
Slow but Steady: Cap-based Client-Network

Interaction for Improved Streaming Experience

Vengatanathan Krishnamoorthi

Linköping University, Sweden

Niklas Carlsson

Linköping University, Sweden

Emir Halepovic

AT&T Labs – Research, USA

Abstract—Due to widespread popularity of streaming services,
many streaming clients typically compete over bottleneck links
for their own bandwidth share. However, in such environments,
the rate adaptation algorithms used by modern streaming clients
often result in instability and unfairness, which negatively affects
the playback experience. In addition, mobile clients often waste
bandwidth by trying to stream excessively high video bitrates.
We present and evaluate a cap-based framework in which the
network and clients cooperate to improve the overall Quality of
Experience (QoE). First, to motivate the framework, we conduct
a comprehensive study using the lab setup showing that a fixed
rate cap comes with both benefits (e.g., data savings, improved
stability and fairness) and drawbacks (e.g., higher startup times
and slower recovery after stalls). To address the drawbacks while
keeping the benefits, we then introduce and evaluate a framework
that includes (i) buffer-aware rate caps in which the network
temporarily boosts the rate cap of clients during video startup
and under low buffer conditions, and (ii) boost-aware client-side
adaptation algorithms that optimize the bitrate selection during
the boost periods. Combined with information sharing between
the network and clients, these mechanisms are shown to improve
QoE, while reducing wasted bandwidth.

I. INTRODUCTION

HTTP Adaptive Streaming (HAS) has become the dominant

approach for video delivery due to its ability to use the

existing web infrastructure and to adapt to diverse network

conditions for a variety of clients. Adaptation algorithms in

HAS clients determine quality levels requested by clients to

maintain high Quality of Experience (QoE). While QoE is a

subjective measure, it is well understood that playback stalls,

long startup delay and fluctuating quality levels significantly

affect QoE [1], [2], [3], [4], and that QoE can be represented

by objective metrics, such as visual quality (e.g., expressed as

a bitrate), stalls, quality switching, and startup delay [5], [6].

While variability in link capacity can lead to stalls and

unstable quality, such issues can occur even on stable links

when multiple adaptive players compete for bandwidth, and

some or all of them attempt video quality (bitrate) above

the sustainable level [7]. In addition, some streaming services

ignore client device context, such as screen size, and attempt

to stream video at too high bitrates to add further utility to

small screen users. This wastes bandwidth, causes unfairness

and eats into users’ data on metered links, such as cellular.

To alleviate these issues, we envision a network that co-

operates with the streaming clients to improve the overall

QoE, while reducing wasted bandwidth. As a first step in this

direction, we explore the performance tradeoffs of data rate

caps that limit the maximum bandwidth of each video stream

to tune the maximum quality (and video bitrate) requested by

clients. Rate cap is probably the most simple, effective and

scalable mechanism commonly applied in networks to control

bandwidth demand [8], [9]. To fully understand the impact of

rate caps on HAS video, we conduct a comprehensive study

using controlled testbed experiments and simulations, with and

without caps.

Our findings highlight the main benefits and drawbacks of

fixed rate cap when serving HAS clients. On the positive side,

fixed rate caps are shown to significantly improve fairness

and stability (e.g., reduced number of quality switches, in

some cases reduce the number of stalls and their durations,

and reduce the bandwidth wasted on video bitrates that either

exceed the sustainable playback rate or provide no additional

utility on small-size screens. The main drawbacks observed

are increased startup times and slower stall recovery.

Motivated by the above observations, we design a cap-based

framework with boosting that leverages the advantages of

caps while simultaneously alleviating the drawbacks. First, the

network temporarily boosts clients during their startup phase,

after a stall, and when they are under low-buffer conditions.

Second, these network-side boost periods are complemented

with boost-aware client-side adaptation based on optimization

of QoE-related metrics. We show that temporary bandwidth

boosting combined with boost-aware client-side adaptation

helps reduce the startup times, speed up buffer recovery after

the stall, and improve buffer occupancy.

We then focus on the impact and value of the information

sharing between clients and the network. Through evaluation

of several policies that differ in the degree of information

sharing, we show that there are significant performance bene-

fits from timely information sharing and cooperation. Ideally,

the network should have good knowledge of clients under

low-buffer conditions, while clients should have (explicit or

implicit) knowledge about the caps and the boost periods, so

they could optimize the use of the extra bandwidth. Our results

particularly highlight the importance of clients acquiring and

using information regarding caps when being boosted; e.g., as

with our boost-aware adaptation algorithms.

In summary, the main contributions are: (i) a comprehensive

study highlighting the benefits and drawbacks of using a fixed

This is the authors version of the work (as accepted). It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version is published in

Proc. IEEE/ACM International Symposium on Quality of Service (IEEE/ACM IWQoS), Banff, Canada, June 2018, and is available at IEEE Xplore Digital Library via http://dx.doi.org/[doi].

Fig. 1. Overview of the experimental testbed.

cap, (ii) a cap-based boost framework that consists of network-

side boosting and boost-aware client-side rate adaptation algo-

rithms, and (iii) experimental insights from implementing and

testing these mechanisms under a wide range of scenarios.

The remainder of the paper is organized as follows. Sec-

tion II outlines the methodology. Section III highlights the

benefits and drawbacks of using a fixed rate cap. Section IV

presents our boosting framework. Sections V and VI present

experimental and simulation-based evaluation. Section VII

discusses related works and Section VIII concludes the paper.

II. METHODOLOGY AND TESTBED

For our evaluation, we use a combination of experiments

and simulations. Simulations are used to achieve scale and

experiments are used to validate results for scenarios capturing

the characteristics of scenarios with different bottleneck links

(e.g., server-side, backhaul network, last-hop), access tech-

nologies (e.g., WiFi or LTE), bandwidth variations (e.g., using

competing players, or real-world traces), video encodings (e.g.,

use of different videos), and players (e.g., instrumentation

and experiments using both OSMF and dash.js). Through

evaluation across a wide range of scenarios and technologies,

we show that the conclusions are generally applicable.

A. Experimental testbed

To capture the characteristics of different links and access

technologies along the end-to-end delivery path, we set up an

experimental testbed consisting of four workstations. Referring

to Figure 1, PC 1 hosts four competing streaming clients and

the other three machines (PCs 2, 3, and 4) are responsible for

emulating the network conditions in each part of the delivery

path. Dummynet [10] is used to emulate the link characteristics

(e.g., bandwidth, packet delay and loss) at each link. We also

configure each PC to reside in a different IP subnet.

PC 4 runs the video server, and emulates the path prop-

erties along the links connecting the server to the operator’s

network. PC 3 emulates the backhaul link of the operator and

implements per-client rate caps. PC 2 emulates the last-hop. To

capture some key differences in modern access technologies,

we apply different scheduling policies at this link. A FIFO

queue is used to capture the behavior of most home WiFi

routers. Individual queues for each client are used to capture

the implementation by a typical LTE base station (eNodeB).

Finally, PC 1 is configured with four gigabit Ethernet cards,

8 gigabytes of RAM, and a quad-core Intel Xeon CPU. We use

the IP Network Namespaces (ip-netns) package to associate

each interface with its own logical namespace and run HAS

clients on top of these namespaces. This allows us to have

multiple non-interfering client instances residing in a single

machine. To avoid interfering with experiments, additional

interfaces are used for administrative and logging purposes.

Clients and servers: We use two open-source players:

OpenSource Media Framework (OSMF)1 and dash.js2, to show

broader applicability of our framework. The dash.js source

code is used in its unmodified form (implementing a hybrid of

BOLA [11] and rate-based adaptation). In contrast, motivated

by prior research suggesting the use of larger buffers, we set

the OSMF player to use min/max buffer thresholds of 30/40

seconds. As a proof of concept implementation, we modify

the OSMF player to share information with the network and

implement our optimized boost-aware adaptation algorithms.

In the OSMF setup, we run Adobe Media Server and the

client code is modified to log parameters of interest to file.

While we run experiments with different videos, the default

one is 10 minutes long and is available in the following average

encoding bitrates: 144, 268, 625, 1124, 2217, 4198 kbit/s.

Since dash.js uses a client-side JavaScript implementation,

it has limited access to the client’s file system. To collect

client-side metrics, we instrument the web browser and export

metrics to an external database.

Limitations: Our WiFi and LTE scenarios do not capture all

differences between WiFi and LTE seen in practice. For exam-

ple, we do not emulate details associated with heterogeneous

and time varying signal-to-noise (SNR) ratios, and how this

can impact scheduling in LTE. Rather than trying to capture

the low-level details of the physical environment we simply

emulate the bandwidth conditions of the clients using real

bandwidth traces and differentiate the scenarios based on how

queuing is done at the last hop (single FIFO queue for WiFi

and individual queues for the LTE-based scenario). We argue

that the trace-based per-client throughput and simplified edge

abstraction allows for a reasonable comparison of the impact

of using per-client rate caps on application-level performance.

B. Simulation setup

We developed a simulator in C++ that captures the clients’

rate adaptation, bandwidth variations, individual caps, tempo-

rary boosting, and boost-aware client-side policies. In multi-

client scenarios we assume a shared bottleneck link and use

max-min fairness at all times, taking into account each client’s

individual cap and whether each client is currently active or

not (based on the on-off periods of chunk-based delivery). The

default bitrate adaptation logic is kept simple. Each client uses

an Exponentially Weighted Moving Average (EWMA) with

α = 0.4 to compute a historic per-chunk throughput estimate.

The client then selects the highest available encoding below

80% of this estimate. Buffer thresholds are selected and used

to make the same decisions that the OSMF player would make.

Bandwidth and chunk-size variations: For many of our

experiments (both with testbed and simulator) competing

clients generate most of the bandwidth variations. However,

we also perform experiments where we vary the bandwidth

1. http://www.adobe.com/devnet/video/articles/osmf overview.html

2. https://github.com/Dash-Industry-Forum/dash.js/wiki

 0

 10

 20

 30

 40

 0 50 100 150 200 250

B
u
ff
e
r

s
iz

e
 (

s
)

Time (s)

Client 1
Client 2
Client 3
Client 4

(a) Buffer size, no cap

 0
 625

 1124

 2217

 4198

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(b) Requested encoding, no cap

 0

 10

 20

 30

 40

 0 50 100 150 200 250

B
u
ff
e
r

s
iz

e
 (

s
)

Time (s)

Client 1
Client 2
Client 3
Client 4

(c) Buffer size, with caps

 0

 268

 625

 1124

 0 50 100 150 200 250
E

n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(d) Requested encoding, with caps
Fig. 2. Example with four competing OSMF clients.

available for a client based on traces. In these cases, the clients’

maximum available bandwidth is equal to the minimum of (i)

their individual rate cap and (ii) the bandwidth value in the

trace. For the experiments, this value is then used to constrain

each client’s maximum rate, while for the simulations, this

value is used to calculate each clients (fair) bandwidth share.

The chunk-size variability within each video associated with

Variable BitRate (VBR) encoding can cause chunk downloads

to take longer than expected. To capture that not all chunks are

the same size (despite having the same playback duration and

encoding quality), we extracted the chunk sizes of 50 random

YouTube videos and used the obtained chunk-size sequences

(one for each quality level and video) in our simulations.

III. IMPACT OF A FIXED RATE CAP

This section highlights the main benefits, drawbacks, and

tradeoffs when using a fixed rate cap. Throughout the section

we do not modify the clients; we only consider the impact of

fixed caps.

A. Experimental scenarios: Benefits and drawbacks

Figures 2 and 3 show example results with four competing

OSMF and dash.js players, respectively. In both cases, the

top row ((a) and (b)) shows results for the no-cap case and

the bottom row ((c) and (d)) shows results with a fixed cap.

Furthermore, sub-figures (a) and (c) show the buffer occupancy

over time, while sub-figures (b) and (d) show the encoding

rate of the played video chunks. In these experiments, clients

share a 6000 kbit/s bottleneck, and start times of sessions are

staggered by 10 seconds. We compare cases without caps and

with individual caps of 1500 kbit/s (on the backhaul link).

This cap corresponds to the equal share of bandwidth that

each client would theoretically obtain using TCP.

1) Performance benefits of caps: Several positive obser-

vations stand out. First, the use of individual caps improves

playback stability. Requested bitrates highly fluctuate in the

no-cap case. In contrast, the capped clients quickly reach a

stable playback quality and use this quality steadily throughout

the playback session. Variations like in the no-cap cases can

have significant negative impact on QoE [1], [2], [3] and have

previously been reported by others [7], [12].

Consequently, the buffer conditions are more stable, as

clients do not try to fetch unsustainable encodings, and the

 0

 4

 8

 12

 16

 0 50 100 150 200 250

B
u
ff
e
r

s
iz

e
 (

s
)

Time (s)

Client 1
Client 2
Client 3
Client 4

(a) Buffer size, no cap

 0
 625

 1124

 2217

 4198

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(b) Requested encoding, no cap

 0

 3

 6

 9

 12

 0 50 100 150 200 250

B
u
ff
e
r

s
iz

e
 (

s
)

Time (s)

Client 1
Client 2
Client 3
Client 4

(c) Buffer size, with caps

 0

 268

 625

 1124

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(d) Requested encoding, with caps
Fig. 3. Example with four competing DASH.js clients.

 0
 625

 1124

 2217

 4198

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(a) No cap

 0

 268

 625

 1124

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(b) With caps
Fig. 4. Encoding rates in LTE-based scenario (OSMF).

need to buffer more video is alleviated. The larger initial

buffer size of the first arriving dash.js client (Figure 3(a))

can be explained by lack of competition and the way the

unmodified dash.js client uses throughput measurements for

dynamic buffer sizing. When throughput is high, the player

aims for a larger target buffer occupancy (≈ 40 seconds), while

when the throughput is lower the target is 12 seconds. Here,

the first client initially aims for the larger target, but must fall

back to the smaller target once other clients start playback.

Second, the use of individual caps improves fairness among

competing clients. For example, the first arriving client in

the non-capped case unfairly obtains higher throughput and

encoding quality than the other clients (e.g., more of the

session at highest quality, as seen in Figure 3(b)). This type

of unfairness among competing HAS players is known [3],

[13], and is due to one client starting out with a larger

bandwidth share combined with the conservativeness of TCP

and HAS adaptation. This has a compounding (negative) effect

for clients that start with the smaller bandwidth share.

Third, without caps, bandwidth variations cause a lot of

wasted user data and bandwidth on downloading encodings

well above clients’ fair share (1500 kbit/s) or utility threshold.

This is often observed in mobile clients with small screen

sizes, whose utility starts to diminish with encoding rates

above 1000 kbit/s (c.f. Figure 7 and [14]).

We can conclude that with caps, stability in playback quality

and buffer conditions combined with fairness improves overall

user QoE. Even when bandwidth is equally shared among

non-capped clients, instability causes them to play more poor

quality chunks, reducing their utility. For example, in the non-

capped case 23.2% of the chunks have encodings below 1124

kbit/s, compared to 6.25% with the 1500 kbit/s cap.

The above observations also hold true for other scenarios.

Figure 4 shows the encoding levels observed for the corre-

sponding LTE-based scenario, when using OSMF. The buffer

 0

 10

 20

 30

 40

 0 50 100 150 200 250

B
u
ff
e
r

s
iz

e
 (

s
)

Time (s)

Client 1
Client 2
Client 3
Client 4

(a) Buffer size, no cap

 0

 10

 20

 30

 40

 0 50 100 150 200 250

B
u
ff
e
r

s
iz

e
 (

s
)

Time (s)

Client 1
Client 2
Client 3
Client 4

(b) Buffer size, with caps
Fig. 5. Example scenario with stalls.

TABLE I

RELATIVE INCREASE IN STARTUP TIMES WITH CAP.
Client arrival

Encoding First Second Third Fourth

S
h
ar

ed
b
o
tt

le
n
ec

k

6
0
0
0

k
b
it

/s Unmodified +26.4% +30.8% +13.2% +27.4%

144 kbit/s +21.1% +23.0% +27.1% +25.9%

268 kbit/s +33.9% +36.0% +18.9% +32.9%

625 kbit/s +92.0% +80.6% +5.5% +52.7%

1124 kbit/s +130.5% +84.5% +113.3% +51.7%

1
2
0
0
0

k
b
it

/s Unmodified +20.6% +20.5% +17.5% +19.0%

144 kbit/s +21.5% +21.8% +19.5% +14.6%

268 kbit/s +33.5% +32.5% +27.8% +34.5%

625 kbit/s +96.0% +92.6% +77.2% +85.0%

1124 kbit/s +190.1% +184.9% +112.6% +111.5%

conditions (omitted) are very similar in the WiFi case.

Fourth, caps can reduce stall occurrences and (sometimes)

stall durations. While (as intuition suggests) the use of caps

extends the minimum time over which clients can recover from

a specific stall event, we have found that use of individual

caps also can help reduce stalls. One reason is that the high

variability in both encodings and buffer occupancy for non-

capped clients increases their likelihood to stall in the first

place. Then, stalls that occur when a client downloads a large

chunk (encoded at a high rate) often takes longer to recover

from. This problem is illustrated by the first client (red) in

Figure 5(a), who stalls for a longer period than other clients

due to downloading a higher-quality chunk at the time of the

stall. In this example scenario, we forced a stall by temporarily

reducing the bottleneck capacity to 100 kbit/s between 60-120

seconds (instead of the default 6000 kbit/s), and the clients do

not try to abort and replace the stalled chunk download with

a lower quality download.

2) Performance drawbacks of caps: The primary draw-

backs of fixed caps are increased startup times and slower stall

recovery, caused by reduced peak download rates. We focus on

startup times and note that the startup times provide insights

into the stall recovery times after outages or when replacing

stalled chunk downloads with lower encoding downloads.

Table I shows the average increase in startup times when

using fixed caps compared to the non-capped case. We again

use four competing clients with a shared server-side bottleneck

of 6000 or 12000 kbit/s, and an individual cap of 1500

kbit/s. To understand the impact of competition, we stagger

arrivals by 20 seconds and report the average startup times

for each client over 10 runs. Results are shown both for the

unmodified OSMF client and when using a pre-determined

encoding quality for the initial chunk. In both cases, the player

starts playback in a default fashion, after having obtained

the first chunk (with a four second playback duration). Some

players use a manifest-specified encoding to start (e.g., HLS),

while some decide based on pre-set initial bandwidth (e.g.

ExoPlayer). There is also an option to maintain history of

previous sessions to drive this decision.

Results for the first arriving client in Table I show the

base increase in startup delay for capped clients that have

no competition. The main insight is that even medium initial

bitrate of 625 kbit/s can experience near doubling of startup

time. Attempting higher encoding results in further significant

increase. The unmodified client fares much better due to

its conservative initial selection. We also note that overall

increases in startup time are not as high as it might be theoret-

ically expected. This can be explained by the combination of

TCP dynamics (not all clients reaching their fair share quickly)

and the ON-OFF nature of HAS allowing for a new client

(often 4th) to join when an existing client is in the OFF phase.

B. Impact of fixed vs. fair-share caps

We next examine the quantitative impact of two example

cap policies and a no-cap baseline on the observed benefits.

• Fair-share cap: Given m clients, each client has an in-

dividual cap equal to 1/mth of the bottleneck bandwidth.

• Fixed cap: Each client is given an individual cap equal

to 1500 kbit/s, regardless of the bottleneck bandwidth.

• No cap: There are no individual caps.

While variations of these policies can be implemented in

networks, here we use them to study the impact of selecting

different sized caps. For example, with m=4, when the shared

bottleneck is smaller (larger) than 6000 kbit/s, the fixed cap

of 1500 kbit/s is above (below) the fair share. Similarly, when

the shared bottleneck is smaller (larger) than 6000 kbit/s, the

fair-share cap is below (above) 1500 kbit/s.

The fair-share cap policy avoids bandwidth waste on down-

loading chunks of higher than sustainable encoding rates when

clients share bandwidth fairly. This bandwidth is better used

to reduce the number of poor quality chunks and to maintain

stability. Motivated by this observation, we introduce the

wasted fair-share volume metric, which measures the fraction

of bytes delivered at encoding rate higher than the fair-share.

The fixed cap policy is motivated by the diminishing utility

observed by small screen clients (e.g., mobile phones) with en-

codings above 1000 kbit/s (c.f. Figure 7 or [14]). Motivated by

this limitation of the human eye, we also introduce the wasted

small-screen volume metric, which measures the fraction of

bytes delivered with encodings above 1500 kbit/s.

Figure 6 shows the average (a) buffer size, (b) number

of switches, (c) wasted fair-share and small-screen volume,

across different bandwidth levels. The results represent aver-

ages over 50 simulation runs (each with different videos). We

note that the fair-share cap and fixed cap are identical when

the shared bottleneck is 6000 kbit/s. On the left-hand-side of

this point, the fair share is more restrictive and on the right-

hand-side, the fixed cap is more restrictive.

To maintain similar average buffers across policies and con-

ditions (Figure 6(a)), the capped clients require significantly

fewer encoding switches (Figure 6(b)) and the number of

switches is typically the lowest for the more restrictive of the

two policies. Again, the use of caps helps improve stability.

The lack of cap (i.e., no cap policy curves) can result in a

lot of wasted bandwidth (Figure 6(c)). We note that these

 0

 10

 20

 30

 40

 50

 4000

 5000

 6000

 7000

 8000

 9000

 10000

A
v
e

.
b

u
ff

e
r

s
iz

e
 (

s
)

Shared bottleneck bandwidth (kbit/s)

No cap
Cap at 1/4

Cap at 1500 kbit/s

(a) Buffer size

 0

 4

 8

 12

 16

 20

 4000

 5000

 6000

 7000

 8000

 9000

 10000

A
v
e

.
#

 s
w

it
c
h

e
s

Shared bottleneck bandwidth (kbit/s)

No cap
Cap at 1/4

Cap at 1500 kbit/s

(b) Number of switches

 0

 40

 80

 120

 160

 200

 240

 4000
 5000

 6000
 7000

 8000
 9000

 10000

W
a

s
te

d
 d

a
ta

 (
M

b
it
)

Shared bottleneck bandwidth (kbit/s)

No cap (waste > 1500kb/s)
No cap (waste > fair share)
Cap at 1/4 (w. > 1500kbit/s)
Cap at 1500kbit/s (w. > 1/4)

(c) Wasted volume
Fig. 6. Comparison of playback metrics with different rate cap policies.

 0

 2

 4

 6

 8

 10

 0 1000
 2000

 3000
 4000

 5000
 6000

C
lie

n
t
u
ti
lit

y

Encoding rates (kbit/s)

Large screen
Small screen

Fig. 7. Client utility functions for dif-

ferent screen sizes (from [14]).

values are conservative. For example, in the default case (with

6000 kbit/s), we compute a 22.1% saving if all chunks with

encodings higher than 1500 kbit/s instead were to be delivered

using 1500 kbit/s encodings. This corresponds to our wasted

data. However, in our test case, the highest encoding rate below

1500 kbit/s is 1124 kbit/s. Taking this into account, in practice,

30.2% of the bandwidth could actually have been saved if

simply selecting these chunks at the 1124 kbit/s encoding.

To put the savings into further perspective, we note that the

chunks encoded at rates larger than the fair share (here, equal

to 1500 kbit/s) make up 54.2% of the total delivered data.

When discussing users’ QoE, multiple dimensions must be

taken into account, including: (i) stall metrics such as stall

occurrences and durations, (ii) playback utility metrics based

on encoding rates of individual chunks, and (iii) playback

quality fluctuations. In the above experiments we did not

observe stalls, and since we thus far in the paper primarily

have focused on (i) and (iii), we now turn our attention to (ii).

When discussing playback utility, we associate each chunk

with an individual utility, using the utility function proposed

by Vleeschauwer et al. [14]:

f(q) = β
(

(q/θ)1−α − 1
)

/(1− α), (1)

where α>1, β>0 and θ>0 are screen dependent parameters.

Figure 7 shows the example utility functions used in our

evaluation for (i) small screen clients (α=2, β=7, θ=0.1 Mbps),

and (ii) large screen clients (α=2, β=10, θ=0.2 Mbps). Clearly,

there are diminishing returns to downloading higher encoding

rates q, and low encoding rates should be avoided to maintain

a high minimum utility. Again, caps help significantly here, as

(indirectly) implied by fewer encoding switches (Figure 6(b))

and less wasted data (Figure 6(c)). Another way to measure the

encoding-related utility is the average utility across all played

chunks (ignoring encoding switches), shown in Figure 8. In

general, the encoding-related utility differences between the

policies are small, especially for the small screen case, and

in practice, these small utility gains are typically substantially

outweighed by the added benefits observed by capped clients.

C. Impact of cap location

We have also evaluated the use of fixed caps at different

bottleneck links using our experimental testbed as well as

simulations. While these results are omitted due to space,

we have found that (i) the impact of the cap location is

relatively minor, and (ii) the simulation results align well

with our testbed experiments, despite not capturing all the

subtleties of TCP behavior, and therefore resulting in less

extreme instabilities and unfairness for the non-capped clients.

 0

 2

 4

 6

 8

 10

 4000
 5000

 6000
 7000

 8000
 9000

 10000

A
v
e
ra

g
e
 u

ti
lit

y

Shared bottleneck bandwidth (kbit/s)

No cap
Cap at 1/4

Cap at 1500 kbit/s

(a) Large screen

 0

 2

 4

 6

 8

 10

 4000
 5000

 6000
 7000

 8000
 9000

 10000

A
v
e
ra

g
e
 u

ti
lit

y

Shared bottleneck bandwidth (kbit/s)

No cap
Cap at 1/4

Cap at 1500 kbit/s

(b) Small screen
Fig. 8. Rate-based (only) utility for different screen sizes.

D. Real-world LTE experiments

We validate the data saving and stability on real commercial

apps, from two VoD and two Live services, by capping per-

client throughput at 1500 kbit/s. Four mobile devices (Sam-

sung J7 running Android 7.0) are set up to use a Squid proxy

over a cellular LTE network. The clients are started staggered

10-20 seconds, and then restarted periodically to create more

startup measurements. The proxy applies the individual rate

caps, limits the overall link capacity at 6 Mbit/s, and collects

traces of the devices’ HTTP traffic. Metrics for startup times,

bitrates, and rebuffer ratios are extracted as outlined by Mangla

et al. [15]. All apps use HLS with audio and video muxed into

the same stream, but use different bitrates and chunk durations.

Live1 is a major TV channel, Live2 is a major TV broadcaster,

VoD1 is a major sports channel, and VoD2 is a major TV

broadcaster. Table II summarizes these results.

We find that the cap prevents higher bitrates (above 1500

kbit/s) from being delivered, as expected. This yields savings

of 9-32% on data compared to the un-capped case with 6

Mbit/s. By removing the highest bitrates and competition

between players, switching improves by 33-97% for three of

the services (with one service increasing the switching by

2.5%). This qualitatively confirms our testbed findings on data

savings and stability. Furthermore, for the three services with

substantial stability improvements, the cap reduces the number

of stalls by 78-100% and the rebuffering ratio by 86-100%, at

the expense of increased startup times (by 11-77%).

Large-scale benefits of rate caps on data savings can also

be derived from recent work [15], using the observation that

some video services internally cap bitrates delivered to clients,

while others do not. Services that cap bitrates on a cellular

network can have up to 50% lower bandwidth usage [15],

without losing the visual quality on small screens [14].

IV. BANDWIDTH BOOSTING

Thus far, we have shown that rate caps come with sev-

eral benefits (e.g., improved stability, fairness, less wasted

bandwidth, sometimes fewer and shorter stalls), but also

some drawbacks (e.g., increased startup times and slower

stall recovery). To address these drawbacks while further

TABLE II

REAL-WORLD MEASUREMENTS WITH AND WITHOUT CAPS.

Service
Cap vs. Play Ave. Switches Startup

Stalls
Rebuff.

no cap time bitrate /min time ratio

Live1
No cap 6,744 1,347 0.28 7.1 0.50 0.54%

Capped 3,944 982 0.28 7.9 0.00 0.00%

Live2
No cap 2,640 1,055 1.17 7.6 1.00 3.36%

Capped 3,310 843 0.04 13.4 0.22 0.46%

VoD1
No cap 5,150 1,170 0.58 23.3 1.24 4.94%

Capped 4,920 1,061 0.16 27.8 0.14 0.43%

VoD2
No cap 9,300 1,192 0.19 4.8 0.69 0.49%

Capped 10,716 812 0.13 4.6 1.11 0.51%

TABLE III

SUMMARY OF NOTATION AND INFORMATION.
Notation Information

C
li

en
t

B0 Current buffer occupancy

B Maximum buffer threshold

B∗ Target buffer

Ql Encoding with quality level l (1 ≤ l ≤ L)

q0 Most recently requested chunk’s encoding rate

X Current estimated throughput

Tc Chunk duration

N
et

w
o
rk C Default rate cap

C+ Boosted rate cap

δ Remaining boost duration

reducing stall occurrences, we introduce two mechanisms:

(i) temporary boosting, and (ii) boost-aware client-side rate

adaptation (boost-aware adaptation). The idea of temporary

boosting is simple. When a client starts viewing a video or

otherwise drains its buffer, the network temporarily increases

its individual cap. The boost-aware adaptation modifies the

player’s encoding selections to optimize the use of extra band-

width during the boost period. Together, these mechanisms

help reduce startup times, improve stall recovery times, and

provide healthier buffer conditions (through faster buffer fill),

effectively also improving the protection against stalls.

A. Information sharing vs. inference

For efficient implementation of the above mechanisms the

client and network need to share (or in other ways extract)

information regarding buffer conditions and boost periods so

that (i) the network can determine appropriate times and

magnitudes to boost clients, and (ii) the clients have the

necessary information to optimize use of this extra bandwidth.

Player-to-network sharing: To correctly apply boosting,

the network needs to ”know” when clients have low buffers.

Ideally, clients would share this information with the net-

work using existing [16] or custom-made protocols. Using

BUFFEST [17] and similar systems [18], [19], [20], [21], this

information can also be inferred from network traffic, even

when encrypted, with reduced but acceptable accuracy. These

systems can extract low-buffer signals on their own or verify

the signals submitted by players claiming low buffers.

Network-to-player sharing: Clients can benefit substan-

tially from information that the network can provide. For

example, without knowing their individual caps, clients may

download encodings higher than their regular caps (during

boost periods), hurting long-term performance. Naturally, any

protocol that allows the network to communicate with clients

can be extended to include this information. In our implemen-

tation of boost-aware adaptation (Section IV-B), we assume

that the network explicitly notifies clients about when, by how

much, and for how long they are boosted. We also note that

HAS clients are in fact well-equipped to recognize caps and

boost periods via their historical throughput measurements,

especially if they are consistently applied. We next evaluate

potential benefits of boosting with different levels of coopera-

tion, but leave the mechanisms and implementations by which

this cooperation is achieved for future work.

B. Client-side behavior with boosting

To take full advantage of the extra bandwidth during boost

periods, clients should perform careful encoding selection,

leveraging both local information (e.g., “Client” rows in

Table III) and network information, either shared or inferred

(e.g., “Network” rows in Table III).

First, the client should limit buffer filling to the maximum

buffer threshold B (unless still boosted when reaching this

threshold). Assuming that the current buffer is B0 and each

chunk has a play duration of Tc, a bound on the number of

chunks n that the client should aim to download during the

remaining boost time δ can then be calculated as:

n ≤ (B −B0 + δ)/Tc. (2)

Second, the client should not waste bandwidth on encodings

greater than the encoding that the (regular) rate cap allows.

Therefore, assuming that the cap is C and the next n chunk

requests are enumerated 1 through n, we have:

qi ≤ max
l

(Ql|Ql ≤ C), 1 ≤ i ≤ n. (3)

Third, since it is important that clients quickly recover from

low buffer conditions and frequent encoding fluctuations

should be avoided, it is advantageous to plan for monotonically

non-decreasing encodings during the boost period:

q1 ≤ q2 ≤ ... ≤ qn ≤ max
l

(Ql|Ql ≤ C). (4)

This allows the clients to quickly build up a buffer safety

margin, while also satisfying constraint (3).

Fourth, a client should not plan to exceed the current

estimated throughput X (estimated as the boosted cap C+

when no chunk has been downloaded during the boost period)

during the remaining boost period δ:
n
∑

i=1

qiTc ≤ δX. (5)

Given the above constraints, in the following, we describe

three candidate policies that a client can apply when selecting

the encoding of the next chunk to download.

Greedy fixed quality: The client first determines the largest

possible number of chunks n that satisfies constraint (2)

and is feasible according to the constraint (5) using some

minimum quality Q1. Then, given this n, the client picks

the largest possible encoding level l that satisfies constraint

(4) and is feasible within the remaining download budget, as

determined by constraint (5). The solution to this problem can

be computed in O(log(L)) using a binary search on feasible

n and l, where L is the number of available encodings.

Maximum encoding quality: Similar to the first policy, we

first greedily determine the maximum number of chunks to

download during the remaining boost duration, which satisfies

constraint (2). Second, we solve the following optimization

problem: maximize
∑n

i=1
qi, subject to constraints (4) and (5).

 0

 10

 20

 30

 40

 50

 60

 0 40 80 120 160 200

 500

 1000

 1500

 2000

 2500

B
u
ff
e
r

s
iz

e
 (

s
)

B
a
n
d
w

id
th

 (
k
b
it
/s

)

Time

N
e
a
r

o
u
ta

g
e

B
o
o
s
ti
n
g

min[trace,cap]
Buffer

(a) Buffer size

 500

 1000

 1500

 2000

 2500

 0 40 80 120 160 200

B
W

,
E

n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

N
e

a
r

o
u

ta
g

e

B
o

o
s
ti
n

g

min[trace,cap]
Encoding

(b) Requested encoding rates
Fig. 9. Near-outage example with client using multi-objective quality.

Multi-objective quality: Finally, we consider a more gen-

eralized formulation that weighs different objectives into a

combined objective function:

maximize

n
∑

i=1

(

αBi + (1− α)f(qi) (6)

− β|f(qn)− f(max
l

(Ql|Ql ≤ C))| − γ|Bn −B∗|

)

.

Here, Bi = B0+iTC−
∑i

j=1

qjTc

X
is the estimated (predicted)

buffer level after chunk i has been downloaded, and we use a

parameter α to weigh the relative importance of maximizing

the average buffer size 1

n

∑

i Bi and the average encoding

utility 1

n

∑

i f(qi), where f(qi) is the utility function (1).

Parameters β and γ give more/less (relative) weight to the

secondary objectives of ramping up the encodings so to be as

close to the ideal steady-state encoding maxl(Ql|Ql ≤ C),
when operating under the cap C, and to fill the buffer near

target buffer size B∗. In our experiments, this is typically

equal to the upper buffer threshold B in OSMF, or the average

expected buffer in the steady state; i.e., (B +B)/2, where B
is the lower buffer threshold in OSMF.

V. EXPERIMENTAL EVALUATION OF BOOSTING

A. Illustrative example of the boosting framework

We have implemented the above policies in OSMF. As

the first validation, we use a simple “near-outage” scenario.

Here, we used real bandwidth traces [22] combined with an

individual cap of 1500 kbit/s. We add a 20-second near-

outage between 60 and 80 seconds, during which we set

the client’s cap to 50 kbit/s, followed by a δ=25 second

boost period, where the individual cap is temporarily increased

to C+=2500 kbit/s. Figure 9 illustrates this scenario for an

example client using multi-objective quality. Throughout the

evaluation, unless stated otherwise, we run this policy with

α=0.5, β=1, γ=1, and B∗=B. As per design, the client selects

encodings such that it quickly refills the buffer and uses

increasingly higher encodings, aiming to fill the buffer at the

end of the boost period (in this case somewhat over-shooting).

The three boost-aware policies (as per design) make some-

what different tradeoffs between the buffer size progression

during the boost period and the encoding selection. As desired,

the multi-objective quality policy is typically the fastest to

ramp up the buffer size and therefore spends the least amount

of time with a small buffer (e.g., below 10 or 20 seconds). To

achieve this, it typically uses lower encodings at the start of the

boost period. The other policies prioritize average encodings

(in their objective functions) at the expense of slower buffer

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Buffer size (s)

Greedy fixed qual.
Max. enc. qual.
Multi-obj. qual.

(a) Buffer size during boost

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500

C
D

F

Encodings rates (kbit/s)

Greedy fixed qual.
Max. enc. qual.
Multi-obj. qual.

(b) Encoding rates during boost

Fig. 10. Example comparisons of boost-aware client-side adaptation policies.

TABLE IV

NORMALIZED RELATIVE STARTUP REDUCTION WITH BOOST.
Client arrival

Boost First Second Third Fourth

S
h
ar

ed
b
o
tt

le
n
ec

k

6
M

b
/s

(v
s.

6
2
5
)

+625 kbit/s -94.8% -84.8% -42.4% -71.9%

+1250 kbit/s -96.2% -87.6% -47.7% -75.7%

+2500 kbit/s -102.0% -90.2% -46.7% -78.9%

6
M

b
/s

(v
s.

1
4
4
)

+625 kbit/s -12.0% -13.7% -13.2% -17.0%

+1250 kbit/s -13.6% -16.9% -22.8% -22.1%

+2500 kbit/s -20.2% -19.9% -21.0% -26.4%

1
2

M
b
/s

(v
s.

1
4
4
)

+625 kbit/s -11.8% -13.1% -9.8% -5.6%

+1250 kbit/s -16.4% -18.2% -18.0% -11.5%

+2500 kbit/s -21.2% -21.6% -17.3% -13.3%

progression (and hence also lower buffer levels). These relative

differences are illustrated in Figure 10. Here, we show the

CDFs of the buffer size and selected encodings during the

boost period for each of the three policies, as observed over

10 runs using different bandwidth traces (but the same near-

outage and boost period as in the original example).

B. Startup improvement with boosting

As desired, boosting improves the video startup times that

increased under the fixed cap. Table IV summarizes the nor-

malized reduction in startup times when using multi-objective

quality. Here, four clients with 1500 kbit/s caps start playback

staggered by 20 seconds and each client is boosted for 20

seconds during the startup phase.

The normalized reduction in startup times allows for easier

comparison to the increases due to fixed caps (shown in

Table I), and we calculate it as follows. We take the absolute

increase in startup time under a fixed cap for a certain

encoding rate of initial chunks (e.g., 144 or 625 kbit/s),

and divide it by the startup times in the corresponding non-

capped case. With this normalization, we can directly compare

the decreases in Table IV (emphasized with negative signs)

with the increases in Table I (emphasized with plus signs).

Specifically, the change for boosted clients relative to non-

capped clients is equal to the sum of the values extracted from

the two tables. For the boost-aware adaptation policies, the

initial chunk requests may differ between sessions. Therefore,

the 144 kbit/s values provide a pessimistic lower bound on the

improvements.

Overall, we find that boosting helps recover most of the

increase in startup delays, and sometimes even improves over

the non-capped case. These results clearly show that boosting

can substantially help, even when there is competition (as for

the third and fourth arriving clients). For example, with a 625

kbit/s boost and a 6000 kbit/s shared bottleneck, the first and

fourth arriving clients see on average a reduction by -94.8%

and -71.9%, respectively, compared to the capped clients with

 0

 10

 20

 30

 40

 0 5 10 15 20

B
u

ff
e

r
s
iz

e
 (

s
)

Time (s)

No boost
Uncoop.
Greedy

Max. enc.
Multi-obj.

(a) Buffer size over time, LTE

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 600 1000 1400 1800 2200

C
D

F

Encoding rates (kbit/s)

No boosting

Uncoop. client

Greedy fixed

Max. encoding

Multi-objective

(b) Encodings first 20 seconds, LTE
Fig. 11. Impact of boosting during initial 20 second startup phase.

625 kbit/s encoding for the initial chunks. Comparing to aver-

age increases of +92.0% and +52.7% with cap, only moderate

boosting is needed for the boost-aware system to outperform

the non-capped clients. While additional boosting is needed to

recover most of the increases for capped clients that always

start from 144 kbit/s, a boost magnitude of +2500 kbit/s

provides very similar startup times to the corresponding non-

capped client. For example, the first and fourth client recover

-20.2% of +21.1% and -26.4% of +25.9%, respectively. The

LTE and WiFi results are consistent, with LTE experiments

having ≈2.9% longer startup times than WiFi, on average.

Looking beyond the initial chunk(s), temporary boosting

combined with boost-aware adaptation can further help build

up a fair sized buffer relatively quickly without sacrificing

video quality. Figures 11(a) and 11(b) show the evolution of

the average buffer size over time and the encoding CDF for

an LTE client during the first 20 seconds. The corresponding

results for WiFi (omitted) are similar.

Here, we compare the three boost-aware client-side adap-

tation policies head-to-head, but also include results for two

additional baseline policies. In the uncooperative client case,

the client completely ignores all cap or boost information and

instead downloads chunks as it normally would according to

the HAS player’s default adaptation algorithm, including the

boost period. In the no boosting case, no boosting is provided

by the network and the client simply goes back to using

the HAS player’s default adaptation algorithm. The healthiest

buffer levels are observed when boosting is combined with the

multi-objective quality policy. As expected, non-boosted and

uncooperative clients perform the worst, showing that boosting

is mostly wasted if clients do not cooperate. This strengthens

the argument that cooperation between the clients and network

is needed to achieve the best possible performance.

C. Boost settings: duration and magnitude

The boost duration and magnitude impact the boost’s ef-

fectiveness. Figure 12 presents buffer size results for example

boost durations and (extra) boost magnitudes in LTE experi-

ments. WiFi results (omitted) are similar. Here, Figure 12(a)

shows CDFs of the buffer occupancy during the boost periods

and Figure 12(b) shows the average buffer values as a function

of time. In all experiments, there are four competing clients

with a shared bottleneck of 6000 kbit/s and individual caps of

1500 kbit/s. Furthermore, for one of the clients we introduce a

25 second near-outage (with 50 kbit/s) at the 20 second mark

and then boost the client at the 45 second mark, when the

buffer typically has fallen to (or roughly below) 10 seconds.

We again present results only for multi-objective quality.

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Buffer size (s)

10s x 625 kbit/s
20s x 625 kbit/s

10s x 1250 kbit/s
5s x 2500 kbit/s

10s x 2500 kbit/s
20s x 2500 kbit/s

(a) CDF of playback buffer

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

B
u

ff
e

r
s
iz

e
 (

s
)

Time (s)

20s x 625 kbit/s
10s x 625 kbit/s

10s x 1250 kbit/s
5s x 2500 kbit/s

10s x 2500 kbit/s
20s x 2500 kbit/s

(b) Average playback buffer
Fig. 12. Impact of boost duration and magnitude; LTE-based experiments.

To allow comparisons of the impact of boost parameters,

we carefully picked six example cases. Three of them have

the same (extra) boost magnitude (measured as the difference

between the boosted and non-boosted cap; i.e., C+ − C) of

2500 kbit/s, three have the same duration of 10 seconds, and

three have the same time-aggregate boost (as calculated over

the boost period; i.e., δ(C+ − C)) of 12500 kbit.

The boost magnitude is important for fast stall recovery. For

example, the 2500 kbit/s boosts always provide faster buffer

buildup during the first 5 seconds of the boosts than the 1250

kbit/s and 625 kbit/s boosts. In fact, with the 2500 kbit/s boost,

we are able to get back to the original buffer level within 10

seconds. With smaller boosts it takes longer. While the boost

duration (e.g., when keeping the extra magnitude equal to 2500

kbit/s) does not impact the initial speed with which the buffer

grows (Figure 12(b)), we have found that longer duration

boosts can be valuable if aiming for a large buffer at the end of

the boost (e.g., right-most points in Figure 12(a)). Furthermore,

comparing the three 2500 kbit/s curve after 20 seconds (at the

65 second mark), when only one of the 2500 kbit/s boosts are

still active, we see a clear ordering of the corresponding buffer

sizes, with the 20 seconds boost providing by far the largest

buffer of these three. The observations are consistent across

both WiFi (omitted) and LTE.

Finally, we note that we have achieved further speedups

in the buffer recovery (for a given boost) with the help of a

scheduler that temporarily gives more weight to the boosted

client’s video flow. However, this type of boosting is highly

speculative since commodity base stations currently cannot

distinguish application layer characteristics in traffic. These

results are therefore omitted due to lack of space. Yet, we

argue that this framework could be a good platform for such

optimization if similar functionality is made available in 5G

and future WiFi base stations.

VI. SIMULATION-BASED EVALUATION OF BOOSTING

To evaluate the long-term dynamics of cap-based boosting

we use simulations with four active clients. Each client plays

videos back-to-back for a total of 150 viewings per client.

When a client completes the playback of one video, it ran-

domly picks another from a set of 50 videos. For each video,

we keep track of the exact chunk sizes (extracted from 50

YouTube videos), playback position, and playback duration.

All clients are capped at 1500 kbit/s with a shared bottleneck

of 6000 kbit/s. For one in every four viewings, we then

introduce a 20 second (complete) outage at a random time

during the session (forcing low buffer conditions). At times

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Buffer size (s)

No boost
Uncoop. client

Uncoop., knows C
Greedy fixed qual.

Max. encoding qual.
Multi-obj. qual.

(a) CDF of buffer size

 0.2

 0.4

 0.6

 0.8

 1

 0 500
 1000

 1500
 2000

 2500
 3000

C
D

F

Encoding rates (kbit/s)

No boost
Uncoop. client

Uncoop., knows C
Greedy fixed qual.

Max. encoding qual.
Multi-obj. qual.

(b) CDF of requested encoding rate

Fig. 13. Comparison of different policies.

 0
 625

 1124

 2217

 4198

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(a) No cap

 0

 268

 625

 1124

 0 50 100 150 200 250

E
n
c
o
d
in

g
 (

k
b
it
/s

)

Time (s)

Client 1
Client 2
Client 3
Client 4

(b) With caps
Fig. 14. Encoding rates in simulated scenario.

when the buffer falls below 10 seconds, the network boosts

the client to 2500 kbit/s for 25 seconds, and the client uses

the boost-aware adaptation algorithms, when applicable.

Figures 13(a) and 13(b) show the CDFs of the buffer

size and the requested encodings observed during the boost

period, respectively, for each of the above policies. In addition

to the uncooperative client and no boosting baselines, we

also include baseline results with an uncooperative client

that knows C and therefore restrains itself from downloading

chunks at encoding higher than maxl(Ql|Ql ≤ C), but oth-

erwise applies the HAS player’s default adaptation algorithm.

When interpreting these results it is important to note that the

simulations do not capture all the subtle interactions between

TCP and (competing) HAS players, and that our fixed-cap

validation results (mostly omitted) have shown that the sim-

ulator provides conservative estimates of the improvements

of fixed rate caps. To support the claim that the differences

observed with simulations are conservative, we include sim-

ulation results for the requested encoding rates (Figure 14)

for the same scenario as our original OSMF experiments

(Figure 2). Similar reasons explains the smaller differences

between the boost-aware policies observed here vs. testbed.

Yet, the simulation validate the relative performance tradeoffs

between the policies. For example, while the differences are

smaller between the policies than in the more realistic testbed

experiments, the relative performance tradeoffs are the same

and the largest buffer improvements (e.g., relative to non-

boosted clients) are observed with the boost-aware policies.

The boost-aware policies all perform relatively similar, with

only smaller variations in their relative tradeoffs. Throughout

the 150 viewings per policy, we only observed a single stall

per policy. Similar observations can be made from the average

buffer conditions as a function of the time since the boost

period begun, shown in Figure 15. This figure also shows how

multi-objective quality, as per design, most quickly builds up

the buffer during the initial part of the boost period. Quickly

filling a buffer as a safety margin is important, as it can

reduce stall duration and speed up recovery. Finally, we note

that selecting a large γ (compared to β) with multi-objective

 10

 20

 30

 40

 0 5 10 15 20 25

B
u

ff
e

r
s
iz

e
 (

s
)

Time (s)

No boost
Uncoop.
Knows C

Greedy
Max. enc.
Multi-obj.

Fig. 15. Average buffer size over time,

after boosting.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25

B
u

ff
e

r
s
iz

e
 (

s
)

Time (s)

β=100, γ=1

β=1, γ=1

β=1, γ=100

Fig. 16. Buffer size. Multi-objective

quality with different β,γ (α=0.5).

quality, further stresses the importance to quickly ramp up the

buffer size (Figure 16), at the expense of a few extra low-

encoding chunks at the start.

VII. RELATED WORK

Unstable quality and unfair sharing of bottleneck bandwidth

are known to affect HAS clients, commonly occurring when

HAS flows compete with each other or with background

traffic [7], [12]. Prior works include client-, network-, and

server-based approaches to address these problems. The client-

based techniques attempt to address the issue using robust

quality adaptation algorithms [3], [23], [11] and better band-

width estimation [24]. Neither of these fully solve the insta-

bility at scale. Network-based and server-based solutions in-

clude server-based shaping [7], cooperative proxy-caches [25],

[26], network-assisted prioritization [27], and network-assisted

quality selection [28]. Server-based approaches are complex

to implement in today’s CDN-based HAS delivery, where

edge nodes would need to maintain shaping profiles for many

clients, since they typically serve the same content across

different networks (Tier 1-3 ISPs) and last mile technologies

(WiFi, LTE, Ethernet).

Closely related to our paper are works focusing on network-

side solutions. The centralized control architecture of SDN

is proposed to facilitate dynamic shaping of flows [29], [30],

[31], [32]. However, these solutions require converting current

carrier networks to an SDN architecture and adding new HAS-

specific network elements, which is not realizable in the short

term. While solutions implemented in gateway modems and

routers can solve issues related to stability and fairness, such

solutions do not address competition with other clients in up-

stream links [12]. Several network-based approaches optimize

the rate adaptation across multiple parallel clients [33], [14] or

the bandwidth share given to each client [34]. However, they

lack experimental evaluation with real clients and live network

deployments. While some of them suggest bandwidth shaping

at cellular base stations [14], [34], the actual impact on real

traffic is unknown. The practicality of such approach is also

very low, since current standards do not include visibility into

transport or higher layers by cellular base stations, nor do

current implementations have such capabilities.

In contrast to these works, we first measure the impact of

simple rate caps on HAS traffic in a real cellular network and

report their implications at scale, finding both benefits and

drawbacks. To the best of our knowledge we are the first to

propose and study the performance of rate boosting in a coop-

erative cap-based system. Our solution proposes improvements

suitable for current traffic management practices, reducing the

step to actual deployment, but is also applicable to future

design with potential additions of new network elements.

VIII. CONCLUSION

This paper proposes client-network cooperative boosting as

a framework for improving HAS video streaming under rate

caps, as commonly deployed in today’s networks. We first

conduct a comprehensive study of the rate cap impact on

HAS videos, which spans testbed experiments using multiple

players, trace-driven simulations, and passive measurements

from a real-world test deployment. We identify that the impact

of fixed caps in a cellular network is largely positive, with

improved playback and buffer stability, as well as data savings,

but the drawbacks include slower startup and stall recovery,

as well as slow buffer fill. To address the key shortcomings,

we develop a cooperative rate-boosting approach, where the

network boosts the cap when clients need it. Using experi-

ments and simulations, we demonstrate the increasing benefit

of boosting with increased information exchange between

the client and network. We also propose a client-side rate

adaptation algorithm to optimize the benefit of boosting, which

recovers all startup impairments and improves user experience,

while eliminating wasted bandwidth and hence reducing cost

for both users and the network.

ACKNOWLEDGEMENTS

This work was funded in part by the Swedish Research

Council (VR) and the Swedish National Graduate School in

Computer Science (CUGS) at Linköping University.

REFERENCES

[1] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,

and H. Zhang., “Understanding the impact of video quality on user

engagement,” in Proc. ACM SIGCOMM, 2011.

[2] S. Krishnan and R. Sitaraman, “Video stream quality impacts viewer

behavior: Inferring causality using quasi-experimental designs,” in Proc.

IMC, 2012.

[3] T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari.,

“Confused, timid, and unstable: Picking a video streaming rate is hard,”

in Proc. ACM IMC, 2012.

[4] T. Hossfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia, “Iden-

tifying QoE optimal adaptation of HTTP adaptive streaming based on

subjective studies,” Computer Networks, 2015.

[5] “VQEG: Objective video quality assessment,” 2018. [Online]. Available:

https://www.its.bldrdoc.gov/vqeg/projects/audiovisual-hd.aspx

[6] “ITU-T P.1203: Objective video QoE standard,” 2018. [Online].

Available: https://www.itu.int/rec/T-REC-P.1203

[7] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen., “Server-

based traffic shaping for stabilizing oscillating adaptive streaming play-

ers,” in Proc. ACM NOSSDAV, 2013.

[8] A. M. Kakhki, F. Li., D. Choffnes, A. Mislove, and E. K. Bassett, “Bin-

geOn Under the Microscope: Understanding T-Mobile’s Zero-Rating

Implementation,” in Proc. Internet-QoE Workshop, 2016.

[9] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim,

E. Katz-Bassett, and R. Govindan, “An Internet-Wide Analysis of Traffic

Policing,” in Proc. ACM SIGCOMM, 2016.

[10] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM

Computer Communication Review, vol. 40, pp. 12–20, 2010.

[11] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: near-optimal

bitrate adaptation for online videos,” in Proc. IEEE INFOCOM, 2016.

[12] R. Houdaille and S. Gouache, “Shaping http adaptive streams for a better

user experience,” in Proc. ACM MMSys, 2012.

[13] A. Rao, A. Legout, Y. Lim, D. Towsley, C. Barakat, and W. Dabbous,

“Network characteristics of video streaming traffic,” in Proc. ACM

CoNEXT, 2011.

[14] D. D. Vleeschauwer, H. Viswanathan, A. Beck, S. Benno, G. Li, and

R. Miller, “Optimization of http adaptive streaming over mobile cellular

networks,” in Proc. IEEE INFOCOM, 2013.

[15] T. Mangla, E. Halepovic, R. Jana, K. Hwang, M. Platania, M. Ammar,

and E. Zegura, “Videonoc: Assessing video qoe for network operators

using passive measurements,” in Proc. MMSys (to appear), 2018.

[16] “ISO/IEC FDIS 23009-5:2017: Information Technology – Dynamic

adaptive streaming over HTTP (DASH) – Part 5: Server and network

assisted DASH (SAND),” 2017.

[17] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “Buffest:

Predicting buffer conditions and real-time requirements of http(s) adap-

tive streaming clients,” in Proc. ACM MMSys, 2017.

[18] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “MIMIC: Using

passive network measurements to estimate HTTP-based adaptive video

QoE metrics,” in Proc. IEEE/IFIP TMA, 2017.

[19] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A system for on-

line monitoring of YouTube QoE in operational 3G networks,” ACM

SIGMETRICS Perform. Eval. Rev., vol. 41, pp. 44–46, 2013.

[20] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,

“Measuring video QoE from encrypted traffic,” in Proc. IMC, 2016.

[21] T. Wu, S. Petrangeli, R. Huysegems, T. Bostoen, and F. D. Turck,

“Network-based video freeze detection and prediction in HTTP adaptive

streaming,” Comp. Comm., vol. 99, pp. 37–47, 2017.

[22] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path

bandwidth traces from 3g networks: Analysis and applications,” in Proc.

ACM MMSys, 2013.

[23] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and

B. Sinopoli, “CS2P: Improving video bitrate selection and adaptation

with data-driven throughput prediction,” in Proc ACM SIGCOMM, 2016.

[24] L. Zhi, Z. Xiaoqing, J. Gahm, P. Rong, H. Hao, A. Begen, and D. Oran,

“Probe and adapt: Rate adaptation for HTTP video streaming at scale,”

IEEE Journal on Selected Areas in Communications, 2014.

[25] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shah-

mehri., “Helping hand or hidden hurdle: Proxy-assisted HTTP-based

adaptive streaming performance,” in Proc. IEEE MASCOTS, 2013.

[26] S. Benno, J. O. Esteban, and I. Rimac., “Adaptive streaming: The

network HAS to help,” Bell Lab. Tech. Journal, 2011.

[27] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. D. Turck,

“Software-defined network-based prioritization to avoid video freezes in

HTTP adaptive streaming,” Int. Journ. of Netw. Management, 2016.

[28] N. Bouten, R. de Schmidt, J. Famaey, S. Latre, A. Pras, and F. D. Turck,

“QoE-driven in-network optimization for adaptive video streaming based

on packet sampling measurements,” Computer Networks, 2015.

[29] J. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering stable high-

quality video: An SDN architecture with DASH assisting network

elements,” in Proc. ACM MMSyS, 2016.

[30] A. Bentaleb, A. C. Begen, and R. Zimmermann, “SDNDASH: Improving

QoE of HTTP adaptive streaming using software defined networking,”

in Proc. ACM MMSyS, 2016.

[31] D. Bhat, A. Rizk, M. Zink, and R. Steinmetz, “Network assisted content

distribution for adaptive bitrate video streaming,” in Proc. MMSys, 2017.

[32] G. Cofano, L. D. Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and

S. Mascolo, “Design and experimental evaluation of network-assisted

strategies for HTTP adaptive streaming,” in Proc. ACM MMSyS, 2016.

[33] N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, and F. De Turck,

“In-network quality optimization for adaptive video streaming services,”

IEEE Trans. on Multimedia, vol. 16, no. 8, pp. 2281–2293, 2014.

[34] A. H. Zahran, J. J. Quinlan, K. K. Ramakrishnan, and C. J. Sreenan,

“SAP: Stall-aware pacing for improved DASH video experience in

cellular networks,” in Proc. ACM MMSys, 2017.

