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= Video dissemination (e.g., YouTube) can have wide-
spread impacts on opinions, thoughts, and cultures




Motivation

= Not all videos will reach the same popularity and have
the same impact
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Motivation
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= Not all videos will reach the same popularity and have
the same impact




Motivation

A

views

= Not all videos will reach the same popularity and have
the same impact

= Some popularity differences due to content differences




Motivation

= Popularity differences arise not only because of
differences in video content, but also because of other
“content-agnostic” factors

The latter factors are of considerable interest but it has
been difficult to accurately study them
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Motivation

= Popularity differences arise not only because of
differences in video content, but also because of other

“content-agnostic” factors

o The latter factors are of considerable interest but it has
been difficult to accurately study them

In general, existing works do not take content differences
Into account .. .(e.g., large number of rich-gets-richer studies)
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= Popularity differences arise not only because of
differences in video content, but also because of other

“content-agnostic” factors

o The latter factors are of considerable interest but it has
been difficult to accurately study them

q2: w‘ “”

7 2 8

%

g,

z({

Lﬂf‘“



Adalcvot: ,C \a

0aLiL
7 POV VRN P AN

G2+ G "N, K
g € N
- E e
[\=
* °
X
¢ S
»

o

3
-
Z
/4

Motivation

For example, videos uploaded by users with large
social networks may tend to be more popular because
they tend to have more interesting content, not
because social network size has a substantial direct
Impact on popularity
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Methodology

Develop and apply a methodology that is able to
accurately assess, both gualitatively and quantitatively,
the impacts of various content-agnostic factors on

video popularity



Methodology

= Develop and apply a methodology that is able to
accurately assess, both gualitatively and quantitatively,
the impacts of various content-agnostic factors on

video popularity




Methodology

= Clones

2 Videos that have “identical” content (e.g., same audio and
video track)
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Methodology

= Clones

2 Videos that have “identical” content (e.g., same audio and
video track)

Clone 1.a
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Methodology

= Clones

2 Videos that have “identical” content (e.g., same audio and
video track)

Clone 1.a

Clone 1.b
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Methodology

= Clones
2 Videos that have “identical” content
= Clone set
o Set of videos that have “identical” content

Cloneset 1
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Methodology

= Clones
2 Videos that have “identical” content
= Clone set
o Set of videos that have “identical” content
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Methodology

= Clones
2 Videos that have “identical” content
= Clone set
o Set of videos that have “identical” content

Adalcvot ,C \

Oulil
NP PPR PV
LGS U
L1 2 ) é‘ﬁc NIL}@

X8) %y
g, X1 %,
5

7 E,,L’




Methodology

= Clones
2 Videos that have “identical” content
= Clone set
o Set of videos that have “identical” content
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Methodology

= Clones W
. oV
o Videos that have “id~ ¢ YO Zitent

= Clone set © @\\0\N
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C\N




{ <




Methodology

= Analyze how different factors impact the current
popularity while accounting for differences in content
1) Baseline: Aggregate video statistics (ignoring clone identity)
2) Individual clone set statistics
3) Content-based statistics
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Methodology

A

Current popularity
(e.g., views in week)

Some factor of interest
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Methodology

A

Current popularity
(e.g., views in week)

Some factor of interest
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Methodology
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Current popularity
(e.g., views in week)
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Methodology: (1) Aggregate model
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e (1) Aggregate model Some factor of interest

= Ignore clone “identity” (or content)
o Can be used as a baseline ...




Methodology: (1) Aggregate model
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Methodology: (2) Individual model
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Methodology: (2) Individual model

A

Current popularity
(e.g., views in week)

Predicted value Error



Methodology: (3) Content-based model
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Methodology: (3) Content-aware model
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Data collection

= Identified large set of clone sets
48 clone sets with 17 — 94 videos per clone set (median = 29.5)
1,761 clones in total

= Collect statistics for these sets (APl + HTML scraping)
Video statistics (2 snapshots = lifetime + weekly rate statistics)
Historical view count (100 snapshots since upload)

Influential events (and view counts associated with these)
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Analysis approach

= Example question: Which content-agnostic factors
most influence the current video popularity, as
measured by the view count over a week?

= Use standard statistical tools

E.g., PCA; correlation and collinearity analysis; multi-linear
regression with variable selection; hypothesis testing

= Linearity assumptions validated using range of tests
and techniques
Some variables needed transformations

Others where very weak predictors on their own (but in some
cases important when combined with others!!)
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Preliminary analysis

= A closer look at correlations between factors and

identifying groups of variables that provide

redundant information ...
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Preliminary analysis

= A closer look at correlations between factors and
identifying groups of variables that provide
redundant information ...
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Preliminary analysis

= A closer look at correlations between factors and
identifying groups of variables that provide
redundant information ...
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= A closer look at correlations between factors and
identifying groups of variables that provide
redundant information ...

\ Video age
\ Uploader age
\ Video quality

‘ \ \ \ Uploader video count

Video age
Uploader age 08
Video quality
0.6

Uploader video count

Total keywords

\ Total keywords

\ \ \ Uploader contacts

-0.4

Uploader contacts

r0.2

\ Ratings average

Total dislikes

Ratings average

Uploader view count

i Uploader followers Y
£ -0
Total dislikes D o
| T
@ Uploader view count 2 L.0.2

Total likes

Total ratings

Total comments

Total likes

Total favourites

Total comments

Pl sleori pc vT

Total view count

) -Afia ‘:C,H = Total favourites
Offewiliq v=7

Adalcroir Clada Total view count

Next week views(*)
1
o
(o]

Next week views(")




Video age

Uploader age

Video quality
Uploader video count
Total keywords

: Uploader contacts
Ratings average

B Uploader followers

Total dislikes
= Uploader view count
Total ratings

Total likes

Total comments

Pt leor pch VT
\ -Aftee ot

“OHewilig rf*‘*
Adalcvoi  Clada

Total favourites
Total view count

Next week views(")

\ Video age
\ Uploader age
\ Video quality

\ Uploader video count

\ Uploader contacts

Preliminary analysis

= A closer look at correlations between factors and

identifying groups of variables that provide

redundant information ...

0.8

Total keywords

0.6

-0.4

r0.2

Total dislikes

\ Ratings average
\ Uploader followers

0@
®

‘ ‘ \ Uploader view count

\
\
\
\ \ \ \ Total ratings

Ve
WA\
W

Total view count
Next week views(*)
1
o
[o)]

\\ Total comments
\ Total favourites

\\\ Total likes

Principle component 2

06 0.8 1.0 1.2

0.2 04

0.0

t
Uploader contacts
() WIoader followers

Uploader view count

Uploader video coun
@

Favourite
3 @ Uploader age Dislikes [ N
— 03V|deo age’ Quality [ Total view count
: ] Ratings count
Likes
R S @ Keyuiords
: ’ Ratings avg
I I I | I I |
-0.2 0.0 0.2 04 0.6 0.8 1.0 1.2

Principle component 1
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= A closer look at correlations between factors and

identifying groups of variables that provide
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Preliminary analysis

= A closer look at correlations between factors and
identifying groups of variables that provide
redundant information ...
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Which factors matter?
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« Using multi-linear regression with variable reduction
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Which factors matter?

« Using multi-linear regression with variable reduction
(e.g., best subset with Mallow’s Cp)
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Impact of content identity

e View count + age + followers All
(1 var.) (2 var.) (3 var.) (15 var.)

Individual (e.g., 41) 0.861 0.870 0.874 0.895
%] Content-based 0.792 0.850 0.852 0.855
Aggregate 0.707 0.808 0.808 0.821

* View count by itself explain a lot of the variation

B8 + The relative importance of age, followers etc. over
estimated if content is not accounted for

43




Impact of content identity

e View count + age + followers All
(2 var.) (3 var.) (15 var.)

Individual (e.g., 41) 0.861 0.870 0.874 0.895
%] Content-based 0.792 0.850 0.852 0.855
M Aggregate 0.707 0.808 0.808 0.821

B - View count by itself explain a lot of the variation

| + The relative importance of age, followers etc. over
estimated if content is not accounted for
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Impact of content identity

e View count + age + followers All
(1 var.) (2 var.) (3 var.) (15 var.)

Individual (e.g., 41) 0.861 0.870 0.874 0.895
%] Content-based 0.792 0.850 0.852 0.855
Aggregate 0.707 0.808 0.808 0.821

* View count by itself explain a lot of the variation

B8 + The relative importance of age, followers etc. over
estimated if content is not accounted for
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Impact of content identity

e View count + age + followers All
(1 var.) (2 var.) (3 var.) (15 var.)

Individual (e.g., 41) 0.861 0.870 0.874 0.895
%] Content-based 0.792 0.850 0.852 0.855
B Aggregate _0.707_>  0.808 0.808 0.821
R N
A=0.114

* View count by itself explain a lot of the variation

B8 + The relative importance of age, followers etc. over
estimated if content is not accounted for
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Impact of content identity

e View count + age + followers All
(1 var.) (2 var.) (3 var.) (15 var.)

Individual (e.g., 41) 0.861 0.870 0.874 0.895

0.850 0.852

808 0.808 0.821

Content-based

e Aggregate 0.707

A =0.063

* View count by itself explain a lot of the variation

B8 + The relative importance of age, followers etc. over
estimated if content is not accounted for
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Impact of content identity

‘ View count + age + followers All
(1 var.) (2 var.) (3 var.) (15 var.)
Individual (e.g., 41) 0.861 0.870 0.874 0.895
0.852

Content-based
i Aggregate
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|« View count by itself explain a lot of the variation

B - The relative importance of age, followers etc. over
estimated if content is not accounted for
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Rich-gets-richer
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* The probability P(v;) that a video | with v; views will be
selected for viewing follows a power law: P(v;) o« v*
* Linear: a = 1 (scale-free linear attachment)
« Sub-linear: a < 1 (the rich may get richer, but at a slower rate)
« Super-linear: o > 1 (the rich gets much richer)
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* The probability P(v;) that a video | with v; views will be
selected for viewing follows a power law: P(v;) o« v*
* Linear: a = 1 (scale-free linear attachment)
« Sub-linear: a < 1 (the rich may get richer, but at a slower rate)
« Super-linear: o > 1 (the rich gets much richer)
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* The probability P(v;) that a video | with v; views will be
selected for viewing follows a power law: P(v;) o« v*
* Linear: a = 1 (scale-free linear attachment)
« Sub-linear: a < 1 (the rich may get richer, but at a slower rate)
« Super-linear: o > 1 (the rich gets much richer)

 If accounting for content, close to linear preferential
attachment

 If not accounting for content, sub-linear preferential
attachment
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* The probability P(v;) that a video | with v; views will be
selected for viewing follows a power law: P(v;) o« v*
* Linear: a = 1 (scale-free linear attachment)
« Sub-linear: a < 1 (the rich may get richer, but at a slower rate)
« Super-linear: o > 1 (the rich gets much richer)

 If accounting for content, close to linear preferential
attachment

 If not accounting for content, sub-linear preferential
attachment
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* The probability P(v;) that a video | with v; views will be
selected for viewing follows a power law: P(v;) o« v*
* Linear: a = 1 (scale-free linear attachment)
« Sub-linear: a < 1 (the rich may get richer, but at a slower rate)
« Super-linear: o > 1 (the rich gets much richer)

 If accounting for content, close to linear preferential
attachment

 If not accounting for content, sub-linear preferential
attachment
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« Significant first-mover
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Initial popularity
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: i’:? Age-based analysis
= Uploader popularity a good initial predictor
= After about a week, the view count catches up

= Factors such as keywords relatively (much) more
" important when taking into account the content
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= Factors such as keywords relatively (much) more
* important when taking into account the content



Initial popularity
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Age-based analysis
§ = Uploader popularity a good initial predictor
= After about a week, the view count catches up

m Factors such as keywords relatively (much) more
59 . . .
Important when taking into account the content



& UH‘? A(Svt_
Adalcvoit  Clada

0aLliL

\&AMAM‘ ¢

92+ 3 “NL <

b\é%\ %,

*Lait’?

!\’s e

v
@
3

t

%Z{

60

Contributions

Develop and apply a clone set methodology

Accurately assess (both qualitatively and quantitatively) the

Impacts of various content-agnostic factors on video popularity
When controlling for video content, we observe a strong
linear "‘rich-get-richer" behavior

Except for very young videos, the total number of previous views

the most important factor; video age second most important
Analyze a number of phenomena that may contribute to
rich-get-richer, including the first-mover advantage, and
search bias towards popular videos

For young videos, factors other than the total number of
previous views become relatively more important
E.g., uploader characteristics and number of keywords

Our findings also confirm that inaccurate conclusions
can be reached when not controlling for video content
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