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ABSTRACT

Many factors such as the tendency of individuals to deveddg-r
tionships based on mutual acquaintances, proximity, comimo
terests, or combinations thereof, are known to contriboveatd
evolution of social networks. In this paper, we analyze arng
online social aggregatqorFriendFeed, which collates content gen-
erated by participating individuals on a variety of Web Z26év&ces
and allows easy dissemination of the aggregated conterthtr o
participants of the aggregator. Analyzing data collectetiveen
September 2008 and May 2009, we find that although preferen-
tial attachment captures the evolution of the network,rifience
varies significantly based on how long ago a user joined the se
vice. In particular, preferential attachment does not appe ap-
ply to new entrants of the FriendFeed service. Analysis esigg
that proximity bias plays an important role in link formatiowe
study the influence of common foci and find that individualsena
a greater affinity toward those with similar interests.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Miscellaneous; C.4
[Computer Systems Organizatiof: Performance of Systems; H.3.5
[Online Information Service]: Web-based services; J.@dmputer
Applications]: Social and Behavioral Sciences

General Terms
Measurement
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1. INTRODUCTION

With the increasing popularity of online social networkii@SN)
and content sharing services that enable Web users to sistaet
messages, blogs, videos, and photos, it is not surprisatguders
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have accounts on many such services. This scenario resulte i
scattering of information, and has motivated the develogrogso-
cial aggregation services that seamlessly collate copiasted by
a user on various services and facilitate easy dissemimafithe
collated content. In this paper, we empirically study theletion
of one such aggregation service called FriendFeed [7].

FriendFeed is an online social networking service spetijiin
content aggregation. FriendFeed allows its users to agtgempn-
tent from services such as Twitter, Flickr, Reddit, Sturbigen,
and YouTube. At the time of writing, a total of 57 services aer
supported. By subscribing to a service, a user entitles\#FReed
to make API calls on the user’s behalf and automaticallyiobte
formation on all activity of the user on their subscribedvisss.
FriendFeed broadcasts this information to all “followerd”this
user. For example, user A choosing to follow user B results in
a unidirectional link from A to B (cf. Figure 1). In FriendFee
jargon, A is called the “follower” of B and B the “friend” of A.
Similarly, A follows C. Now, any activity by B (or C) on herki
subscribed services can be viewed on a consolidated ptatgr
A. Note that B may or may not choose to reciprocate and hence
follow A. Essentially, the FriendFeed OSN may be viewed as a d
rected graph. In this paper, we refer to the initiator of & ks the
source nodeand the user being followed as ttiestination node

FriendFeed enables link formation in several intriguingysva
For example, users can post comments on content postediby the
“friends”. Once a user makes a comment on a “friend’s” postiwi
the FriendFeed service, the post becomes visible to akbtfubeow-
ing the user. For instance, in Figure 1, if A posts a commerd on
tweetby B, the tweet becomes visible to D and increases chances
of D following B. Note that A need not have an account on Twit-
ter to view B’s tweets; users can view information postedHmsijrt
“friends” on services on which they themselves do not havaan
count. A new user may also wish to follow a set of famous blogge
and active users, recommended by FriendFeed at the timénef jo
ing. In addition, a user can choose to follow people basedhein t
email contacts. Links may also form because of social phenam
as discussed next.

The social science literature has documented many fadtats t
influence the evolutionary dynamics affline social networks [11,
18,25]; here we consider these factors in the context ohBFReed.
For instancetriadic closure[25] wherein individuals form new re-
lationships with friends of existing friends may apply taefd-
Feed. More generally, relationships may be formed becafise o
proximity between individuals [11, 25, 26]. Presencecofmmon
interaction focusor sharedgroup affiliation between individuals
is also known to increase the potential of forming new refati
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Figure 1: Anillustration of FriendFeed’s structure.

ships [18], and may result in relationships forming that ao¢
purely guided by proximity.

In this paper, we ask the following questions with referetece
the evolution of the FriendFeed social network:

1. Can preferential attachment [2, 21, 26, 27] explain ei@iu
of the network? If yes, what role does age of the involved
nodes play.

. What role social phenomena such as triadic closure and pro
imity bias (defined in terms of the shortest distance between
two nodes in the network graph) have in network evolution?
How do these social pulls coexist with preferential attach-
ment?

. How does presence/absence of common group affiliation in-
fluence link formation? In this work, we assume, somewhat
simplistically, that subscription to common services isran
dication of common interaction foci.

Social aggregators are arguably a niche service that paifgriar-
get the “information hungry” Web users. In this work, we gog/
insights on how the social network of this new type of senice
evolving. Our work uses this service and its users to higitlige
importance of social factors in link formation.

Our observations are as follows. First, we find that the teage
of edge formation based on source and destination degrees, a
phenomenon, depends significantly on the age of the nodesirli
preferential attachment may explain observed data onlyvigt-
established nodes. Second, we find that the tendency to figese

preferential attachment model. We also note that sociakegggors
are a relatively new type of service, and, to the best of comin
edge, prior work has not considered how these aggregatohgeev

This remainder of the paper is structured as follows. Dataco
tion methodology is discussed in Section 2, followed by esutts
in Section 3. Section 4 reviews related work. Concludingasm
are presented in Section 5.

2. MEASUREMENT METHODOLOGY

Study of social network evolution requires data to be ctdliéc
over a relatively long time period. In this section, we déseiour
measurement methodology. Section 2.1 discusses our déga-co
tion approach, Section 2.2 presents high-level summaryeo@iata
sets, while Section 2.3 outlines limitations of the dats.set

2.1 Data Collection

We obtained regular snapshots of the FriendFeed networkeove
period of 70 days between 26 February and 6 May, 2009. Thés dat
collection was complemented with two additional snapshbtee
FriendFeed social network, one from September 2008, artthi@no
from January 2009. Table 1 summarizes the dataset.

We crawl FriendFeed’s network once within every five days be-
tween 26 February and 6 May, 2009. Our crawler uses Friend-
Feed’s API. The API returns for any user under considerafion
formation such as the list of users being followed, the sexvsub-
scribed, and recent comments posted. The crawl on 26 Februar
was seeded using information from the servigatslic timeline
which returns details of 20 most recent activities on Frieset],
followed by a Breadth First Search (BFS) to discover othersis
In addition, we probed the public timeline for new users oece
ery five minutes, or whenever the list of users maintainedhigy t
crawler was exhausted (in order to restart the crawl).

All subsequent crawls of the FriendFeed network were seleygled
the list of users generated by the most recent crawl. The basit-
egy was identical to that used for the initial crawl in that fiub-
lic timeline was probed at least once every five minutes ornwhe
ever the crawler’s list of users became empty. Each of theses
lasted no more than five days. We note that invariably the leraw
finished crawling data for all the users seen previously iwithe
first two days of the crawl and then frequently probed the ipubl
timeline (for new users to restart the BFS) for the remairhrge
days. In fact, for the latter three days, on average, theleramded
up probing the public timeline once each second. In therlditee
days, the total number of new users discovered was on anggvera
only 6% of the users crawled in first two days. We find that 89% of
these newly discovered users have degrek we hypothesize that

with those close by appears to act as tie breaker betweers node there are users who have just joined the network. We do nltdac

of similar degree. Third, we find that exposure of users to-com
mon foci appears to increase the probability of edge foronatis
compared to an absence of such interaction points. In péatjc
bias owing to group affiliation is a more dominant factor fdge
formation for relatively new source nodes. In general, qualy
ses suggest that preferential attachment models may applyt®
well-entrenched, relatively old users, whereas the newswe of-
ten forming links that are best explained by theories sudjrasp
affiliation, homophily, and triadic closure.

Much of the related work on online social networks, with tke e
ception of [4,16,19] (discussed in detail in Section 4), fleasissed
on other aspects such as structural properties, user loghawd
information dissemination (e.g., see [1,5, 6, 10, 12—-15, 2ihd
have not considered the social phenomena mentioned above.
particular, one contribution of our work is to demonstrabevtage,
proximity bias, and group affliation may augment the welékmn

in our analysis the newly discovered users with degrek® (0.1%
of new users discovered) as these might be the users thttdiis
the network earlier but were not crawled.

In addition, we also have two other snapshots of the FrieedFe
network. The first snapshot was taken between 14 and 23 Septem
ber 2008, and second taken between 6 and 12 January 2009. We
note that the users found in September 2008 are a propertsubse
of those discovered in January 2009, which in turn are a prope
subset of users found on 26 February 2009. Also, for evergroth
crawl, the set of users discovered is a superset of thoseiprt
vious dataset. The two datasets of September 2008 and yanuar
2009 give us an opportunity to create two classes of nodedbas
on age while studying the influence of age bias on social métwo
evolution. For example, the September 2008 dataset allsvis u
consider nodes that are at least 150 days old when we staged t
longitudinal data collection.



Crawl # Collection Time N E d Ey(%) P
1 14 Sep-23 Sep 2008 113,247 1,403,444 24.7 56.7 4.02
2 6 Jan-12 Jan 2009 130,603 2,024,344 31.0 55.3 4.05
3 26 Feb-3 Mar 2009 162,293 3,005,545 36.9 46.9 3.99
16 1 May-6 May 2009 218,441 3,750,632 34.3 45.7 4.04

Table 1: High-level statistics. N is the total number of nodes, F is the total number of edges, is the average degreeF is link

reciprocity, and P is average path length.

2.2 Summary of Data Sets

Table 1 presents a high-level summary of the collected dstta.
the end of our data collection, more than 200 thousand users w
found with close to four million directed edges among them. |
general, a majority of the users, approximately 60%, silbsdrto
between two and ten services. Those users that are sultbtoibe
only one service are typically subscribed to Facebook,t&wior a
blog. For further details on service aggregation and thesge, we
refer the reader to our earlier work [9].

2.3 Limitations

It is important to note the limitations of the collected dtiaal-
low proper interpretation of our results. One limitatiomibyprod-
uct of the information returned by the APIs. The APIs do nat-pr
vide us timestamps on when a user joined or when new links are
formed between users, and therefore, we have to estimate the
from the data collected. For the new users that join the nétwe
use the time at which we found them as an estimate of their time
of entry into the system. Any new link found between users tha
were present in an earlier crawl, however, is proof of refahip
formed since the previous crawl. Here again, we associatgrtte
at which we find a new link to the time stamp of the link formatio

Itis also likely that we do not capture the entire FriendFeed
work. However, because of our frequent polling of the putiiie-
line, we believe that a very large fraction of the active ssaust
have been captured.

Finally, we also note that approximately 12% of the nodes dis
covered during the crawl haativate profiles. For these users, we
are not able to obtain the list of users they follow, and arheot
information pertaining to their activities. Our analysesits these
private users.

3. RESULTS

There exists a vast, growing, and somewhat controverséahli
ture on evolution of networks (e.g., see [2,21, 26, 27]) fé&tantial
attachment models, which received much attention follgwtime
work by Barabasi and Albert [2] on “scale-free” networks ,[27—
23, 27], are considered in Section 3.1. Proximity bias,ipalerly
with regard to its coexistence with preferential attachiigris-
cussed in Section 3.2. Section 3.3 discusses our resul@l®nf
shared group affiliations in link formation. The results based on
the link formations seen in our continuous data collectietwieen
February and May, 2009.

3.1 Preferential Attachment Models

Preferential attachment models for network evolutionestast
new nodes tend to connect to nodes with higher degrees thatrer
to nodes with lower degrees [2, 21, 26]. The general classeff p
erential attachment models require the probabjityof selecting
node: with k; links to be proportional td;*, wherea is a con-
stant witha: & 1 implying linear preferential attachment and> 1
implying super-linear preferential attachment [26]. lan@refer-
ential attachment is known to result in scale-free netw@2k26].

Average New Links Per Node

Source Node Outdegree (x)
(a) Nodes older than 50 days.

Y
*8 L

Average New Links Per Node

Source Node Outdegree (x)
(b) Nodes younger than 50 days.

Figure 2: Preferential attachment for source node selectio
when forming new links.

Empirical studies have found linear preferential attachinte ap-
ply to online social networks such as Delicious, Flickr, afathoo!
Answers [16, 19] but not to LinkedIn [16].

We use Maximum Likelihood Estimation (MLE) principle to es-
timate the parameter [3, 28]. Specifically, we assumg o~ k;*
and for every new edge that forms in the network we measure the
log-likelihood that this new link was formed under this mbd#&'e
vary a between zero to two and report thevalue that produces
the highest likelihood value.

For the case of source node selection, we take node outefegre
as thek; and obtain a maximum likely value of 0.8 af for the
complete network. This suggests that linear preferentiathment
reasonably applies to the selection of source nodes in tavmaf
new links. We are interested in understanding whether teerobd
behavior depends on age of the nodes. Therefore, we dividiesno
into different classes based on their age (estimated asffeeedce
between time of link formation and the time since arrival ofla
in the system) and label the nodes as “younger thgrdays” and
“older than(z) days”. We study how age biasaffects preferential
attachment.

Figure 2(a) and (b) plot the average number of new links fakrme
by source nodes with out-degréefor the case when the source
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Figure 3: Preferential attachment for destination node wha forming new links. Average number of new links received as dunction

of node in-degree for four example cases.

Age Nodes older Nodes younger
Threshold (x)| thanz days than x days
0 0.8 -
10 0.85 0.1
20 0.85 0.3
30 0.85 0.5
50 0.9 0.55
80 0.9 0.6
180 0.9 0.65

Table 2: « for different source node classes.

nodes are older than and younger than 50 days old, resggctive
While both plots suggest strong positive correlation,dingrefer-
ential attachment is especially evident for source nodasdte at
least 50 days old at the time they form new links. (The re$peat
values were 0.9 and 0.55.) Our analyses suggests that firefar-
ential attachment applies to the observed data for “oldedes but
not for “younger” nodes. Further evidence is provided inl&ab
which presents estimatedvalues for different source node classes
based on age thresholds.

Preferential attachment in the context of selecting dattn
node for new links refers to the preference of higher in-degr
nodes to be chosen as the destination nodes. For the evobftio
complete networke is 0.9, suggesting that linear preferential at-
tachment applies to selection of destination node for nelsliAs
in the preceding analysis, we investigate the role of age.ndues
are divided into classes based on the age threshdld@Id” class
consists of nodes that asedays or older, and “young” class con-
sists of nodes that are not older thamlays. Because destination
node selection depends on the source node initiating the We

Age «
Threshold £) | (old,old) (young,old) (old,young) (young,young)
0 0.9 1.05 - -

10 0.95 1.05 0.05 0.15

20 1.0 1.1 0.15 0.3

30 1.0 1.1 0.25 0.35

50 1.0 1.1 0.4 0.5

80 1.05 1.15 0.4 0.5

180 1.05 1.15 0.55 0.65

Table 3: « value for preferential attachment; columns corre-
spond to groups( source node class, destination node clas$or
new links, where groups are based on age thresholc

not only categorize the destination nodes but also the scwdes
from which the edges emanate.We consider four classes ofc¢so
destination” nodes as discussed next.

Figure 3 plots the average number of new links falling on sode
of a particular in-degree, separately for each class of rieks |
when the age threshold is 50 days. Figure 3 (a) and (b) suggest
that the number of new links attaching to “older” destinatimdes
exhibits strong positive correlation with in-degree; hoame when
the destination nodes are “younger” the link formation islmzar
in node in-degree, more so for nodes with smaller in-degrages
shown in Figure 3 (c) and (d). Table 3 presents déhealues for
various thresholds.

We summarize the results. First, age of nodes plays a signific
role in link evolution. In particular, unlike establisheddes, the
observed data of edge formation for relatively younger sazn-
not be explained based on the linear preferential attachmeah-
anism. As the average age of tlieungnodes increases, linear
preferential attachment applies. Second, for the casddadesti-
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Figure 4: Evidence of proximity bias in link formation.

nation nodes, the most likely values @f when source nodes are
youngare consistently more than when they al@ Hence, for the
selection of destination nodes belongingtd class youngsource
nodes attach more preferentially thald source nodes.

3.2 Proximity Bias

Social science literature has shown that proximity biasigrftes
node selection when new relationships are formed [11]. rpk
terms, proximity bias is the tendency of nodes to link witbsé
nearby in the network graph. Triadic closure, which states if
two nodes are two hops apart (as, for example, B is from D in
Figure 1), they are more likely to form a link; this is a spéciase
of proximity bias.

In the preceding section, we provided empirical results shg-
gest applicability of linear preferential attachment te gelection
of destination nodes when new links are formed, especiatiyhie
older nodes in the system. The preferential attachment Imdale
Section 3.1 are proximity oblivious. Here, we empiricaltudy
the role proximity plays in destination node selection witthe
FriendFeed system.
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Figure 5: Proximity bias in link formation (empirical data a nd
simulated networks)

actual network growth, proximity contributes much morethdat
would have been the case if only linear preferential attaaitrwas
applicable.

We now consider how proximity bias and preferential attaehim
may complement each other. Consider a simple model of link fo
mation which utilizes both preferential attachment andxnity
bias. Our model is as follows. For a new link to be formed, the
source node first selects the destination node in-degreg lisr
ear preferential attachment and then among all the nodesif t
in-degree, it selects the closest node to form the link, (exim-
ity bias is used as a tie breaker). To confirm the applicghdft
our model, we again simulate link formation and this timejken
the previous simulation, after selecting the destinatiedegree we
pick the closest node rather than any random one; the rdsuits
this simulation are also shown in Figure 5 and these exhititser
match to the empirical data. We separately note that in dieated
data, for over 80% of the cases the closest destination rotiato
in-degree is selected for link formation.

3.3 Group Affiliation

Figure 4 shows the average number of new edges formed in a Group affiliation based evolution suggests that users exptis

period of five days as a function of the distancémeasured in
hops) between the nodes prior to link formation. A signifidaias

towards closer nodes in the network is seen in the link foilonat

We next investigate how preferential attachment and prityibias

potentially coexist.

First, we consider whether or not preferential attachmestlts
in some degree of proximity bias, for the FriendFeed netwdHe
possibility exists because the FriendFeed network is cheniaed
by a very small average path length of 4 (cf. Table 1) and prede

common interaction foci form links with each other more oftiean
those without [11, 24]. Kossinets and Watts [11], for ins@&rcon-
sidered a social network of students, faculty, and staff, fannd
that students attending a common lecture were more likefigrta
links than those that did not. Similar to Kossinets and Walis
objective is to discern the effect of group affiliations oolexion of
the FriendFeed network. We use subscription to commoncsvi
as evidence of common foci. In the ensuing discussion, w&epte
evidence of group affiliation at work and analyze the coexisé of

high degree nodes may be close to many nodes. For our purposegroup affiliation with preferential attachment and proxintias.

we focus on link formations for destination nodes which ddeo
than 50 days; these account for over 70% of new links foundiin o
data set. We pick the source nodes of all the new edges fornted a
simulate the edge formation assuming linear preferenttakch-
ment [2]; i.e., for the source node forming new links, thetitagion
node is selected based on the probability which is direathppr-
tional to the in-degree of the destination node. Figure Svshibe
cumulative distribution function of the new links formedtlveen
nodes at a distance hops for the simulated network graph. For
the ease of comparison, the cumulative distribution cpomeding

to the collected dataset is also presented. Clearly, thelwte are
significantly different. Empirically, the triadic closupgoperty ap-
plies to 82% of the new links, compared to 47% of the links & th
simulated data. As the number of hops increases to threeend b
yond, the plots for the two cases start to overlap. It appisatsin

Figure 6 plots the empirical probability of edge formatiog b
tween two nodes as a function of the in-degree of the dekimat
node, corresponding to the two cases - the two nodes eithee sh
or do not share a common service. For the source nodes younger
than 50 days (Figure 6(b)), the difference in the empiricabp-
bilities is discernible till a threshold in-degree of 35. tahat the
plot uses logarithmic scale and hence the differences avediers
of 10; for instance, for destination in-degree equal to 15, three
times more probable that link forms if the nodes have a common
service than if they do not. At first, it may seem that with exggo
the maximum in-degree of 24,536, the threshold value of 3&ds
low. However, it must be noted that edges falling on destinat
nodes with in-degree less than 35 comprise of more than 49% of
the total new edges. The diminishing difference for higklagrees
indicates that here preferential attachment supersedefécts of
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Figure 6: Evidence of group affiliation mechanisms.

group affiliation. Qualitatively similar results were otsted for age
thresholds less than 50 days.

For nodes older than 50 days (Figure 6(a)), on the contrary, n
gap was seen in the empirical probabilities for the two cades
general, it appears that as nodes age, their behavior islégsn-
dent on factors such as group affiliation.

Figure 7 shows the effect of group affiliation with proximity
bias by graphing the empirical probability of edge formatemr-
responding to the number of hops between the source andaesti
tion, for the two classes considered earlier; i.e., with aitthout
common services. For number of hops equal to two, the empir-
ical probabilities are nearly identical. This is perhapg do the
dominance of triadic closure. For hops greater than twoydle
of group affiliation is evident, as can be seen from the erogliri
probabilities in the figure. For instance, for nodes yourtgan 50
days, two nodes which are four hops away are 8 times morg likel
to form an edge if a service is common than if not.

For nodes that just joined the FriendFeed network it appeats
the group affiliation mechanism is significantly more infltiah
than proximity bias. For instance, when both source andraest
tion nodes are younger than 10 days, in over 95% of the cdwes, t
destination node is not reachable from source node (heos@pr
ity cannot be considered a factor for these); however, fé6 &
these cases a common service exists. If we simulate thendtsti
node selection (for these younger nodes in the system) asgbch
the destination node randomly then, on average, in only 40%eo
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Figure 7: Group affiliation and proximity bias.

4. RELATED WORK

Structural properties of online social networks such ageakeg
distributions, diameter, and clustering coefficient haserbstudied
[1,20]. Kumaret al.[13] studied structural changes of Flickr and
Yahoo! 360 networks due to their evolution. They observe tha
connected components that are not part of the giant comp¢iren
isolated communities) evolve one user at a time, often mertie
the giant component, and seldom merge with each other.

Evolution of online networks and models that may explain the
observed growth has been considered [4,16,19]. Mistoed [19]
indicate the applicability of preferential attachment amaidic clo-
sure on the Flickr network. Capocet al. [4] evaluate the ap-
plicability of preferential attachment on evolution of Wkdia.
Among these, the work by Leskovet al. [16] is closely related
to ours. Leskoveet al.[16] show that linear preferential attach-
ment [2] can model the source and destination node seleftion
new links reasonably well for Flickr, Delicious, and YahoWh-
swers complete networks. They compare the applicabilitglif
ferent models based on parameters like node degree, agtheind
combination for source and destination node selectiornfocom-
plete networks. We, on the other hand, focus on the variamce i
applicability of preferential attachment model (based odende-
gree) on nodes of different ages. For the networks consideye
Leskovecet al. [16] they find that most of the new links lead to
triadic closure [25]. They compare different triangle ahgsmod-
els using measures like tie strength [8] but do not explaiow'h
preferential attachment and triadic closure co-existBheeially
for classes of nodes where preferential attachment exaaibiels

cases a common service was found between the nodes. This sugselection of destination node for new links. We present gplEm

gests that group affiliation is an important factor for limkrhation,
especially for relatively new nodes in the system.

model, based on co-existence of preferential attachmehpeox-
imity bias, which concurs well with the observed data.



5. CONCLUSIONS AND FUTURE WORK

This paper examined the evolution of an online social aggreg

tion network. Our analysis shows that age of nodes, proyibet
tween nodes, and subscription to common services are $attar
influence formation of new links in our data set. In particutaur

analysis shows that by categorizing nodes based on age ane ca

gain better insights into behavior of nodes, especiallyafmplica-
bility of preferential attachment models. We also find thatqim-
ity bias acts as a tie breaker, when preferential attachmaaains
the observed data reasonably well. Similarly, our analgbisvs
that group affiliation influences link formation, espegidtir nodes
which have recently joined the network.

While the findings of our work may be specific to a social aggre-

gation network, our analyses are fairly general and can fardini
a variety of other settings, and there remains many integest/-
enues to pursue in the future. One important direction istsiter
the evolution of other online social networks and study hosvfac-
tors discussed in this work influence network evolution. dgtaf
other online social networks may help identity which fastare
intrinsic to the evolution of online networks, thus leadtoglevel-
opment of calibrated models for network evolution.
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