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MOTIVATION

» Benchmarking is not always cheap: time, resource limits

Simple Scenario: Step function
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Independent variable
@ Not all measurement points have the same value
@ The position of points affect the accuracy of the fit
@ Selecting points closer to step = more accurate fit with less budget
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MOTIVATION

a more realistic case
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Response variable
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@ Experiment results from a real server

@ Removing points X, to X; has little effect on prediction accuracy
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RELATED WORK

» Response Surface Methodology

@ Select most effective parameters
@ Find optimum point of the system function
@ e.g. Box—Behnken, fractional factorial

» Regression based, iterative function prediction

techniques

@ Build model in each iteration

1. More costly due to model validation techniques

2. Model error can propagate into future iterations
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RELATED WORK

» The problem scope

@ Given the previously identified independent variables of

interest, how to select the placement of experiment points?

» Criteria

@ Should consider both independent and response variables

when deciding about the next experiment point

@ Scalability for scenarios with many independent variables
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IRIS
OVERVIEW

Two steps algorithm:
1) Initial Point Selection
@ Select a set of initial points to run the experiment based on:
*  An educated guess (e.g. a queueing model, ...)
Or alinear assumption

2) lIterative Point Selection

@ Assumption: The experiment budget is limited
* IRIS iteratively selects the next point to run the experiment, until
it runs out of budget
«  Each point is selected based on the results of all previous

experiments
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IRIS

INITIAL POINT SELECTION

A multi-core web server (load vs. response time)
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@ An educated guess: a layered queueing model (LQM) for the

system with estimated resource demands
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IRIS

ITERATIVE POINT SELECTION

Inputs

@ a list of already measured (X; ; y;) points where 1 <i <N,
@ N, : total experiment budget

@ a: gain trade-off factor

output

@ List of all experimented points ( x; ; y;) where 7 <j<N,
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IRIS

GAIN FORMULA

 Gain for each interval
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e Trade-off factor: a Independent variable
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IRIS - ITERATIVE PHASE

algorithm

1. n=N;, P ={p;|1<i<N,}
2. For each of thr n-1 intervals [x;: x,;] where 7 <) <n,

calculate Gj

3. Find the interval [X,.X,,;] , where G,= max{Gj}

4. py =22 p=p (P Y n=n+l

5. If (n =N, then goto 2, else END
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IRIS

MULTI-DIMENSIONAL SCENARIO

Delaunay triangulation to calculate Aj
* A unique planar triangulation of the independent variable space
« The resulting triangles consist of points with high proximity

- Easy to calculate
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« Generalizes to multiple dimensions o i
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EVALUATION

BASE-LINE: EQUAL DISTANCE POINT SELECTION

@ Equal Distance Point Selection (EQD)

« Possible range of each independent variable is divided into N -1
equally sized intervals.

Multi-stage EQD: available point budget is spent in multiple stages of EQD

N=9 —— N=23

Single-stage EQD: all the budget is spent in a single round (penalty free)

N=9 — N=16 — N=25
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EVALUATION

COMPARISON METRICS

@ Average Absolute Error

?=1 | Rprp (Xj) o R(Xj)|

AAE =
i=1 R(X))

@ Error Reduction Ratio

_ (AAEbaseline _AAEIRIS)
AAEIRIS

ER
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EVALUATION

SINGLE INDEPENDENT VARIABLE

System functions Error Reduction Ratio
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* An experimental system with web workload on a multi-core server

* Result: Higher ER ratio in the graph with larger flat region
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EVALUATION

SINGLE INDEPENDENT VARIABLE

System functions Error Reduction Ratio
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« A group of bell-shaped synthetic functions representing normal distributions

* Result: IRIS more effective for non-symmetric curves
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EVALUATION

MULTIPLE INDEPENDENT VARIABLES

System functions Error Reduction Ratio
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Surfaces
- Load-response time dataset with two load parameters as independent

variables
* Result: Lower ER due to large flat surface
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EVALUATION

MULTIPLE INDEPENDENT VARIABLES

System functions
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Surfaces

« A group of three synthetic Gaussian surfaces with different means and

standard deviations

« Result: higher ER in surfaces with larger slope
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TUNING GUIDELINE
GAIN TRADE-OFF FACTOR

Load- response time Bell-Shaped
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= A convex sharp knee in the system function - Smaller a values

= A concave and symmetric maximum point - Larger a values
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TUNING GUIDELINE
ERROR DISTRIBUTION
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CONCLUSIONS

@ IRIS outperforms equal distance for the majority of the

evaluated systems
@ Trade-off factor is tuned through initial system knowledge
@ More reduction in Region of Interest

@ In future, we are going to examine systems with higher

dimensionality
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Thank you!

Questions?

Raoufeh Hashemian

r.hashemian@ucalgary.ca




