of additional parameters, our models are in general able

to capture the behavior of the entire empirical distribution (as

exemplified by the good fit in both the CDF and CCDF). In

contrast, most other works focus only on the tail behavior.

C. Data Collection

We used measurements collected from a large campus

network’s 400 Mbps full-duplex link to the Internet. The

campus network has over 30,000 users. The dataset analyzed

in this paper spans from January 1, 2009 through December

31, 2009.

The collected dataset is a trace of connection summaries. We

refer to this data as the flow trace. We used the conn feature

of Bro to collect these summaries. Each connection summary

contained information such as the source and destination IP

addresses, source and destination port numbers, the number of

bytes transferred in each direction, and the state of the connec-

tion. A detailed description of the connection states is provided

in the Bro documentation4. We only focus on connections with

normal establishment and termination (represented by the SF

flow state in Bro). Figure 1 illustrates our trace collection and

analysis methodology.

4http://www-old.bro-ids.org/wiki/index.php/Reference Manual:
Analyzers and Events#Connection summaries

TABLE I
SUMMARY OF FLOW TRACE

Service Campus Hosts Flows Bytes

Mega Network (%) 75.1 42.7 68.2
RapidShare (%) 40.5 41.7 13.2
zSHARE (%) 34.6 4.0 8.1
MediaFire (%) 34.3 8.2 3.2
Hotfile (%) 5.2 0.4 2.4
Enterupload (%) 30.2 0.8 2.1
Sendspace (%) 10.7 1.0 0.8
2Shared (%) 6.9 0.2 0.8
Depositfiles (%) 7.5 0.7 0.8
Uploading (%) 5.2 0.4 0.4

Top-10 Services 13,223 7,300,774 21,810 GB

HTTP 30,225 3,876,358,538 482,647 GB

D. Mapping Network Flows to Cyberlockers

We used a complementary trace containing HTTP trans-

actions (HTTP trace) that was captured concurrently with

the flow trace. We used the HTTP trace to extract the IP

addresses associated with the top-10 services in terms of

traffic volume. These services were as follows: RapidShare,

Mega Network, zSHARE, MediaFire, Hotfile, Enterupload,

Sendspace, 2Shared, Depositfiles, and Uploading. For every

transaction in the HTTP trace, we extracted the IP addresses

associated with these 10 services, using the Host header.

Note that Mega Network refers to the conglomeration of all

the services under the Megaupload banner such as Megavideo

and Megalive. We noticed that Megaupload sister sites used

the same IP addresses as used by Megaupload. Thus, we were

not able to separate network flows associated with Megaupload

alone; hence, we labeled them as Mega Network. We aggre-

gated all HTTP flows (flows using TCP port 80/8080), and

studied their properties. Analyzing the aggregate cyberlocker

flow traffic allows us to understand their impact on the network

from a capacity planning and network management viewpoint.

IV. DATASET OVERVIEW AND PRELIMINARY ANALYSIS

A. Trace Summary

The flow trace consists of 1 TB of compressed logs con-

taining connection summaries of almost 4 billion HTTP flows.

We aggregated the trace containing connection summaries for

the top-10 cyberlocker services. During the 1-year period, the

top-10 cyberlockers generated over 7 million flows from over

13,000 campus hosts. While cyberlocker flows represented

only 0.19% of the total HTTP flow count, these flows ac-

counted for 22 TB of traffic volume (4.5% of the total HTTP

traffic volume). Over 40% of the total campus hosts accessed

the top-10 services during the trace duration. We observed

over 10,000 external cyberlocker servers, and these servers

represented 0.06% of the total external HTTP servers.

Table I shows a summary of the flow trace. Note that the

campus host count, number of flows, and bytes transferred

for the individual services are reported as a percentage of the

top-10 services total. The last two rows show the absolute

quantities observed on the network. We wanted to distinguish

cyberlocker content flows that transferred actual content from



Fig. 1. Flow trace collection and analysis methodology

ordinary browsing flows. Antoniades et al. [2] used a threshold

flow size of 150 KB to distinguish between content flows and

browsing flows. We used a threshold flow size of 200 KB

because we analyze more than one cyberlocker. Cyberlocker

flows that transfer more than 200 KB of data are labeled as

content flows. Note that content flows are a subset of the

cyberlocker flows. Although content flows represent about 5%

of the cyberlocker flows, they consume over 99% of the total

traffic volume. About 81% of the campus hosts generated

content flows.

Mega Network and RapidShare were the largest cyberlock-

ers in terms of number of hosts, flows, and bytes transferred.

Mega Network hosts transferred an order of magnitude more

bytes than RapidShare. This is mostly due to streaming

services that are part of Mega Network, such as Megavideo.

These services offer easier viewing for hosts that may not wish

to download the content. Additionally, video files uploaded to

Megaupload were also available for viewing on Megavideo.

The bottom-5 cyberlockers among the top-10 services had far

fewer hosts that generated content flows. For example, only

25% of Enterupload hosts generated content flows.

B. Campus Usage Trends

Figure 2 shows the activity trends of cyberlocker traffic

in the campus network using 1-hour time bins. There is a

gap in the trace between August 7 and August 31, when

we were not able to collect data due to technical problems.

Figure 2(a) shows that 50% of the total cyberlocker flows

occurred during the Winter 2009 term (Jan-Apr), while 33%

of total flows were observed in the Fall 2009 term (Sep-

Dec). We also found that more content flows were noticed

in the fall term (52%) as opposed to the winter term (36%).

Figure 2(c) shows an increase in the number of campus hosts

connecting to the cyberlockers towards the end of the year

with up to 92 hosts active during an hour. Figure 2(d) shows

the number of external cyberlocker content servers contacted

by the campus hosts. As many as 214 external cyberlocker

servers were contacted per hour by content flows.
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Fig. 3. Day of week activity for campus hosts

Figure 3 shows the day of week activity of campus hosts.

From Figure 3(a), we observe that on average up to 32 campus

hosts per day contact cyberlockers for downloading content.

There is more user activity during weekdays than during the

weekend. Figure 3(b) shows a steadier trend in the amount of

content flows during any day of the week. On average, up to

8 GB of content flow traffic volume is generated during any

day of the week.

V. FLOW-LEVEL CHARACTERIZATION

In this section, we present our flow-level characterization

results and present distributional models from these results.

Summary statistics for cyberlocker traffic are presented in Ta-

ble II. We will refer to this table throughout our discussion of



TABLE II
FLOW-LEVEL SUMMARY OF CYBERLOCKERS

Type Property Mean Median Std.Dev IQR Skewness

Cyberlocker Flows
Flow Size (KB) 3,153.8 1.4 26,125.3 7.8 16.7
Flow Duration (sec) 45.7 0.8 305.2 6.3 20.4
Flow Rate (KB/sec) 11.1 2.0 58.9 6.4 34.8
Flow IAT (sec) 4.3 0.4 835.6 3.0 2,235.5

Cyberlocker Content Flows
Flow Size (KB) 62,289.5 24,520.4 99,127.5 93,072.9 4.1
Flow Duration (sec) 743.5 279.9 1,154.1 996.9 5.5
Flow Rate (KB/sec) 109.2 67.9 230.7 75.0 9.6
Flow IAT (sec) 86.0 25.8 3,736.3 66.6 499.3

results. We also compare our presented models with statistical

models proposed in prior works for Web and P2P traffic.

A. Flow Size

From Table II, we note that the average flow size of the top-

10 services is around 3 MB, which is an order of magnitude

larger than HTTP flows in the trace (130 KB). We also observe

that the content flows are orders of magnitude larger because

these flows transfer the large content items typically hosted

on these sites. The high mean and low median indicate the

presence of some large-sized flows and many small-sized

flows. Figure 4 confirms our hypothesis. From Figure 4(a), we

observe that over 90% of all flows were smaller than 30 KB.

Over 50% of the content flows were larger than 23 MB. These

flows constitute video, audio, and executable files, which are

much larger than a typical Web object [5], [6].

Figure 4(b) shows the tail of the flow size distribution.

We notice that the tail for cyberlocker flows decays slowly,

while the tail for the content flows decays more sharply. We

analyzed the tail using the Pareto fitting and found cyberlocker

flow sizes to be heavy-tailed (β ∼ 1.8), however, the content

flows were long-tailed (β ∼ 2.2). Mori et al. [9] have reported

similar results for video sharing workloads.

Models: We present statistical models that describe the body

and the tail of flow size (S) distribution. These models may

be used to generate transfer sizes of TCP flows in network

simulations. Cyberlocker flows (C) can be well-modeled by a

mix of Lognormal and Pareto distributions:

FC(S) =











Lognormal(0.43, 0.37) S < 1 KB

Lognormal(0.48, 2.32) 1 KB ≤ S < 67 KB

Lognormal(−20.55, 15.44) 67 KB ≤ S < 69 MB

Pareto(8201.35, 1.82) 69 MB ≤ S

Cyberlocker content flows (CC) are well-modeled by a

bounded Lognormal distribution:

FCC(S) =

{

Lognormal(6.02, 0.30) S < 329 KB

Lognormal(10.20, 5.98) 329 KB ≤ S < 45 MB

Lognormal(10.66, 1.07) 45 MB ≤ S

Similar heavy-tailed distributions have been used to capture

Web and P2P traffic. For example, Pustisek et al. [11] report

Web flow sizes to follow a Lognormal distribution, while P2P

flow sizes could be modeled by Pareto distribution.

B. Flow Duration

Table II shows that cyberlocker flows have a mix of short-

lived and long-lived flows. Short-lived flows are associated

with delivering objects from the sites, and since both the

external servers and the campus hosts are well-provisioned, the

time to transfer these objects is low. Content flows are long-

lived, with the median being 280 seconds. Content flows can

be long-lived due to the wait times instituted by the services

on the free users, as well as bandwidth throttling.

Figure 5(a) shows the CDF of the flow durations. We notice

a sharp increase at the 4 second mark for the cyberlocker flows.

This increase is caused by RapidShare flows. We conjecture

these to be aborted attempts by hosts to download content

from the site or an artifact on the part of RapidShare. Note

that this sharp increase is not visible for content flows. We

notice that about 75% of the flows last less than 10 seconds.

Analyzing the content flows, we notice that about 60% of these

flows have durations less than 10 minutes. These correspond

to downloading medium-sized content from these services.

We analyze the tail of the flow duration in Figure 5(b). We

find that cyberlocker flow durations are long-tailed (β ∼ 3.2).

Content flows are also long-tailed as can be seen with the

quicker tail decline.

Models: Cyberlocker flow duration (τ ) can be well-modeled

by a hybrid Gamma, Lognormal, and Pareto distribution:

FC(τ) =











Gamma(3.64, 0.07, 0.70) τ < 6 sec

Lognormal(−3.82, 8.51) 6 sec ≤ τ < 54 sec

Pareto(0.14, 0.48) 54 sec ≤ τ < 30 min

Pareto(423.1, 3.16) 30 min ≤ τ

Content flows can be well-modeled by a combination of

Lognormal and Gamma distribution:

FCC(τ) =

{

Lognormal(4.13, 1.06) τ < 34 sec

Gamma(0.36, 515.960, 0.33) 34 sec ≤ τ < 56 min

Lognormal(6.18, 1.01) 56 min ≤ τ

These results concur with heavy tails previously reported for

Megaupload flow durations [6]. Pustisek et al. [11] modeled

Web and P2P flow durations using a Lognormal distribution.

C. Flow Rate

Table II shows that cyberlocker flows have much less

dispersion than other characterization metrics. The average

cyberlocker flow rate is 11 KB/sec, while the content flow rate

average is much higher at 109 KB/sec. The median and mean
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Fig. 4. Flow size distribution
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Fig. 5. Flow duration distribution
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Fig. 6. Flow rate distribution

content flow rates are much closer, also indicating less dis-

persion. It is interesting to note that cyberlocker content flows

are larger and long-lived, yet they receive higher flow rates.

The long-lived large flows extend well beyond TCP’s slow-

start phase, and thus achieve high-rate steady state throughput

in TCP’s congestion avoidance phase.

Figure 6(a) shows the CDF of flow rate. The content flow

rate curve rises steadily and has a pronounced tail. These

graphs include the presence of both free and premium hosts

that download content from the services. Since the data shows

the flow rates for several services, we do not observe steep

increases at specific threshold values imposed by services for

throttling free users. Since many flows are due to the Mega

Network, which does not impose fixed throttling, we observe

a much smoother trend.

Inspecting the tails in Figure 6(b), we notice that they

decline slowly. The tail shows the higher end of the flow rates,

which likely are for premium users. We analyzed the tails and

found them to be heavy-tailed similar to as reported by Gehlen

et al. [6] for Megaupload.

Models: Cyberlocker flow rates (ℜ) are well-modeled by a

two-mode Gamma distribution:

FC(ℜ) =
{

Gamma(1.29, 0.87, 1.29) ℜ < 140KB/sec

Gamma(1.49, 1.08, 7.67) 140 KB/sec ≤ ℜ

Cyberlocker content flow rates can be well-modeled by a

combination of Gamma and Lognormal distribution:

FCC(ℜ) =
{

Gamma(2.92, 0.50, 0.43) ℜ < 43 KB/sec

Lognormal(2.92, 1.78) 43 KB/sec ≤ ℜ < 1.9 MB/sec

Gamma(1.79, 2.27, 0.37) 1.9 MB/sec ≤ ℜ

In contrast, Mori et al. found that video sharing workloads

were well-modeled by Lognormal distribution [9]. These dif-

ferences may be due to the time scale of the traces. Mori et

al. measured network traffic for less than 10 hours, but from

a more diverse set of users, whereas our trace captures the

campus usage over a full year.

D. Flow Inter-arrival

Analysis of our data (see Table II) shows that cyberlocker

flow inter-arrival times are long. Content flows have even

longer inter-arrival times. Figure 7(a) shows the CDF of

cyberlocker flow inter-arrival times. Most of the inter-arrivals

are within 10 seconds. We again notice the steep increase at the

4 second mark, which is due to RapidShare flows. Web hosts

often maintain more than one concurrent TCP connection.

Web browsers often initiate multiple concurrent connections

to transfer content in parallel. This parallel download feature

increases the degree of flow concurrency in HTTP-based

applications; thus, reducing flow inter-arrival times. In case of

cyberlockers, we found that these concurrent connections are

not made to distinct IP addresses. Furthermore, cyberlocker

flows have much lower flow arrival rate than HTTP flows,

which further increases the inter-arrival times of cyberlocker

flows.

Looking closely at the inter-arrival times of the content

flows, we notice two regions. The region representing inter-

arrivals less than 10 seconds could be due to download

managers that initiate several parallel connections to download

content. The region with inter-arrivals greater than 10 seconds

increases steadily. These represent user-initiated downloads

over a period of time. Content flow inter-arrivals are longer

because there are far fewer such flows; most of the flows are

due to objects being retrieved from sites.

Analyzing the tails in Figure 7(b), we find that cyberlocker

inter-arrival times are heavy-tailed. Content flow inter-arrival

times are heavy-tailed as well.

Models: Cyberlocker flow inter-arrival times (∆) can be

well-modeled by a hybrid Lognormal and Gamma distribution:

FC(∆) =

{

Lognormal(0.73, 6.79) ∆ < 0.1 sec

Lognormal(−2.64, 3.91) 0.1 sec ≤ ∆ < 1.3 hours

Gamma(0.15, 0.84, 0.19) 1.3 hours ≤ ∆
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Fig. 7. Flow inter-arrival time distribution

Content flow inter-arrival times can be well-modeled by a

hybrid Gamma and Lognormal distribution:

FCC(∆) =

{

Gamma(2.27, 5.62, 0.09) ∆ < 3 sec

Lognormal(3.93, 2.15) 3 sec ≤ ∆

In contrast, Web flow inter-arrival times have been pre-

viously shown to be well-modeled by Weibull distribution

[3], [11]. Both distributions significantly differ relative to the

exponential distribution often used in analytic models and

simulations (which assumes a Poisson arrival process), and

may increase the amount of concurrency among flows due to

such models.

VI. HOST-LEVEL CHARACTERIZATION

This section presents a host-level characterization of cy-

berlocker traffic. This characterization provides information

to network administrators for tasks such as bandwidth man-

agement and capacity planning. The results presented here

may also be used to develop synthetic workloads and design

realistic network simulations. Table III shows the summary

statistics for the host-level characterization metrics. We refer

to this table throughout this section. Note that cyberlocker

campus hosts are those hosts who generated at least one flow

by accessing any of the top-10 services. Cyberlocker content

campus hosts are hosts that generated a content flow to any

of the top-10 services. Campus hosts are identified by their

IP addresses, which makes host-level analysis sensitive to

DHCP address assignments. For example, wireless users may

obtain new IP addresses using DHCP each time they connect,

whereas campus residence users may have static addresses.

A. Transfer Volume

Table III shows that campus hosts transfer on average 1.6

GB of data from cyberlockers, although the median is much

lower at 135 MB. This indicates the presence of some hosts

that transfer a lot of data as well as hosts that transfer less

data. Most of the transfer volume is due to content flows.

On average, HTTP hosts transfer 31 MB of data. These

results show that campus hosts using the top-10 cyberlockers

have a very different traffic profile than typical campus hosts

browsing the Web.

Figure 8(a) shows the CDF of host transfer volume. About

30% of the hosts transfer less than 50 MB of data. Another

35% of the hosts transfer between 50 MB to 2 GB of

data. Large transfer volumes due to cyberlockers have also

been reported lately by other studies [14]. The CDF has a

pronounced tail that shows the presence of heavy hitters. We

study the behavior of heavy hitters later. Figure 8(b) shows

the presence of a heavy tail in the empirical distribution. Hosts

who are engaged in active downloading of content have a long

tail instead.

Model: We only present models for transfer volumes (V) of

cyberlocker campus hosts. Note that the campus hosts with

content flows are responsible for the bulk of the transfer

volume. Cyberlocker campus hosts can be modeled using a

hybrid Lognormal and Pareto distribution:

FC(V) =
{

Lognormal(4.15, 4.02) V < 24 MB

Pareto(2821.8, 1.45) 24 MB ≤ V

Behavior of Heavy Hitters: Figure 9 shows the fraction of

the total transfer volume at campus associated with individual

campus hosts. Here, hosts are ranked according to their

individual transfer volume, with the host responsible for the

largest volume having rank 1. We find that a small number

of hosts account for much of the volume transferred; we call

these hosts heavy-hitters.

Figure 9(a) shows that there is a high skew in the cyber-

locker usage on campus. For example, the top-10 ranked hosts

account for about 40% of the total cyberlocker traffic. The

top-100 ranked hosts account for more than 85% of the traffic

volume. This distribution can be well-modeled by the Lavalette

distribution5, which captures the sharp decline of the hosts that

transfer low data volumes. These hosts represent occasional

users who browse the site, but do not download any content.

In Figure 9(b), we focus on hosts that acquire content from

the services. Again, we notice that the top-10 ranked hosts

account for over 40% of the traffic volume. The top-100

ranked hosts accounted for more than 91% of the bandwidth

consumed. This distribution can be modeled by a hybrid

Lavalette and Tsallis distribution. Ranked hosts 1-300 are

modeled by the Lavalette distribution because it captures the

decrease towards the lower ranked hosts well, while the Tsallis

distribution models the volume transfer of hosts ranked higher

than 300 (These hosts account for only 0.4% of the total

cyberlocker content traffic volume.). Sen et al. [13] found that

the top-10% of the P2P heavy hitters were heavy-tailed, but did

5Power-law distributions such as Lavalette and Tsallis are variations of
the Zipf distribution [10]. These distributions provide more flexibility in
fitting without increasing the number of fitting parameters significantly. These
distributions are often referred as non-linear power-law distributions as they
capture the drop towards the lower ranking items in the empirical data. This
is in contrast to the Zipf distribution that appears as a straight line in log-log
rank-frequency plot.



TABLE III
HOST-LEVEL SUMMARY OF CYBERLOCKERS

Type Property Mean Median Std.Dev IQR Skewness

Cyberlocker Campus Hosts
Transfer Volume (MB) 1,691.5 135.7 11,425.5 599.5 29.0
On-time (sec) 25,240.2 2,761.8 129,598.5 10,202.5 24.7

Cyberlocker Content Campus Hosts
Transfer Volume (MB) 2,061.6 219.7 12,578.3 827.6 26.4
On-time (sec) 25,198.5 3,277.7 115,605.7 11,198.4 22.0
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Fig. 8. Host transfer volume distribution
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Fig. 10. Campus host on-time distribution

not follow the Zipf distribution. Basher et al. [3] showed that

the top-10% of Web and P2P heavy-hitters followed power-

law characteristics, but this did not apply to the rest of the

distribution. Our results are in contrast to prior work, however,

these studies did not fit the empirical data to any non-linear

power-law distributions.

B. On-time

On-time is the sum of all periods during which a host is

active in either transmitting or receiving data over a year. We

use host on-time to understand the activity patterns of campus

hosts when they use cyberlockers. Table III shows that on av-

erage campus hosts spent over 7 hours accessing cyberlockers.

The median is around 46 minutes, which indicates dispersion

in the data.

In contrast, HTTP hosts, on average, spent 84 minutes

browsing the Web. The low median value for HTTP hosts indi-

cates the presence of automated applications that occasionally

connect to external servers for short periods of time, such as

weather updates. There are many users that spend more time

on cyberlockers, while there are others who spent less time.

Users with premium subscription may spend less time since

they can download more content in less time. We also observe

that most of the time spent by hosts is for downloading content.

Figure 10 shows the distribution of host on-time. We ob-

serve that about 30% of the hosts spent 35 minutes on the top-

10 services. About 20% of the hosts spent more than 15 hours

on these services. We also analyzed the tails of the empirical

distributions. On-times of cyberlocker hosts are heavy-tailed,

while on-times of cyberlocker content hosts are long-tailed.

Models: We present a model for on-times (T ) of cyberlocker

hosts. These hosts can be well-modeled by a bounded Gamma

and Lognormal distribution:

FC(T ) =

{

Gamma(2.03, 2.27, 0.30) T < 98 sec

Lognormal(10.03, 3.42) 98 sec ≤ T < 50 min

Lognormal(9.19, 2.00) 50 min ≤ T

VII. CONCLUDING REMARKS

We analyzed the flow-level and host-level characteristics of

cyberlockers in a large campus network. We observed that

cyberlockers introduced many small and large flows. Most

cyberlocker content flows are long-lived and durations follow

a long-tailed distribution. We observed that cyberlocker flows

achieved high transfer rates. Cyberlocker heavy-hitter transfers

followed power-law distributions. Increased cyberlocker usage

can have significant impact on edge networks. Long-lived

content flows transferring large amounts of data can strain

network resources. The heavy-tailed nature of cyberlocker

flow sizes may require better network provisioning, however,

presence of heavy-hitters among cyberlocker users may make

traffic management easier.
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