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Internet Content Delivery 

• Large amounts of data with varying popularity 

• Multi-billion market ($8B to $20B, 2012-2015) 

• Goal: Minimize content delivery costs 

• Migration to cloud data centers 

•   
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Periodic Workloads 

• Characterization of Spotify traces 

• In addition to diurnal traffic volumes … 

• … we found that also the Zipf exponent vary with time-of-day  

 

 



Content Delivery 

• Cloud-based delivery 

 

 

• Dedicated infrastructure 
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Cloud bandwidth elastic;  

however, flexible comes 

at premium … 
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High-level problem 

• Minimize content delivery costs 

 

 

 

• How to get the best out of two worlds? 

• Improved workload models and predcition enables prefetching … 

• Dynamic content allocation 

• Utilize capped bandwidth (and storage) as much as possible 

• Use elastic cloud-based services to serve “spillover”   

•    
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Dedicated servers Capped   $ 



Dynamic Content Allocation Problem 

18 

• Formulate as a finite horizon dynamic 

decision process problem 

• Show discrete time decision process 

is good approximation 

• Define exact solution as MILP  

• Provide computationally feasible 

approximations (and prove properties 

about approximation ratios) 

• Validate model and policies using 

traces from Spotify  
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Demand of files in  

capped BW storage  



Cost minimization formulation 

Capped BW limit (U) 



Cost minimization formulation 



Cost minimization formulation 

Served from capped  

BW storage  



Cost minimization formulation 
Served using elastic  

cloud resources 
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Cost minimization formulation 
Utilization maximization 
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• Finite horizon decision 

problem 

 

Discrete-time Decision Problem 

Theorem: Exact solution as a MILP 
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Trace-based analysis (Synthetic) 
 

• Normalized traffic savings 

•   

 

 

 

 

 

• Workload: 3 groups of 1000 files; peaks N(0,2) offset by 8h for 

each group; sinusoid with 24h period; min/max ratio 

N(0.075,0.075), file sizes U(L/2,3L/2), bandwidth demand 

Bounded Pareto (Bmin, Bmax, )  

 

 

Based on Spotify  

trace characterization 



Trace-based analysis (Synthetic) 

Normalize against policy  

that stores the most  

popular files 
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Normalize against offline  

“global knowledge” policy  

that stores most popular files 
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• Finite horizon dynamic decision problem 

• Discrete mean-value approximation 

• Exact solution as MILP  

• Computationally feasible approximations 

(e.g., k-SLA) with performance bounds 

• Validate model and policies using traces 

from Spotify  
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Niklas Carlsson (niklas.carlsson@liu.se) 
www.ida.liu.se/~nikca/papers/infocom14.pdf 
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