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ABSTRACT
Many factors such as the tendency of individuals to develop rela-
tionships based on mutual acquaintances, proximity, common in-
terests, or combinations thereof, are known to contribute toward
evolution of social networks. In this paper, we analyze an evolving
online social aggregator, FriendFeed, which collates content gen-
erated by participating individuals on a variety of Web 2.0 services
and allows easy dissemination of the aggregated content to other
participants of the aggregator. Analyzing data collected between
September 2008 and May 2009, we find that although preferen-
tial attachment captures the evolution of the network, its influence
varies significantly based on how long ago a user joined the ser-
vice. In particular, preferential attachment does not appear to ap-
ply to new entrants of the FriendFeed service. Analysis suggests
that proximity bias plays an important role in link formation. We
study the influence of common foci and find that individuals have
a greater affinity toward those with similar interests.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous; C.4
[Computer Systems Organization]: Performance of Systems; H.3.5
[Online Information Service]: Web-based services; J.4 [Computer
Applications]: Social and Behavioral Sciences

General Terms
Measurement

Keywords
Social Networks, Social Aggregation, Evolution, Web 2.0

1. INTRODUCTION
With the increasing popularity of online social networking(OSN)

and content sharing services that enable Web users to share instant
messages, blogs, videos, and photos, it is not surprising that users
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have accounts on many such services. This scenario results in the
scattering of information, and has motivated the development of so-
cial aggregation services that seamlessly collate contentposted by
a user on various services and facilitate easy dissemination of the
collated content. In this paper, we empirically study the evolution
of one such aggregation service called FriendFeed [7].

FriendFeed is an online social networking service specializing in
content aggregation. FriendFeed allows its users to aggregate con-
tent from services such as Twitter, Flickr, Reddit, StumbleUpon,
and YouTube. At the time of writing, a total of 57 services were
supported. By subscribing to a service, a user entitles FriendFeed
to make API calls on the user’s behalf and automatically obtain in-
formation on all activity of the user on their subscribed services.
FriendFeed broadcasts this information to all “followers”of this
user. For example, user A choosing to follow user B results in
a unidirectional link from A to B (cf. Figure 1). In FriendFeed
jargon, A is called the “follower” of B and B the “friend” of A.
Similarly, A follows C. Now, any activity by B (or C) on her/his
subscribed services can be viewed on a consolidated platform by
A. Note that B may or may not choose to reciprocate and hence
follow A. Essentially, the FriendFeed OSN may be viewed as a di-
rected graph. In this paper, we refer to the initiator of a link as the
source node, and the user being followed as thedestination node.

FriendFeed enables link formation in several intriguing ways.
For example, users can post comments on content posted by their
“friends”. Once a user makes a comment on a “friend’s” post within
the FriendFeed service, the post becomes visible to all those follow-
ing the user. For instance, in Figure 1, if A posts a comment ona
tweetby B, the tweet becomes visible to D and increases chances
of D following B. Note that A need not have an account on Twit-
ter to view B’s tweets; users can view information posted by their
“friends” on services on which they themselves do not have anac-
count. A new user may also wish to follow a set of famous bloggers
and active users, recommended by FriendFeed at the time of join-
ing. In addition, a user can choose to follow people based on their
email contacts. Links may also form because of social phenomena
as discussed next.

The social science literature has documented many factors that
influence the evolutionary dynamics ofofflinesocial networks [11,
18,25]; here we consider these factors in the context of FriendFeed.
For instance,triadic closure[25] wherein individuals form new re-
lationships with friends of existing friends may apply to Friend-
Feed. More generally, relationships may be formed because of
proximity between individuals [11, 25, 26]. Presence ofcommon
interaction focusor sharedgroup affiliation between individuals
is also known to increase the potential of forming new relation-
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Figure 1: An illustration of FriendFeed’s structure.

ships [18], and may result in relationships forming that arenot
purely guided by proximity.

In this paper, we ask the following questions with referenceto
the evolution of the FriendFeed social network:

1. Can preferential attachment [2, 21, 26, 27] explain evolution
of the network? If yes, what role does age of the involved
nodes play.

2. What role social phenomena such as triadic closure and prox-
imity bias (defined in terms of the shortest distance between
two nodes in the network graph) have in network evolution?
How do these social pulls coexist with preferential attach-
ment?

3. How does presence/absence of common group affiliation in-
fluence link formation? In this work, we assume, somewhat
simplistically, that subscription to common services is anin-
dication of common interaction foci.

Social aggregators are arguably a niche service that potentially tar-
get the “information hungry” Web users. In this work, we provide
insights on how the social network of this new type of serviceis
evolving. Our work uses this service and its users to highlight the
importance of social factors in link formation.

Our observations are as follows. First, we find that the tendency
of edge formation based on source and destination degrees, as a
phenomenon, depends significantly on the age of the nodes; linear
preferential attachment may explain observed data only forwell-
established nodes. Second, we find that the tendency to form edges
with those close by appears to act as tie breaker between nodes
of similar degree. Third, we find that exposure of users to com-
mon foci appears to increase the probability of edge formation as
compared to an absence of such interaction points. In particular,
bias owing to group affiliation is a more dominant factor for edge
formation for relatively new source nodes. In general, our analy-
ses suggest that preferential attachment models may apply only to
well-entrenched, relatively old users, whereas the new users are of-
ten forming links that are best explained by theories such asgroup
affiliation, homophily, and triadic closure.

Much of the related work on online social networks, with the ex-
ception of [4,16,19] (discussed in detail in Section 4), hasfocussed
on other aspects such as structural properties, user behavior, and
information dissemination (e.g., see [1, 5, 6, 10, 12–15, 20]), and
have not considered the social phenomena mentioned above. In
particular, one contribution of our work is to demonstrate how age,
proximity bias, and group affliation may augment the well-known

preferential attachment model. We also note that social aggregators
are a relatively new type of service, and, to the best of our knowl-
edge, prior work has not considered how these aggregators evolve.

This remainder of the paper is structured as follows. Data collec-
tion methodology is discussed in Section 2, followed by our results
in Section 3. Section 4 reviews related work. Concluding remarks
are presented in Section 5.

2. MEASUREMENT METHODOLOGY
Study of social network evolution requires data to be collected

over a relatively long time period. In this section, we describe our
measurement methodology. Section 2.1 discusses our data collec-
tion approach, Section 2.2 presents high-level summary of the data
sets, while Section 2.3 outlines limitations of the data sets.

2.1 Data Collection
We obtained regular snapshots of the FriendFeed network over a

period of 70 days between 26 February and 6 May, 2009. This data
collection was complemented with two additional snapshotsof the
FriendFeed social network, one from September 2008, and another
from January 2009. Table 1 summarizes the dataset.

We crawl FriendFeed’s network once within every five days be-
tween 26 February and 6 May, 2009. Our crawler uses Friend-
Feed’s API. The API returns for any user under consideration, in-
formation such as the list of users being followed, the services sub-
scribed, and recent comments posted. The crawl on 26 February
was seeded using information from the service’spublic timeline
which returns details of 20 most recent activities on FriendFeed,
followed by a Breadth First Search (BFS) to discover other users.
In addition, we probed the public timeline for new users onceev-
ery five minutes, or whenever the list of users maintained by the
crawler was exhausted (in order to restart the crawl).

All subsequent crawls of the FriendFeed network were seededby
the list of users generated by the most recent crawl. The basic strat-
egy was identical to that used for the initial crawl in that the pub-
lic timeline was probed at least once every five minutes or when-
ever the crawler’s list of users became empty. Each of these crawls
lasted no more than five days. We note that invariably the crawler
finished crawling data for all the users seen previously within the
first two days of the crawl and then frequently probed the public
timeline (for new users to restart the BFS) for the remainingthree
days. In fact, for the latter three days, on average, the crawler ended
up probing the public timeline once each second. In the latter three
days, the total number of new users discovered was on an average
only 6% of the users crawled in first two days. We find that 89% of
these newly discovered users have degree< 2; we hypothesize that
there are users who have just joined the network. We do not include
in our analysis the newly discovered users with degree> 10 (0.1%
of new users discovered) as these might be the users that existed in
the network earlier but were not crawled.

In addition, we also have two other snapshots of the FriendFeed
network. The first snapshot was taken between 14 and 23 Septem-
ber 2008, and second taken between 6 and 12 January 2009. We
note that the users found in September 2008 are a proper subset
of those discovered in January 2009, which in turn are a proper
subset of users found on 26 February 2009. Also, for every other
crawl, the set of users discovered is a superset of those in the pre-
vious dataset. The two datasets of September 2008 and January
2009 give us an opportunity to create two classes of nodes based
on age while studying the influence of age bias on social network
evolution. For example, the September 2008 dataset allows us to
consider nodes that are at least 150 days old when we started the
longitudinal data collection.



Crawl # Collection Time N E d Eb (%) P

1 14 Sep-23 Sep 2008 113,247 1,403,444 24.7 56.7 4.02
2 6 Jan-12 Jan 2009 130,603 2,024,344 31.0 55.3 4.05
3 26 Feb-3 Mar 2009 162,293 3,005,545 36.9 46.9 3.99
16 1 May-6 May 2009 218,441 3,750,632 34.3 45.7 4.04

Table 1: High-level statistics. N is the total number of nodes,E is the total number of edges,d is the average degree,Eb is link
reciprocity, and P is average path length.

2.2 Summary of Data Sets
Table 1 presents a high-level summary of the collected data.At

the end of our data collection, more than 200 thousand users were
found with close to four million directed edges among them. In
general, a majority of the users, approximately 60%, subscribed to
between two and ten services. Those users that are subscribed to
only one service are typically subscribed to Facebook, Twitter, or a
blog. For further details on service aggregation and their usage, we
refer the reader to our earlier work [9].

2.3 Limitations
It is important to note the limitations of the collected datato al-

low proper interpretation of our results. One limitation isa byprod-
uct of the information returned by the APIs. The APIs do not pro-
vide us timestamps on when a user joined or when new links are
formed between users, and therefore, we have to estimate these
from the data collected. For the new users that join the network we
use the time at which we found them as an estimate of their time
of entry into the system. Any new link found between users that
were present in an earlier crawl, however, is proof of relationship
formed since the previous crawl. Here again, we associate the time
at which we find a new link to the time stamp of the link formation.

It is also likely that we do not capture the entire FriendFeednet-
work. However, because of our frequent polling of the publictime-
line, we believe that a very large fraction of the active users must
have been captured.

Finally, we also note that approximately 12% of the nodes dis-
covered during the crawl hadprivateprofiles. For these users, we
are not able to obtain the list of users they follow, and any other
information pertaining to their activities. Our analyses omits these
private users.

3. RESULTS
There exists a vast, growing, and somewhat controversial litera-

ture on evolution of networks (e.g., see [2,21,26,27]). Preferential
attachment models, which received much attention following the
work by Barabási and Albert [2] on “scale-free” networks [17,21–
23, 27], are considered in Section 3.1. Proximity bias, particularly
with regard to its coexistence with preferential attachment is dis-
cussed in Section 3.2. Section 3.3 discusses our results on role of
shared group affiliations in link formation. The results arebased on
the link formations seen in our continuous data collection between
February and May, 2009.

3.1 Preferential Attachment Models
Preferential attachment models for network evolution state that

new nodes tend to connect to nodes with higher degrees ratherthan
to nodes with lower degrees [2, 21, 26]. The general class of pref-
erential attachment models require the probabilitypi of selecting
nodei with ki links to be proportional toki

α, whereα is a con-
stant withα ≈ 1 implying linear preferential attachment andα > 1
implying super-linear preferential attachment [26]. Linear prefer-
ential attachment is known to result in scale-free networks[2, 26].
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Figure 2: Preferential attachment for source node selection
when forming new links.

Empirical studies have found linear preferential attachment to ap-
ply to online social networks such as Delicious, Flickr, andYahoo!
Answers [16,19] but not to LinkedIn [16].

We use Maximum Likelihood Estimation (MLE) principle to es-
timate the parameterα [3, 28]. Specifically, we assumepi ∝ ki

α

and for every new edge that forms in the network we measure the
log-likelihood that this new link was formed under this model. We
vary α between zero to two and report theα value that produces
the highest likelihood value.

For the case of source node selection, we take node out-degrees
as theki and obtain a maximum likely value of 0.8 ofα, for the
complete network. This suggests that linear preferential attachment
reasonably applies to the selection of source nodes in formation of
new links. We are interested in understanding whether the observed
behavior depends on age of the nodes. Therefore, we divide nodes
into different classes based on their age (estimated as the difference
between time of link formation and the time since arrival of node
in the system) and label the nodes as “younger than(x) days” and
“older than(x) days”. We study how age biasx affects preferential
attachment.

Figure 2(a) and (b) plot the average number of new links formed
by source nodes with out-degreek for the case when the source
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Figure 3: Preferential attachment for destination node when forming new links. Average number of new links received as afunction
of node in-degree for four example cases.

Age Nodes older Nodes younger
Threshold (x) thanx days than x days

0 0.8 -
10 0.85 0.1
20 0.85 0.3
30 0.85 0.5
50 0.9 0.55
80 0.9 0.6
180 0.9 0.65

Table 2: α for different source node classes.

nodes are older than and younger than 50 days old, respectively.
While both plots suggest strong positive correlation, linear prefer-
ential attachment is especially evident for source nodes that are at
least 50 days old at the time they form new links. (The respective α

values were 0.9 and 0.55.) Our analyses suggests that linearprefer-
ential attachment applies to the observed data for “older” nodes but
not for “younger” nodes. Further evidence is provided in Table 2
which presents estimatedα values for different source node classes
based on age thresholds.

Preferential attachment in the context of selecting destination
node for new links refers to the preference of higher in-degree
nodes to be chosen as the destination nodes. For the evolution of
complete network,α is 0.9, suggesting that linear preferential at-
tachment applies to selection of destination node for new links. As
in the preceding analysis, we investigate the role of age. The nodes
are divided into classes based on the age threshold (x). “Old” class
consists of nodes that arex days or older, and “young” class con-
sists of nodes that are not older thanx days. Because destination
node selection depends on the source node initiating the link, we

Age α

Threshold (x) (old,old) (young,old) (old,young) (young,young)
0 0.9 1.05 - -
10 0.95 1.05 0.05 0.15
20 1.0 1.1 0.15 0.3
30 1.0 1.1 0.25 0.35
50 1.0 1.1 0.4 0.5
80 1.05 1.15 0.4 0.5
180 1.05 1.15 0.55 0.65

Table 3: α value for preferential attachment; columns corre-
spond to groups〈 source node class, destination node class〉 for
new links, where groups are based on age thresholdx.

not only categorize the destination nodes but also the source nodes
from which the edges emanate.We consider four classes of “source-
destination” nodes as discussed next.

Figure 3 plots the average number of new links falling on nodes
of a particular in-degree, separately for each class of new links
when the age threshold is 50 days. Figure 3 (a) and (b) suggest
that the number of new links attaching to “older” destination nodes
exhibits strong positive correlation with in-degree; however, when
the destination nodes are “younger” the link formation is not linear
in node in-degree, more so for nodes with smaller in-degrees, as
shown in Figure 3 (c) and (d). Table 3 presents theα values for
various thresholds.

We summarize the results. First, age of nodes plays a significant
role in link evolution. In particular, unlike established nodes, the
observed data of edge formation for relatively younger nodes can-
not be explained based on the linear preferential attachment mech-
anism. As the average age of theyoungnodes increases, linear
preferential attachment applies. Second, for the case ofold desti-
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Figure 4: Evidence of proximity bias in link formation.

nation nodes, the most likely values ofα, when source nodes are
youngare consistently more than when they areold. Hence, for the
selection of destination nodes belonging toold class,youngsource
nodes attach more preferentially thanold source nodes.

3.2 Proximity Bias
Social science literature has shown that proximity bias influences

node selection when new relationships are formed [11]. In simple
terms, proximity bias is the tendency of nodes to link with those
nearby in the network graph. Triadic closure, which states that if
two nodes are two hops apart (as, for example, B is from D in
Figure 1), they are more likely to form a link; this is a special case
of proximity bias.

In the preceding section, we provided empirical results that sug-
gest applicability of linear preferential attachment to the selection
of destination nodes when new links are formed, especially for the
older nodes in the system. The preferential attachment models in
Section 3.1 are proximity oblivious. Here, we empirically study
the role proximity plays in destination node selection within the
FriendFeed system.

Figure 4 shows the average number of new edges formed in a
period of five days as a function of the distancex (measured in
hops) between the nodes prior to link formation. A significant bias
towards closer nodes in the network is seen in the link formations.
We next investigate how preferential attachment and proximity bias
potentially coexist.

First, we consider whether or not preferential attachment results
in some degree of proximity bias, for the FriendFeed network. The
possibility exists because the FriendFeed network is characterized
by a very small average path length of 4 (cf. Table 1) and preferred
high degree nodes may be close to many nodes. For our purpose,
we focus on link formations for destination nodes which are older
than 50 days; these account for over 70% of new links found in our
data set. We pick the source nodes of all the new edges formed and
simulate the edge formation assuming linear preferential attach-
ment [2]; i.e., for the source node forming new links, the destination
node is selected based on the probability which is directly propor-
tional to the in-degree of the destination node. Figure 5 shows the
cumulative distribution function of the new links formed between
nodes at a distancex hops for the simulated network graph. For
the ease of comparison, the cumulative distribution corresponding
to the collected dataset is also presented. Clearly, the twoplots are
significantly different. Empirically, the triadic closureproperty ap-
plies to 82% of the new links, compared to 47% of the links in the
simulated data. As the number of hops increases to three and be-
yond, the plots for the two cases start to overlap. It appearsthat in
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actual network growth, proximity contributes much more than what
would have been the case if only linear preferential attachment was
applicable.

We now consider how proximity bias and preferential attachment
may complement each other. Consider a simple model of link for-
mation which utilizes both preferential attachment and proximity
bias. Our model is as follows. For a new link to be formed, the
source node first selects the destination node in-degree using lin-
ear preferential attachment and then among all the nodes of this
in-degree, it selects the closest node to form the link (i.e., proxim-
ity bias is used as a tie breaker). To confirm the applicability of
our model, we again simulate link formation and this time, unlike
the previous simulation, after selecting the destination in-degree we
pick the closest node rather than any random one; the resultsfrom
this simulation are also shown in Figure 5 and these exhibit acloser
match to the empirical data. We separately note that in our collected
data, for over 80% of the cases the closest destination node of that
in-degree is selected for link formation.

3.3 Group Affiliation
Group affiliation based evolution suggests that users exposed to

common interaction foci form links with each other more often than
those without [11,24]. Kossinets and Watts [11], for instance, con-
sidered a social network of students, faculty, and staff, and found
that students attending a common lecture were more likely toform
links than those that did not. Similar to Kossinets and Watts, our
objective is to discern the effect of group affiliations on evolution of
the FriendFeed network. We use subscription to common services
as evidence of common foci. In the ensuing discussion, we present
evidence of group affiliation at work and analyze the coexistence of
group affiliation with preferential attachment and proximity bias.

Figure 6 plots the empirical probability of edge formation be-
tween two nodes as a function of the in-degree of the destination
node, corresponding to the two cases - the two nodes either share
or do not share a common service. For the source nodes younger
than 50 days (Figure 6(b)), the difference in the empirical proba-
bilities is discernible till a threshold in-degree of 35. Note that the
plot uses logarithmic scale and hence the differences are inorders
of 10; for instance, for destination in-degree equal to 15, it is three
times more probable that link forms if the nodes have a common
service than if they do not. At first, it may seem that with respect to
the maximum in-degree of 24,536, the threshold value of 35 istoo
low. However, it must be noted that edges falling on destination
nodes with in-degree less than 35 comprise of more than 49% of
the total new edges. The diminishing difference for high in-degrees
indicates that here preferential attachment supersedes the effects of
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Figure 6: Evidence of group affiliation mechanisms.

group affiliation. Qualitatively similar results were obtained for age
thresholds less than 50 days.

For nodes older than 50 days (Figure 6(a)), on the contrary, no
gap was seen in the empirical probabilities for the two cases. In
general, it appears that as nodes age, their behavior is lessdepen-
dent on factors such as group affiliation.

Figure 7 shows the effect of group affiliation with proximity
bias by graphing the empirical probability of edge formation cor-
responding to the number of hops between the source and destina-
tion, for the two classes considered earlier; i.e., with andwithout
common services. For number of hops equal to two, the empir-
ical probabilities are nearly identical. This is perhaps due to the
dominance of triadic closure. For hops greater than two, therole
of group affiliation is evident, as can be seen from the empirical
probabilities in the figure. For instance, for nodes youngerthan 50
days, two nodes which are four hops away are 8 times more likely
to form an edge if a service is common than if not.

For nodes that just joined the FriendFeed network it appearsthat
the group affiliation mechanism is significantly more influential
than proximity bias. For instance, when both source and destina-
tion nodes are younger than 10 days, in over 95% of the cases, the
destination node is not reachable from source node (hence proxim-
ity cannot be considered a factor for these); however, for 84% of
these cases a common service exists. If we simulate the destination
node selection (for these younger nodes in the system) and chose
the destination node randomly then, on average, in only 49% of the
cases a common service was found between the nodes. This sug-
gests that group affiliation is an important factor for link formation,
especially for relatively new nodes in the system.
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Figure 7: Group affiliation and proximity bias.

4. RELATED WORK
Structural properties of online social networks such as degree

distributions, diameter, and clustering coefficient have been studied
[1, 20]. Kumaret al. [13] studied structural changes of Flickr and
Yahoo! 360 networks due to their evolution. They observe that
connected components that are not part of the giant component (i.e.,
isolated communities) evolve one user at a time, often mergewith
the giant component, and seldom merge with each other.

Evolution of online networks and models that may explain the
observed growth has been considered [4,16,19]. Misloveet al.[19]
indicate the applicability of preferential attachment andtriadic clo-
sure on the Flickr network. Capocciet al. [4] evaluate the ap-
plicability of preferential attachment on evolution of Wikipedia.
Among these, the work by Leskovecet al. [16] is closely related
to ours. Leskovecet al. [16] show that linear preferential attach-
ment [2] can model the source and destination node selectionfor
new links reasonably well for Flickr, Delicious, and Yahoo!An-
swers complete networks. They compare the applicability ofdif-
ferent models based on parameters like node degree, age, andtheir
combination for source and destination node selection for the com-
plete networks. We, on the other hand, focus on the variance in
applicability of preferential attachment model (based on node de-
gree) on nodes of different ages. For the networks considered by
Leskovecet al. [16] they find that most of the new links lead to
triadic closure [25]. They compare different triangle closing mod-
els using measures like tie strength [8] but do not explain “how
preferential attachment and triadic closure co-exist?”, especially
for classes of nodes where preferential attachment exactlymodels
selection of destination node for new links. We present a simple
model, based on co-existence of preferential attachment and prox-
imity bias, which concurs well with the observed data.



5. CONCLUSIONS AND FUTURE WORK
This paper examined the evolution of an online social aggrega-

tion network. Our analysis shows that age of nodes, proximity be-
tween nodes, and subscription to common services are factors that
influence formation of new links in our data set. In particular, our
analysis shows that by categorizing nodes based on age one can
gain better insights into behavior of nodes, especially forapplica-
bility of preferential attachment models. We also find that proxim-
ity bias acts as a tie breaker, when preferential attachmentexplains
the observed data reasonably well. Similarly, our analysisshows
that group affiliation influences link formation, especially for nodes
which have recently joined the network.

While the findings of our work may be specific to a social aggre-
gation network, our analyses are fairly general and can find use in
a variety of other settings, and there remains many interesting av-
enues to pursue in the future. One important direction is to consider
the evolution of other online social networks and study how the fac-
tors discussed in this work influence network evolution. Study of
other online social networks may help identity which factors are
intrinsic to the evolution of online networks, thus leadingto devel-
opment of calibrated models for network evolution.
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