Optimized eeeBond: Energy Efficiency with non-Proportional Router Network Interfaces

Niklas Carlsson Linköping University, Sweden

Background and motivation

- Networks provisioned for peak loads
 - Typically very low utilization
 - Opportunity to save energy
- Energy proportionality desirable
 - Energy usage proportional to system utilization
 - However, hardware limitations prevents this in practice
- Two promising approaches
 - EEE: "On/off toggling" of interface
 - eBond: Switch between redundant heterogeneous interfaces

1. Present eeeBond

- Hybrid of EEE and eBond

1. Present eeeBond

- Hybrid of EEE and eBond

	"Always on"	"On/off toggling"
Single interface	Naïve/default	EEE
Multi interface	eBond	eeeBond

1. Present eeeBond

- Hybrid of EEE and eBond

2. Unified analytic model

 Derive closed-form optimized parameter settings for eBond and eeeBond

	"Always on"	"On/off toggling"
Single interface	Naïve/default	EEE
Multi interface	eBond	eeeBond

1. Present eeeBond

- Hybrid of EEE and eBond

2. Unified analytic model

 Derive closed-form optimized parameter settings for eBond and eeeBond

3. Performance evaluation

- Characterize gains possible with optimized protocols

	"Always on"	"On/off toggling"
Single interface	Naïve/default	EEE
Multi interface	eBond	eeeBond

- Redundant heterogeneous interfaces
 - Toggle between interfaces based on load

- Redundant heterogeneous interfaces
 - Toggle between interfaces based on load

- Redundant heterogeneous interfaces
 - Toggle between interfaces based on load

- Redundant heterogeneous interfaces
 - Toggle between interfaces based on load

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

- Single interface
 - "On/off toggling" between active and (light) sleep state

Router model and power states

- Single interface
 - "On/off toggling" between active and (light) sleep state

Router model and power states

Router model and power states

General model

• Energy usage

$$P_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left[q_i^a P_i^a + q_i^s P_i^s + q_i^{s/a} P_i^{s/a} + q_i^z P_i^z \right]$$

General model

General model

• Energy usage

$$P_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left[q_i^a P_i^a + q_i^s P_i^s + q_i^{s/a} P_i^{s/a} + q_i^z P_i^z \right]$$

Active high-power

Short-term sleep

Short setup period

Long-term sleep

• Energy usage $P_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left(q_i^a P_i^a + q_i^s P_i^s + q_i^{s/a} P_i^{s/a} + q_i^z P_i^z \right).$

Active high-power

Short-term sleep

Short setup period

Long-term sleep

• Energy usage

$$P_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left[q_i^a P_i^a + q_i^s P_i^s + q_i^{s/a} P_i^{s/a} + q_i^z P_i^z \right].$$
Active high-power
Short-term sleep
Short setup period
Long-term sleep

• Energy usage

$$P_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left[q_i^a P_i^a + q_i^s P_i^s + q_i^{s/a} P_i^{s/a} + q_i^z P_i^z \right]$$

- Hardware comparison
 - Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
 - Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$

- Hardware comparison
 - Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
 - Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$

Sleep savings ratio

- Hardware comparison
 - Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
 - Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$

- Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$

Pa

Setup power

Ps/a

- Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$

• Hardware comparison

Pa

 P^{a}

- Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
- Interface differences. $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$

Power scaling between interfaces

- Hardware comparison
 - Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
 - Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$

- Hardware comparison
 - Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
 - Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$
- Per-interface delay
 - Setup time:

$$w_{k} = \begin{cases} \Delta_{i} + \frac{l_{k}}{\mu_{i}}, & \text{if } t_{k} > t_{k-1} + w_{k-1} \\ w_{k-1} + t_{k-1} - t_{k} + \frac{l_{k}}{\mu_{i}}, & \text{otherwise.} \end{cases}$$

- Per-interface delay
 - Setup time:

$$w_{k} = \begin{cases} \Delta_{i} + \frac{l_{k}}{\mu_{i}}, & \text{if } t_{k} > t_{k-1} + w_{k-1} \\ w_{k-1} + t_{k-1} - t_{k} + \frac{l_{k}}{\mu_{i}}, & \text{otherwise.} \end{cases}$$

- Per-interface delay
 - Setup time:

$$w_{k} = \begin{cases} \Delta_{i} + \frac{l_{k}}{\mu_{i}}, & \text{if } t_{k} > t_{k-1} + w_{k-1} \\ w_{k-1} + t_{k-1} - t_{k} + \frac{l_{k}}{\mu_{i}}, & \text{otherwise.} \end{cases}$$

• Energy usage

$$P_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left[q_i^a P_i^a + q_i^s P_i^s + q_i^{s/a} P_i^{s/a} + q_i^z P_i^z \right]$$

- Hardware comparison
 - Per-interface modes: $c_i = \frac{P_i^s}{P_i^a} (0 \le c_i \le 1)$ $g_i = \frac{P_i^{s/a}}{P_i^a} g_i \approx 1$
 - Interface differences: $P_i^a = f(\mu_i)$, where $f(\mu_i) = P_0^a (\frac{\mu_i}{\mu_0})^x$
- Per-interface delay
 - Setup time:

$$w_{k} = \begin{cases} \Delta_{i} + \frac{l_{k}}{\mu_{i}}, & \text{if } t_{k} > t_{k-1} + w_{k-1} \\ w_{k-1} + t_{k-1} - t_{k} + \frac{l_{k}}{\mu_{i}}, & \text{otherwise.} \end{cases}$$

- M/G/1(E,SU) model
- Waiting times

$$\overline{W_i} = E[w_k|i] = \frac{\lambda E[S_i^2]}{2(1-\rho_i)} + \frac{2E[\Delta_i] + \lambda E[\Delta_i^2]}{2(1+\lambda E[\Delta_i])},$$

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \left[\rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a}\right]$$

- M/G/1(E,SU) model
- Waiting times

$$\overline{W_i} = E[w_k|i] = \frac{\lambda E[S_i^2]}{2(1-\rho_i)} + \frac{2E[\Delta_i] + \lambda E[\Delta_i^2]}{2(1+\lambda E[\Delta_i])},$$

- M/G/1(E,SU) model
- Waiting times

M/G/1 without vacations

- M/G/1(E,SU) model
- Waiting times

- M/G/1(E,SU) model
- Waiting times

$$\overline{W_i} = E[w_k|i] = \frac{\lambda E[S_i^2]}{2(1-\rho_i)} + \frac{2E[\Delta_i] + \lambda E[\Delta_i^2]}{2(1+\lambda E[\Delta_i])},$$

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \left[\rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a}\right]$$

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \left[\rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a}\right]$$

• Energy usage of active interfaces

 $\underbrace{P_{i} - q_{i}^{z} P_{i}^{z}}_{1 - q_{i}^{z}} \neq \begin{bmatrix} \rho_{i} P_{i}^{a} + \frac{1 - \rho_{i}}{1 + \lambda E[\Delta_{i}]} P_{i}^{s} + \frac{\lambda(1 - \rho)E[\Delta_{i}]}{1 + \lambda E[\Delta_{i}]} P_{i}^{s/a} \end{bmatrix}$ Average power usage, conditioned on "active"

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \left[\rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a} \right]$$
Active high-power

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \begin{bmatrix} \rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a} \end{bmatrix}$$

Short setup period

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \left[\rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a}\right]$$

- M/G/1(E,SU) model
- Waiting times

$$\overline{W_i} = E[w_k|i] = \frac{\lambda E[S_i^2]}{2(1-\rho_i)} + \frac{2E[\Delta_i] + \lambda E[\Delta_i^2]}{2(1+\lambda E[\Delta_i])},$$

$$\frac{P_i - q_i^z P_i^z}{1 - q_i^z} = \left[\rho_i P_i^a + \frac{1 - \rho_i}{1 + \lambda E[\Delta_i]} P_i^s + \frac{\lambda(1 - \rho)E[\Delta_i]}{1 + \lambda E[\Delta_i]} P_i^{s/a}\right]$$

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary
 - Theorems/lemmas specifying interface selection

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary

<u>Theorems/lemmas specifying interface selection</u>

THEOREM 1. Given an average target waiting time W^* and an estimated packet inter arrival rate λ , the optimal eBond policy always picks the interface with the lowest service rates μ_i that can support a packet arrival rate

$$\lambda \le \lambda_i^* = \frac{2(W^* - E[S_i])}{E[S_i^2] + 2E[S_i](W^* - E[S_i])},$$
(10)

where $E[S_i] = \frac{E[l_k]}{\mu_i}$ and $E[S_i^2] = \frac{E[l_k^2]}{\mu_i^2}$.

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary
 - <u>Theorems/lemmas specifying interface selection</u>

THEOREM 1. Given an average target waiting time W^* an LEMMA 1. The expected waiting time W_i is a monotoneB ically non-decreasing function of the arrival rate λ for the region in which $W_i \geq \Delta_i$, and for any $\lambda \leq \lambda^*$ for which $W_i^* = W_i(\lambda^*) \geq \Delta_i$, the waiting time $W_i(\lambda) \leq W_i(\lambda^*)$. $E[S_i^2] + 2E[S_i](W^* - E[S_i])$, where $E[S_i] = \frac{E[l_k]}{\mu_i}$ and $E[S_i^2] = \frac{E[l_k^2]}{\mu_i^2}$.

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary

<u>Theorems/lemmas specifying interface selection</u>

THEOREM 1. Given an average target waiting time W^* an LEMMA 1. The expected waiting time W_i is a monotonic LEMMA 2. The expected waiting time W_i is a monotonire cally non-increasing function of the service rate μ_i . $W_i = W_i(\Lambda) \ge \Delta_i$, the waiting time $W_i(\Lambda) \ge W_i(\Lambda)$. $E[S_i^2] + 2E[S_i](W^* - E[S_i])$, where $E[S_i] = \frac{E[l_k]}{\mu_i}$ and $E[S_i^2] = \frac{E[l_k^2]}{\mu_i^2}$.

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary

THEOREM 1. Given and an LEMMA 1. The exp ic LEMMA 2. The	LEMMA 4. The expected power usage P_i is a monotoni- cal LEMMA 5. Unless there does not exist another interface		
$vic \qquad re countrol countrol with recent countrol w$	LEMMA 2. The LEMMA 3. does not exist timal policy n rate μ_i when th	$ \begin{array}{c c} tne & wit \\ tio & lou \\ int \\ rat \\ whe \\ c)E \\ P_i & wh \end{array} $	THEOREM 2. Given a target waiting time $W^* \geq \max_i \Delta_i$ and arrival rate λ , the optimal eeeBond policy picks the low- est powered interface that satisfy both (i) $\lambda_i^l \leq \lambda$, and (ii) $\lambda \leq \lambda_i^u$, where λ_i^l and λ_i^u are given by equations (18) and (14), respectively. In the case no interface satisfies both con- straints, the optimal policy picks the highest capacity inter- face.
	where $a_2 = \Delta_i^{L}$ $2E[S_i](W^* - \Delta_i^{L})$	$\overline{E[S_i](2W^*}$ $\Delta_i) + \Delta_i(\Delta$	$(x^* - \Delta_i) + \Delta_i E[S_i^2], \ a_1 = E[S_i^2] + \Delta_i - 2W^*), \ and \ a_0 = 2(\Delta - W^*).$
Protocol optimization

- M/G/1(E,SU) model
 - Optimized eBond
 - Optimized eeeBond
- High-level summary
 - <u>Theorems/lemmas specifying interface selection</u>

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better

 increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better
 - increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better

 increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

• EEE and eeeBond adopt power usage for individual interface(s)

77

• eeeBond often the winner, but cases where eBond even better

 increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

• EEE and eeeBond adopt power usage for individual interface(s)

78

• eeeBond often the winner, but cases where eBond even better

 increase in delay prevent eeeBond using lower-power interface and sleep savings small when c close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better

 increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better
 - increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better
 - increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better
 - increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better
 - increase in delay prevent eeeBond using lower-power interface and sleep savings small when c close to one)

- EEE and eeeBond adopt power usage for individual interface(s)
- eeeBond often the winner, but cases where eBond even better
 - increase in delay prevent eeeBond using lower-power interface and sleep savings small when *c* close to one)

- eBond outperforms EEE (sometimes even eeeBond)
- When significant sleep savings (i.e., smaller *c*), eeeBond is the best protocol

	Scenario		Cu	rrent $c =$	0.8	Future $c = 0.2$		
	\overline{u}	x	EEE	eBond	$e^{3}B$	EEE	eBond	$e^{3}B$
	0.5	1.2	0.95	0.76	0.73	0.76	0.76	0.65
0	0.25	1.2	0.90	0.49	0.49	0.58	0.49	0.38
T_{W}	0.125	1.2	0.87	0.44	0.39	0.44	0.44	0.25
	0.25	0.8	0.90	0.62	0.60	0.58	0.62	0.47
	0.25	2	0.90	0.32	0.34	0.58	0.32	0.27
	0.5	1.2	0.95	0.74	0.81	0.76	0.74	0.68
ee	0.25	1.2	0.90	0.57	0.59	0.58	0.57	0.45
hr	0.125	1.2	0.87	0.43	0.47	0.44	0.43	0.30
Γ	0.25	0.8	0.90	0.66	0.67	0.58	0.66	0.51
	0.25	2	0.90	0.45	0.48	0.58	0.45	0.36

- eBond outperforms EEE (sometimes even eeeBond)
- When significant sleep savings (i.e., smaller *c*), eeeBond is the best protocol

age		Scenario		Current $c = 0.8$			Future $c = 0.2$			
ver Us:	tilizatio		\overline{u}	x	EEE	eBond	$e^{3}B$	EEE	eBond	$e^{3}B$
ed Pov			0.5	1.2	0.95	0.76	0.73	0.76	0.76	0.65
rmaliz	0.2	0	0.25	1.2	0.90	0.49	0.49	0.58	0.49	0.38
Ň	OUtil. Con Com Midnight 6am Noon	Γ_{W}	0.125	1.2	0.87	0.44	0.39	0.44	0.44	0.25
	Time of day	L '	0.25	0.8	0.90	0.62	0.60	0.58	0.62	0.47
age			0.25	2	0.90	0.32	0.34	0.58	0.32	0.27
rer Us	0.8		0.5	1.2	0.95	0.74	0.81	0.76	0.74	0.68
M Pow		ee	0.25	1.2	0.90	0.57	0.59	0.58	0.57	0.45
	0.2	hr	0.125	1.2	0.87	0.43	0.47	0.44	0.43	0.30
		H	0.25	0.8	0.90	0.66	0.67	0.58	0.66	0.51
	Noon opm Midnight 6am Noon Time of day		0.25	2	0.90	0.45	0.48	0.58	0.45	0.36

- eBond outperforms EEE (sometimes even eeeBond)
- When significant sleep savings (i.e., smaller *c*), eeeBond is the best protocol

	Scenario	С	Current $c = 0.8$			Future $c = 0.2$		
	\overline{u}	x	EEE	eBond	$e^{3}B$	EEE	eBond	$e^{3}B$
0	0.5	1.2	0.95	0.76	0.73	0.76	0.76	0.65
	0.25	1.2	0.90	0.49	0.49	0.58	0.49	0.38
Γw	0.125	1.2	0.87	0.44	0.39	0.44	0.44	0.25
	0.25	0.8	0.90	0.62	0.60	0.58	0.62	0.47
	0.25	2	0.90	0.32	0.34	0.58	0.32	0.27
	0.5	1.2	0.95	0.74	0.81	0.76	0.74	0.68
ee	0.25	1.2	0.90	0.57	0.59	0.58	0.57	0.45
Thr	0.125	1.2	0.87	0.43	0.47	0.44	0.43	0.30
	0.25	0.8	0.90	0.66	0.67	0.58	0.66	0.51
	0.25	2	0.90	0.45	0.48	0.58	0.45	0.36

- eBond outperforms EEE (sometimes even eeeBond)
- When significant sleep savings (i.e., smaller *c*), eeeBond is the best protocol

	Scenario	С	Cu	rrent $c =$	0.8	Fu	ture $c =$	0.2
	\overline{u}	x	EEE	eBond	e ³ B	EEE	eBond	e ³ B
	0.5	1.2	0.95	0.76	0.73	0.76	0.76	0.65
0	0.25	1.2	0.90	0.49	0.49	0.58	0.49	0.38
Γw	0.125	1.2	0.87	0.44	0.39	0.44	0.44	0.25
Ĺ '	0.25	0.8	0.90	0.62	0.60	0.58	0.62	0.47
	0.25	2	0.90	0.32	0.34	0.58	0.32	0.27
	0.5	1.2	0.95	0.74	0.81	0.76	0.74	0.68
ee	0.25	1.2	0.90	0.57	0.59	0.58	0.57	0.45
'nr	0.125	1.2	0.87	0.43	0.47	0.44	0.43	0.30
Γ	0.25	0.8	0.90	0.66	0.67	0.58	0.66	0.51
	0.25	2	0.90	0.45	0.48	0.58	0.45	0.36

- eBond outperforms EEE (sometimes even eeeBond)
- When significant sleep savings (i.e., smaller *c*), eeeBond is the best protocol

	Scenario	С	Cu	rrent $c =$	0.8	Future $c = 0.2$		
	\overline{u}	x	EEE	eBond	$e^{3}B$	EEE	eBond	$e^{3}B$
	0.5	1.2	0.95	0.76	0.73	0.76	0.76	0.65
0	0.25	1.2	0.90	0.49	0.49	0.58	0.49	0.38
Γw	0.125	1.2	0.87	0.44	0.39	0.44	0.44	0.25
	0.25	0.8	0.90	0.62	0.60	0.58	0.62	0.47
	0.25	2	0.90	0.32	0.34	0.58	0.32	0.27
	0.5	1.2	0.95	0.74	0.81	0.76	0.74	0.68
ee	0.25	1.2	0.90	0.57	0.59	0.58	0.57	0.45
'nr	0.125	1.2	0.87	0.43	0.47	0.44	0.43	0.30
Γ	0.25	0.8	0.90	0.66	0.67	0.58	0.66	0.51
	0.25	2	0.90	0.45	0.48	0.58	0.45	0.36

- eBond (and eeeBond) always better than EEE
- eeeBond has significant benefits over others when greater sleep benefits (i.e., smaller *c*)

	Scenario	Cu	rrent $c =$	0.8	Future $c = 0.2$		
	Trace	EEE	eBond	e ³ B	EEE	eBond	e ³ B
	Edge, in	0.81	0.16	0.43	0.22	0.16	0.13
ΟM	Edge, out	0.81	0.38	0.74	0.22	0.38	0.20
Ţ	Core, dirA	0.81	0.15	0.12	0.21	0.15	0.04
	Core, dirB	0.82	0.15	0.12	0.24	0.15	0.04

100

b) Core, dir-A

- eBond (and eeeBond) always better than EEE
- eeeBond has significant benefits over others when greater sleep benefits (i.e., smaller *c*)

	Scenario	Cu	crent $c =$	0.8	Future $c = 0.2$		
	Trace	EEE	eBond	e ³ B	EEE	eBond	$e^{3}B$
	Edge, in	0.81	0.16	0.43	0.22	0.16	0.13
МО	Edge, out	0.81	0.38	0.74	0.22	0.38	0.20
Ĥ	Core, dirA	0.81	0.15	0.12	0.21	0.15	0.04
	Core, dirB	0.82	0.15	0.12	0.24	0.15	0.04

100

- eBond (and eeeBond) always better than EEE
- eeeBond has significant benefits over others when greater sleep benefits (i.e., smaller *c*)

Scenario		Cu	rrent $c =$	0.8	Future $c = 0.2$		
	Trace	EEE	eBond	e ³ B	EEE	eBond	e ³ B
	Edge, in	0.81	0.16	0.43	0.22	0.16	0.13
MO	Edge, out	0.81	0.38	0.74	0.22	0.38	0.20
Ţ	Core, dirA	0.81	0.15	0.12	0.21	0.15	0.04
	Core, dirB	0.82	0.15	0.12	0.24	0.15	0.04

- eBond (and eeeBond) always better than EEE
- eeeBond has significant benefits over others when greater sleep benefits (i.e., smaller *c*)

Scenario		Cu	rrent $c =$	0.8	Future $c = 0.2$		
	Trace	EEE	eBond	e ³ B	EEE	eBond	e ³ B
	Edge, in	0.81	0.16	0.43	0.22	0.16	0.13
ΟM	Edge, out	0.81	0.38	0.74	0.22	0.38	0.20
Ţ	Core, dirA	0.81	0.15	0.12	0.21	0.15	0.04
	Core, dirB	0.82	0.15	0.12	0.24	0.15	0.04

100

- Impact of assumptions
- Extended model improves

⁽a) Power model

- Good match

- (b) Delay model
- Impact of assumptions
- Extended model improves

- Impact of assumptions
- Extended model improves

Conclusions

- Presented eeeBond
 - Hybrid protocol that combines benefits of EEE and eBond
- Presented a generalized protocol evaluation framework
- Performed protocol optimization of eBond and eeeBond
 - Closed-form expressions of delay and energy tradeoffs
- Characterized energy savings with the different protocols
 - Significant benefits of eBond and eeeBond over EEE (when x>1), even when EEE itself becomes more energy proportional
- Future work will refine our extended model and optimize additional aspects of eeeBond

Optimized eeeBond: Energy Efficiency with non-Proportional Router Network Interfaces

Niklas Carlsson (niklas.carlsson@liu.se)

