WoTbench: A Benchmarking Framework for
the Web of Things

Raoufeh Hashemian
rhashem@ucalgary.ca
University of Calgary, Canada

Diwakar Krishnamurthy
dkrishna@ucalgary.ca
University of Calgary, Canada

ABSTRACT

The Web of Things (WoT) is a new paradigm resulting from the
integration of the Web with the Internet of Things. With the emer-
gence of WoT comes the need for benchmarking tools to aid in
performance evaluation studies that can be used to guide actual
deployments of WoT infrastructure. In this paper we introduce
WoTbench, a Web benchmarking framework designed to facilitate
pre-deployment performance evaluation studies of WoT setups.
WoTbench enables workload emulation on a controlled test envi-
ronment by taking advantage of Linux container technology. It
supports the Constrained Application Protocol (CoAP), a RESTful
application layer protocol that aims to replace HTTP for resource
constrained devices. WoTbench consists of a scalable Gateway Em-
ulator (GE) and a group of CoAP device application emulators. We
describe components of WoTbench in detail and how WoTbench
can be used to answer capacity planning questions. !

CCS CONCEPTS

» Networks — Network performance analysis; - Computer
systems organization — Client-server architectures.

KEYWORDS

Web of Things, CoAP, benchmarking, container technology, perfor-
mance evaluation, scalability testing

ACM Reference Format:

Raoufeh Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin
Arlitt. 2019. WoTbench: A Benchmarking Framework for the Web of Things.
In Proceedings of The 9th International Conference on the Internet of Things
(IoT ’19). ACM, New York, NY, USA, 5 pages. https://doi.org/xxx

! Authors’ version of work produced with ACM permission. Not for redistribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoT 19, October 22-25, 2019, Bilbao, Spain

© 2019 Association for Computing Machinery.

ACM ISBN xxx...$15.00

https://doi.org/xxx

Niklas Carlsson
niklas.carlsson@liu.se
Linképing University, Sweden

Martin Arlitt
martin.arlitt@ucalgary.ca
University of Calgary, Canada

1 INTRODUCTION

In recent years, the Internet of Things (IoT) has evolved substan-
tially. One particular change has been an integration with Web
technologies. This evolution, dubbed “The Web of Things" or WoT
for short, motivates new benchmarking tools and frameworks to
facilitate performance evaluation of WoT systems. Since the advent
of the Web, new Web benchmarking tools have frequently been
introduced to keep up with evolving workloads and environments.
For example, new benchmark suites have been developed to address
changes such as Web 2.0 [31], Semantic Web [21], multicore Web
infrastructure [14] and cloud computing [25]. The introduction
of WoT marks the beginning of another important paradigm that
requires new benchmarking tools.

In this paper we develop a novel WoT benchmarking solution:
WoTbench, a Web of Things benchmarking framework. The
framework leverages commodity multicore server hardware as
a testbed for emulating the performance behaviour of a group of
CoAP devices each with a small resource footprint. WoTbench
employs containerized WoT device emulators that execute CoAP
over Linux. The use of containers allows one to configure the us-
age characteristics of the various low level resources, e.g., sensors,
network interface, and CPU core, used by a device as well as the
conditions experienced by the WoT network, e.g., packet losses and
delay. WoTbench also provides a synthetic workload generator that
offers control over CoAP request arrival patterns experienced by
the devices.

Using WoTbench, one can study the impact of various system
architectures, e.g., different device interconnection topologies. It
also allows comparison of alternative protocol features, e.g., vari-
ous application-level congestion control mechanisms. In contrast
to existing WoT simulation and emulation frameworks [7, 19, 22],
WoTbench provides an integrated mechanism to evaluate how the
performance of large CoAP-based systems can change as a func-
tion of the overall system architecture, application policies, device
resource demands, workload patterns, and network conditions.

The rest of this paper is organized as follows. Section 2 pro-
vides background on the CoAP. Section 3 describes a use case for
WoTbench. Section 4 presents an overview of WoTbench and its
components. Section 5 discusses the deployment process. Section 6
reviews related work while Section 7 concludes the paper.

https://doi.org/xxx
https://doi.org/xxx

10T ’19, October 22-25, 2019, Bilbao, Spain

2 CONSTRAINED APPLICATION PROTOCOL

A fundamental limitation in most WoT systems is the limited pro-
cessing capability and power constraints of devices. CoAP [30],
designed by the IETF CoRE Working Group [2], considers this limi-
tation and provides a lightweight approach for connecting devices
to the Web. It is designed to operate with a RESTful architecture
that results in a stateless nature. This allows the development of
uniform HTTP-CoAP proxies to integrate devices with CoAP sup-
port to the Web. Similar to HTTP, in CoAP each device can have
multiple resources that each have a unique Universal Resource
Identifier (URI). A URI can be used to access a resource by sending
GET, PUT, POST and DELETE requests. The resources in a WoT
environment are typically the methods for reading data or modify-
ing the settings of devices, sensors, actuators and communication
mediums in the network. In contrast to HTTP, CoAP adopts UDP as
the transport layer protocol considering the resource constrained
nature of devices.

Since the initial design of CoAP in 2011, several implementations
have been introduced that are intended for different Operating
Systems (OS) and hardware architectures. One of the widely used
implementations is libCoAP [16]. It is written in C and can run
on constrained device OSs (e.g., Contiki [10], TinyOS [17]) as well
as larger POSIX based OSs. Californium [15] in another popular
implementation of CoAP, written in Java. It mainly targets back-
end services and server nodes communicating with constrained
devices. However, it can also be used on more powerful IoT nodes.
Other examples of CoAP implementations include CoAPthon [32]
in Python or node-coap [4] in JavaScript.

3 USE CASE FOR WOT BENCHMARKING

As mentioned earlier, CoAP is designed to provide a RESTful in-
terface for constrained devices. The CoAP/HTTP proxies allow
Web users to access Web services provided by constrained devices
through Web browsers. In these cases, the CoAP part of this commu-
nication may remain transparent from the users’ perspective [33].
Figure 1 shows a simplified architecture of such a service. In this
case, the CoAP devices can be temperature or air quality sensors
in different locations. The user request may involve reading one
or more sensors for a single point or a historical trend. The gate-
way component is typically a more powerful device compared to
CoAP devices. The gateway includes a CoOAP/HTTP proxy to enable
communication between the CoAP devices and users.

| -=------------ CoAP device

|-—-Sensor-1 l
Gateway

|- ‘.— 2
&
|--Sensor-N
CoAP/HTTP

| mmemmes CoAP device rox
|---Sensor-1
|

|-—-Sensor-M

Figure 1: An example architecture of Web services in WoT
environments.

Similar to conventional Web services, capacity planning exer-
cises are needed to ensure that these WoT applications provide
acceptable experience to an end user, e.g., fast responses to sen-
sor data requests. Typically, capacity planning is required for the

Raoufeh Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin Arlitt

gateway, proxy, and the device tiers. A common capacity planning
approach is to answer what-if questions such as the following:

(1) For a given number of devices, an expected user behaviour,
i.e., workload, and specific set of resources, e.g., sensors
and their read service times, what is the maximum rate at
which the gateway can read the sensor data while satisfying
a desired response time?

(2) How do alternative implementations of application level poli-
cies, e.g., congestion control and packet recovery protocols,
layered on top CoAP compare in terms of performance?

(3) What is the impact of having heterogeneous devices with
varying computational capabilities?

(4) What is the effect of network characteristics such as individ-
ual device bandwidths, WoT network packet loss, delay and
jitter on this maximum rate?

WoTbench provides a testbed to facilitate experiments to an-
swer these type of questions. It uses Docker containers [23] to
emulate a WoT-device. A WoT-device can exchange messages with
the gateway using the actual CoAP protocol executing on Linux.
Furthermore, WoTbench can emulate synthetic resources, e.g., sen-
sors, attached to the WoT-device. It allows control over the resource
demand distributions of these synthetic resources as well as the
fraction of the testbed’s computational and networking resources
allocated to each device. The testbed also supports control over the
pattern of CoAP request arrivals from the gateway to any given
WoT-device.

The ability to specify request arrival patterns and resource de-
mand distributions allows one to answer the first question in the
sample capacity planning study. The ability to execute CoAP allows
the evaluation of alternative application level policies as part of the
second question. To answer the third question, the heterogeneity
of devices can be reflected by appropriately configuring the distri-
bution of resource demands per WoT-device and by using the CPU
and network sharing mechanisms supported by Docker [3]. For ex-
ample, a device with high computation capability can be emulated
by assigning to it a large fraction of the testbed’s CPU resources.
Finally, to answer the last question, WoTbench supports integra-
tion of an existing network emulator [11] to systematically perturb
characteristics such as packet loss and delay on a per WoT-device
basis.

4 WOTBENCH

An overview of the WoTbench setup is presented in Figure 2. WoT-
bench consists of three main components, namely, the WoTbench
core, the Gateway Emulator (GE), and WoT-devices. In addition to
those components, the WoTbench environment can accommodate
an existing network emulation tool called Pumba [11] to apply the
expected network characteristics of the deployment environment.
Except for the WoTbench core that is a process running on the
platform’s OS, all of the other components consist of one or more
Docker containers connected through a virtual bridge network.
WoTbench reports the per request response time measured at the
GE as the main performance metric collected during an experiment.
The response time is measured by subtracting the request sent
timestamp from the response received timestamp. As a result, the
reported response time includes the network transfer time. We next

WoTbench: A Benchmarking Framework for the Web of Things

Host: Multicore Linux Machine ’—>Connect to other machines hosting devices

" *Test harness
i *Synthetic trace generator

’

|

H Pumba Docker
i *Resource monitoring module

\

Network emulator
container

Figure 2: WoTbench architecture

describe the different components of WoTbench and the overall
process of running a test with WoTbench.

4.1 The WoTbench Core

The core component of WoTbench consists of several processes that
run in offline or online mode when conducting a test. Specifically,
the WoTbench core consists of the following components:

e Test harness: This is the main process that controls other
components and processes of WoTbench. This process is a
shell script that performs multiple tests with specific char-
acteristics. The test harness creates the environment (e.g.,
starts the Dockers) based on the test specifications, initiates
the test, waits for the test to finish and finally collects the
results and cleans the environment (e.g., stopping Dockers).

o Synthetic trace generator: This is an optional component
used to create synthetic workloads with specific service time
distributions for device resources and request inter-arrival
time distribution for devices. These distributions can match
service times and arrival patterns observed in an actual de-
ployment or can be varied as part of a sensitivity analysis.
The process runs in offline mode prior to the start of each
test to generate a trace of requests for each device. The traces
are then combined and fed to the GE to submit the workload.
In contrast with most synthetic Web workload generators
that use a probabilistic Finite State Machine (FSM) to rep-
resent user behaviour, WoTbench’s trace generator selects
the resources to access in a device with the goal to satisfy a
desired distribution of service times for each device.

e Resource monitor: This module is a wrapper script around
the Collectl [29] performance monitoring tool. It runs in
online mode to collect resource usage metrics (e.g., CPU
utilization, memory usage) of the underlying hardware.

¢ Reporting module: This module generates a summary of
test results and visualizes the relationship between the work-
load characteristics and the collected performance metrics.

4.2 Gateway Emulator

The Gateway Emulator (GE) plays the role of a workload genera-
tor [13], similar to tools such as httperf [24] in a traditional Web
benchmarking setup. It sends requests to each of the emulated de-
vices based on the input workload trace and measures each device’s

10T *19, October 22-25, 2019, Bilbao, Spain

response time. The GE is an asynchronous but single threaded pro-
cess. It consists of a single busy loop for sending requests based on
the send timestamps, specified by the workload trace. As a result,
it requires a dedicated CPU core. WoTbench’s test harness uses
Docker’s core affinity [20] feature to pin the GE process to a single
core. Furthermore, it ensures that no device is emulated on the core
that is running the GE.

The GE reads the workload trace from a csv file provided as input.
The following is an example of a request in the workload file:

0, 1000, GET, coap : //172.18.0.60/resource123

In this case, 0 is the device id, 1000 is the timestamp (representing
microseconds from the start of the test) for sending that request,
GET is the request type and coap : //172.18.0.60/resource123 is
the URI that is to be accessed by this request. The workload can
be specified using traces collected from a real deployment or us-
ing a synthetic trace generated by the synthetic trace generator.
The latter has the additional feature of generating a custom set of
synthetic resources to satisfy a desired service time distributions,
as discussed previously. The GE currently only supports CoAP. In
real deployments, certain devices might have the capability to sup-
port HTTP. However, we defer adding HTTP support to future
work. WoTbench uses libCoAP [16] as the client library for CoAP
communications.

4.3 Devices

The devices are emulated as Docker containers. WoTbench provides
a specific implementation of a CoAP device, referred to as the WoT-
device. The WoT-device is a multi-threaded version of libCoAP
server [16] running in a Docker container. The number of threads,
resources and their attributes along with the expected service time
distribution of resources is configurable for each WoT-device in the
test environment. The service time specifications can be gathered
from initial prototypes or constructed based on sensor spec sheets.

The WoT-device emulates service time in either the sleep or busy
mode. The sleep mode uses the Unix nanosleep() [1] to emulate the
service time, while the busy mode is a controlled CPU intensive
loop that runs for the length of the service time. The two modes
are used to emulate non CPU-intensive, i.e., sensor-intensive, and
CPU-intensive CoAP requests, respectively.

5 DEPLOYMENT PROCESS

The first step in creating a WoTbench deployment is to select the
hardware platform. While WoTbench can be deployed on multiple
machines, we focus on a single machine deployment. Once the plat-
form is selected, we then need to design and apply the benchmark
configuration. The benchmark configuration specifies the number
of devices of different types and how the devices are positioned
on the hardware platform. An optimal benchmark configuration
should utilize the resources of the underlying platform as much as
possible. Meanwhile, it should minimize the impact of contention
for resources in the underlying hardware on the test results, which
can adversely impact the integrity of test results. There are several
design decisions that can help optimize this process.

One example consideration is a desire to avoid contention be-
tween the OS processes and the WoTbench processes. Since core 0

10T ’19, October 22-25, 2019, Bilbao, Spain

normally is used to run OS processes [14], we avoid scheduling the
GE and device nodes on core 0. Instead, core 0 is used to run the test
harness process which is not latency-critical. Another consideration
is to ensure a match of desired workload characteristics. To achieve
this, each GE, i.e., the workload generator, in the setup needs a
complete processing core. Another consideration is regarding the
scheduling mechanism of devices on CPU cores. In particular, one
needs to decide about whether to bind each container to a single
core using CPU affinity [20], or alternatively, leave the container
scheduling decisions to the Linux scheduler. The answer to this
question should not affect the test results. However, optimizing this
decision has the advantage of using the hardware resources more
efficiently. The decision to use affinity depends on the workload
and the types of devices under test. Therefore, the answer can be
determined experimentally for each specific combination of device
types and workload.

6 RELATED WORK

In the past decade, real experimental facilities such as IoT-lab [27]
and WoTT [6] were developed to enable testing and scalability
analysis of a network of devices. Conducting a scalability test in a
testbed with real devices may result in more accurate evaluation.
However, the use of real testbeds might be not be feasible when eval-
uating large scale deployments. A large number of frameworks have
been developed to simulate IoT [18, 26] and in particular WoT [8, 9]
environments. Simulation approaches can suffer from a lack of
representativeness to real deployments. Emulation frameworks
address some of the limitations around the representativeness of
simulation approaches. Specifically, emulation approaches can po-
tentially allow the execution of parts of actual applications and
protocols. Several IoT-specific frameworks have been developed re-
cently [5, 12, 15, 19, 22, 28]. However, to the best of our knowledge,
no one approach provides in an integrated way all the features
supported by WoTbench.

7 CONCLUSIONS AND FUTURE WORK

In this paper we proposed WoTbench, a benchmarking framework
for WoT environments. WoTbench can be deployed on commodity
multicore hardware. It allows users to perform pre-deployment
capacity planning studies of WoT systems. Future work includes ap-
plying WoTbench for testing a WoT environment with realistic test
configurations. Moreover, we plan to add support for HTTP/CoAP
conversion to the GE component. Finally, since the emulated WoT-
devices run on a multicore platform, the contention for shared
hardware resources may impact the test result. In future we plan
to design an approach to detect these potential side effects on the
test results.

8 ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

REFERENCES

[1] 2017. nanosleep(2) - Linux manual page. Retrieved 30/08/2019 from http://man7.
org/linux/man-pages/man2/nanosleep.2.html

[2] 2019. Constrained RESTful Environments (core). Retrieved 30/08/2019 from
https://datatracker.ietf.org/wg/core/charter/

Raoufeh Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin Arlitt

[3] 2019. Limit a container’s resources. Retrieved 30/08/2019 from https://docs.docker.

com/config/containers/resource_constraints/

[4] 2019. node-coap. Retrieved 30/08/2019 from https://github.com/mcollina/node-

coap
[5] F.Banaie, J. Misic, V. B Misic, M. H. Yaghmaee, and S.A. Hosseini. 2018. Per-
formance Analysis of Multithreaded IoT Gateway. Internet of Things Journal
(2018).

[6] L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone, and G. Ferrari.
2015. Design and Deployment of an IoT Application-Oriented Testbed. Computer
48 (09 2015), 32-40. https://doi.org/10.1109/MC.2015.253

[7] F.Bonomi, R. Milito, P. Natarajan, and J. Zhu. 2014. Fog computing: A platform

for internet of things and analytics. In Big data and internet of things: A roadmap

for smart environments. Springer, 169-186.

G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli. 2014. A simula-

tion platform for large-scale internet of things scenarios in urban environments.

In Proc. International Conference on IoT in Urban Space. ICST (Institute for Com-

puter Sciences, Social-Informatics and Telecommunications Engineering), 50-55.

[9] G.DAngelo, S. Ferretti, and V. Ghini. 2017. Multi-level simulation of Internet of
Things on smart territories. Simulation Modelling Practice and Theory 73 (2017).

[10] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight

and flexible operating system for tiny networked sensors. In 29th annual IEEE

international conference on local computer networks. IEEE, 455-462.

Alexei Ledenev et. al. [n.d.]. Pumba: Chaos testing tool for Docker. Retrieved

30/08/2019 from https://github.com/alexei-led/pumba

[12] J. Hasenburg, M. Grambow, E. Griinewald, S. Huk, and D. Bermbach. 2019. Mock-
Fog: Emulating Fog Computing Infrastructure in the Cloud. In Proc. of the First
IEEE International Conference on Fog Computing.

[13] R.Hashemian, D. Krishnamurthy, and M. Arlitt. [n.d.]. Web Workload Generation
Challenges - an Empirical Investigation. Softw. Pract. Exper. 42 ([n. d.]), 629-647.
https://doi.org/10.1002/spe.1093

[14] R.Hashemian, D.r Krishnamurthy, M. Arlitt, and N. Carlsson. 2013. Improving the
scalability of a multi-core web server. In Proc. of the 4th ACM/SPEC International
Conference on Performance Engineering. ACM, 161-172.

[15] M. Kovatsch, M. Lanter, and Z. Shelby. 2014. Californium: Scalable cloud services

for the internet of things with coap. In Internet of Things (I0T), 2014 International

Conference on the. IEEE, 1-6.

K. Kuladinithi, O. Bergmann, Th. Pétsch, M. Becker, and C. Gorg. 2011. Imple-

mentation of coap and its application in transport logistics. Proc. IP+ SN, Chicago,

IL, USA (2011).

P. Levis et al. 2005. TinyOS: An operating system for sensor networks. In Ambient

intelligence. Springer, 115-148.

Ph. Levis, N. Lee, M. Welsh, and D. Culler. 2003. TOSSIM: Accurate and Scalable

Simulation of Entire TinyOS Applications. In Proc. of the Ist International Confer-

ence on Embedded Networked Sensor Systems (SenSys "03). ACM, New York, NY,

USA, 126-137. https://doi.org/10.1145/958491.958506

[19] V.Looga, Zh. Ou, Y. Deng, and A. Yla-Jaaski. 2012. Mammoth: A massive-scale

emulation platform for internet of things. In Cloud Computing and Intelligent

Systems (CCIS), 2012 IEEE 2nd International Conference on, Vol. 3. IEEE, 1235-1239.

R.Love. [n.d.]. CPU Affinity. Retrieved 30/08/2019 from http://www.linuxjournal.

com/article/6799

[21] LiMa, Y. Yang, Zh. Qiu, G. Xie, Y. Pan, and Sh. Liu. 2006. Towards a complete OWL
ontology benchmark. In European Semantic Web Conference. Springer, 125-139.

[22] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran. 2017. Emufog;:
Extensible and scalable emulation of large-scale fog computing infrastructures.
In 2017 IEEE Fog World Congress (FWC). IEEE, 1-6.

[23] D. Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J. 2014, 239, Article 2 (March 2014). http:
//dLacm.org/citation.cfm?id=2600239.2600241

[24] D. Mosberger and T. Jin. 1998. httperf: a tool for measuring web server perfor-
mance. SIGMETRICS Perform. Eval. Rev. 26 (Dec. 1998), 31-37. Issue 3.

[25] J. Mukherjee, Diwakar. Krishnamurthy, and M. Wang. 2016. Subscriber-Driven

Interference Detection for Cloud-Based Web Services. IEEE Transactions on

Network and Service Management (2016).

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and Th. Voigt. 2006. Cross-level

sensor network simulation with cooja. In Local computer networks, proceedings

2006 31st IEEE conference on. IEEE, 641-648.

[27] G. Z Papadopoulos, J. Beaudaux, A. Gallais, Th. Noel, and G. Schreiner. 2013.
Adding value to WSN simulation using the [oT-LAB experimental platform. In
Wireless and Mobile Computing, Networking and Communications (WiMob), 2013
IEEE 9th International Conference on. IEEE, 485-490.

[28] B.Ramprasad, J. Mukherjee, and M. Litoiu. 2018. A Smart Testing Framework

for IoT Applications. In 2018 IEEE/ACM International Conference on Utility and

Cloud Computing Companion (UCC Companion). IEEE, 252-257.

Mark S. [n.d.]. collectl. Retrieved 30/08/2019 from http://collectl.sourceforge.net/

Documentation.html

[30] Z.Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP). RFC 7252. RFC Editor. http://www.rfc-editor.org/rfc/rfc7252.txt http:

8

[11

[16

[17

[18

™
=

™
2

[29

http://man7.org/linux/man-pages/man2/nanosleep.2.html
http://man7.org/linux/man-pages/man2/nanosleep.2.html
https://datatracker.ietf.org/wg/core/charter/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://github.com/mcollina/node-coap
https://github.com/mcollina/node-coap
https://doi.org/10.1109/MC.2015.253
https://github.com/alexei-led/pumba
https://doi.org/10.1002/spe.1093
https://doi.org/10.1145/958491.958506
http://www.linuxjournal.com/article/6799
http://www.linuxjournal.com/article/6799
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://collectl.sourceforge.net/Documentation.html
http://collectl.sourceforge.net/Documentation.html
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt

WoTbench: A Benchmarking Framework for the Web of Things 10T *19, October 22-25, 2019, Bilbao, Spain

/Iwww.rfc-editor.org/rfc/rfc7252.txt. IEEE 2nd World Forum on. IEEE, 63-68.

[31] W.Sobel, Sh. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov, [33] F. Van den Abeele, E. Dalipi, I. Moerman, P. Demeester, and J. Hoebeke. 2016.
Sh. Patil, A. Fox, and D. Patterson. 2008. Cloudstone: Multi-platform, multi- Improving user interactions with constrained devices in the web of things. In
language benchmark and measurement tools for web 2.0. In Proc. of CCA, Vol. 8. 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE, 153-158.

32] G. Tanganelli, C. Vallati, and E. Mingozzi. 2015. CoAPthon: easy development of
g g y P
CoAP-based IoT applications with Python. In Internet of Things (WF-IoT), 2015

http://www.rfc-editor.org/rfc/rfc7252.txt

	Abstract
	1 Introduction
	2 Constrained Application Protocol
	3 Use case for WoT benchmarking
	4 WoTbench
	4.1 The WoTbench Core
	4.2 Gateway Emulator
	4.3 Devices

	5 Deployment Process
	6 Related Work
	7 Conclusions and Future Work
	8 ACKNOWLEDGMENTS
	References

