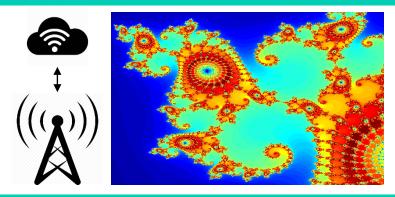
Early online classification of encrypted traffic streams using multi-fractal features

Erik Areström, Linköping University Niklas Carlsson, Linköping University



• Early flow classification is important for network operators in order to operate network at high utilization while still providing good quality of experience for the users

- Early flow classification is important for network operators in order to operate network at high utilization while still providing good quality of experience for the users
- End-to-end encryption render traditional deep packet inspection techniques useless

- Early flow classification is important for network operators in order to operate network at high utilization while still providing good quality of experience for the users
- End-to-end encryption render traditional deep packet inspection techniques useless
- Most flow classification approaches are unable to properly capture the non-linear characteristics of network flows

- Early flow classification is important for network operators in order to operate network at high utilization while still providing good quality of experience for the users
- End-to-end encryption render traditional deep packet inspection techniques useless
- Most flow classification approaches are unable to properly capture the non-linear characteristics of network flows
- Problem: Current classification methods are too slow or inaccurate to benefit network operators

Contributions

• A man-in-the-middle based evaluation framework, utilizing the multi-fractal features of encrypted traffic flows to diffrentiate application types

Contributions

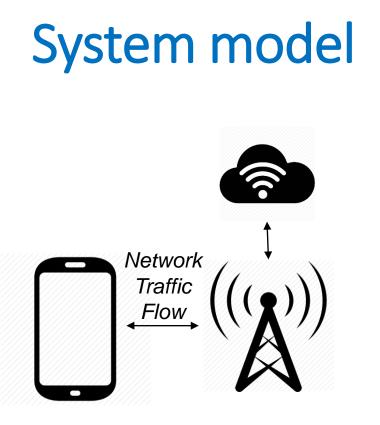
- A man-in-the-middle based evaluation framework, utilizing the multi-fractal features of encrypted traffic flows to diffrentiate application types
- Early traffic categorization via tuning of said framwork achieving F1-scores of 0.814 after only 5 seconds, using only multi-fractal features

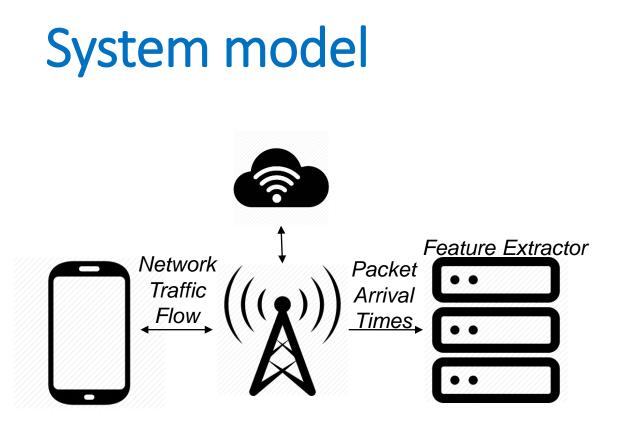
Contributions

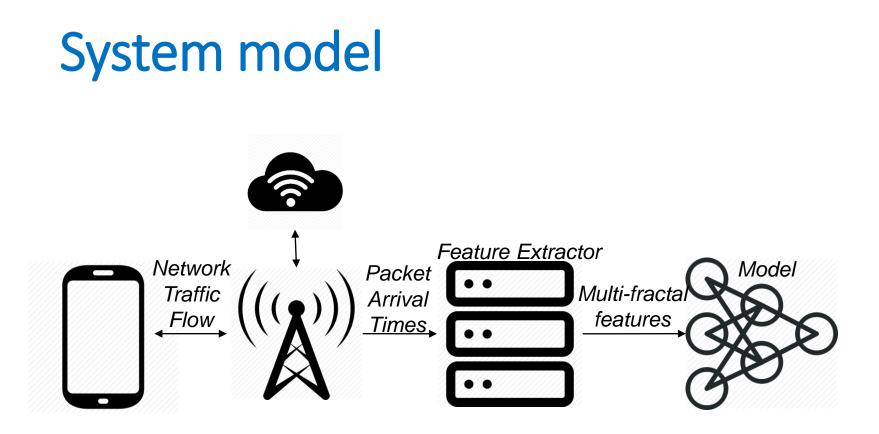
- A man-in-the-middle based evaluation framework, utilizing the multi-fractal features of encrypted traffic flows to diffrentiate application types
- Early traffic categorization via tuning of said framwork achieving F1-scores of 0.814 after only 5 seconds, using only multi-fractal features
- In-class categorization of live video versus video on demand delivered from the same services, using only multi-fractal features

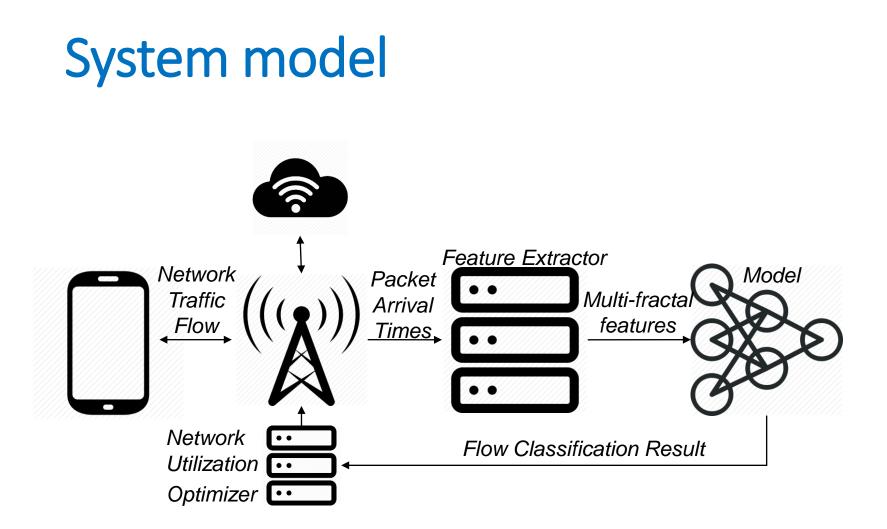
High-level categorization

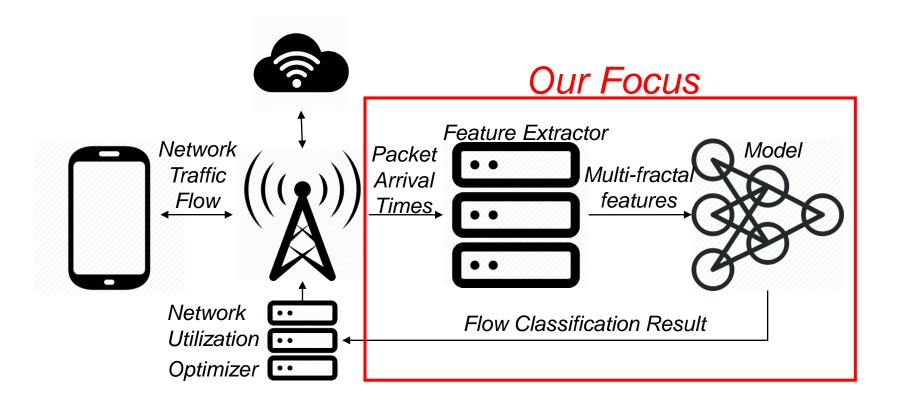
Application categories	Example service
Video streaming	Youtube
Web browsing	Reddit
Social media	Facebook
Audio communication	Skype
Text communication	Messenger
Bulk download	Google Play



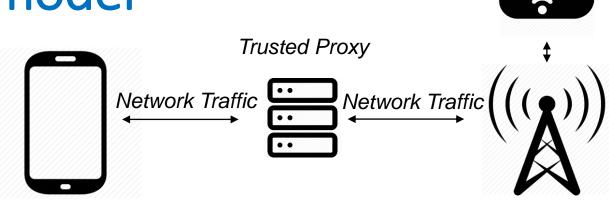




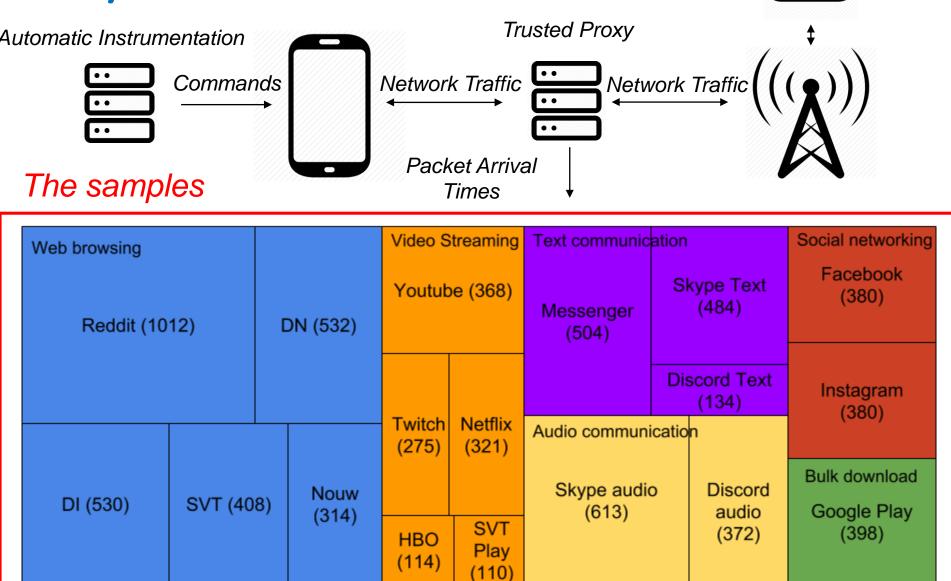




System model



System model



 Given a time series repesenting the arrival of a packet in a timeslot, calculate the wavelet coefficients for different scales of the signal using the Discrete Wavelet Transform

- Given a time series repesenting the arrival of a packet in a timeslot, calculate the wavelet coefficients for different scales of the signal using the Discrete Wavelet Transform
- Extract the time- or space localized suprema of the coefficents, the so called wavelet leaders

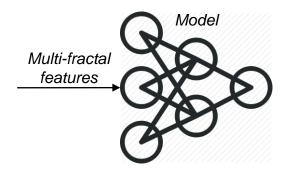
- Given a time series repesenting the arrival of a packet in a timeslot, calculate the wavelet coefficients for different scales of the signal using the Discrete Wavelet Transform
- Extract the time- or space localized suprema of the coefficents, the so called wavelet leaders
- Form a multi-resolution structure function to estimate the scaling exponents by regression

- Given a time series repesenting the arrival of a packet in a timeslot, calculate the wavelet coefficients for different scales of the signal using the Discrete Wavelet Transform
- Extract the time- or space localized suprema of the coefficents, the so called wavelet leaders
- Form a multi-resolution structure function to estimate the scaling exponents by regression
- Derive the <u>Hausdorff dimensions</u> and corresponding <u>Holder Exponents</u> for the signal

- Given a time series repesenting the arrival of a packet in a timeslot, calculate the wavelet coefficients for different scales of the signal using the Discrete Wavelet Transform
- Extract the time- or space localized suprema of the coefficents, the so called wavelet leaders
- Form a multi-resolution structure function to estimate the scaling exponents by regression
- Derive the <u>Hausdorff dimensions</u> and corresponding <u>Holder Exponents</u> for the signal *The multi-fractal features, representing how the observed self-similiarty of the signal changes over time*

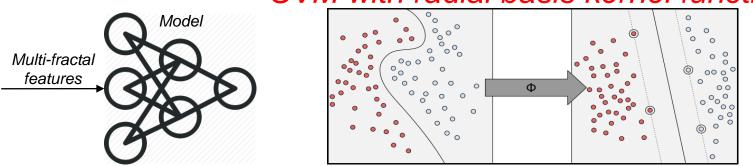
Building the model

• The collection of samples were randomly split into two parts, half the samples were used to build the model



Building the model

- The collection of samples were randomly split into two parts, half the samples were used to build the model
- Multiple Binary Support Vector Machine classifiers were used, fitting the maximun margin separating hyperplane between each class of data



SVM with radial basis kernel function

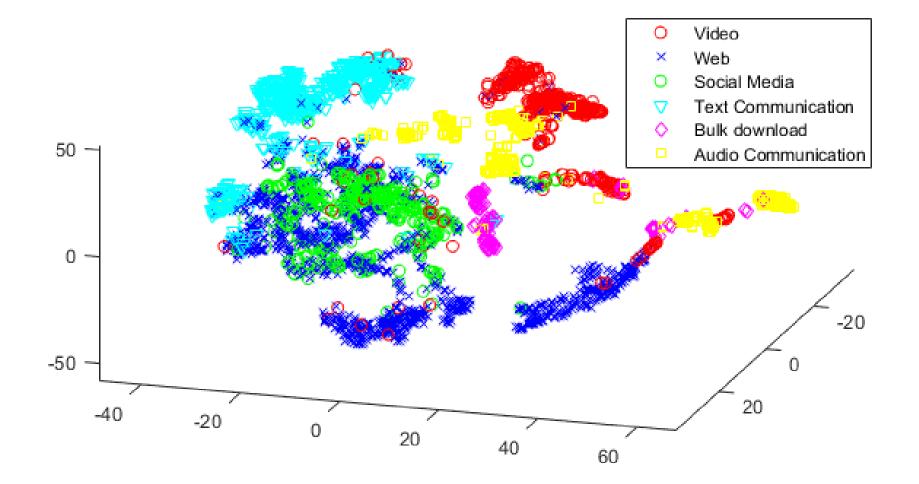
E	Evaluation ($t = 20 s$)									
	Audio Com.	Bulk Down.	Text Com.	Social Media	Video	•	Precision			
Audio Com.	4847	6	9	11	5	24	0.989		Class	F1- score
Bulk Down.	5	1949	8	5	4	0	0.989		Audio Communication	0.98
Text Com.	59	1	5389	7	3	152	0.960	Outp	Bulk Download	0.99
Social Media	2	1	12	3459	49	308	0.903	Output class	Text Communication	0.96
Video	5	2	10	175	5251	95	0.948		communication	
Web	2	1	192	143	178	13441	0.963			
Recall	0.985	0.994	0.959	0.910	0.956	0.959	0.960			
	Targeted class									

Evaluation (t = 20 s)

	Audio Com.	Bulk Down.	Text Com.	Social Media	Video	Web	Precision			
Audio Com.	4847	6	9	11	5	24	0.989		Class	F1- score
Bulk Down.	5	1949	8	5	4	0	0.989		Audio Communication	0.98
Text Com.	59	1	5389	7	3	152	0.960		Bulk Download	0.99
Social Media	2	1	12	3459	49	308	0.903	Output class	Text	0.96
Video	5	2	10	175	5251	95	0.948	ŝ	Communication	
video	2	2	10	1/5	5251	95	0.948		Social Media	0.90
Web	2	1	192	143	178	13441	0.963		Video	0.96
Recall	0.985	0.994	0.959	0.910	0.956	0.959	0.960		Web	0.96
	Targeted class									

E	Evaluation ($t = 20 s$)									
	Audio Com.	Bulk Down.	Text Com.	Social Media	Video	Web	Precision			
Audio Com.									Class	F1- score
Bulk Down.									Audio Communication	0.98
Text Com.								Outp	Bulk Download	0.99
Social Media				3459	49	308		Output class	Text Communication	0.96
Video				175	5251	95			Social Media	0.90
Web				143	178	13441			Video	0.96
Recall									Web	0.96
	Targeted class									

T-SNE visualization



Duration	F1-score	Precision	Recall
20 seconds	0.958	0.958	0.958

Duration	F1-score	Precision	Recall
20 seconds	0.958	0.958	0.958
15 seconds	0.892	0.891	0.894
10 seconds	0.844	0.838	0.851

Duration	F1-score	Precision	Recall
20 seconds	0.958	0.958	0.958
15 seconds	0.892	0.891	0.894
10 seconds	0.844	0.838	0.851
5 seconds	0.814	0.823	0.805

Duration	F1-score	Precision	Recall
20 seconds	0.958	0.958	0.958
15 seconds	0.892	0.891	0.894
10 seconds	0.844	0.838	0.851
5 seconds	0.814	0.823	0.805
2.5 seconds	0.631	0.594	0.673

Duration	F1-score	Precision	Recall
20 seconds	0.958	0.958	0.958
15 seconds	0.892	0.891	0.894
10 seconds	0.844	0.838	0.851
5 seconds	0.814	0.823	0.805
2.5 seconds	0.631	0.594	0.673
2 seconds	0.409	0.404	0.415
1 second	0.214	0.202	0.228

Randomly picking one category: 1/6 ≈ 0.167

Impact of added variance in the dataset.

• All packet arrival instances in the evaulation set were perturbed according to a normal distribution:

 $\mathcal{N}(0,\sigma)$

σ	10	25	50	100	250	500	1000
F1- score	0.952	0.942	0.925	0.927	0.891	0.834	0.695

Impact of added variance in the dataset.

• All packet arrival instances in the evaulation set were perturbed according to a normal distribution:

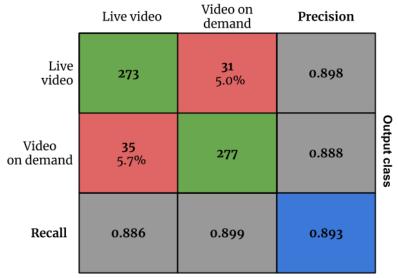
 $\mathcal{N}(0,\sigma)$

σ	10	25	50	100	250	500	1000
F1- score	0.952	0.942	0.925	0.927	0.891	0.834	0.695

31.8% of the packets arrivals move by more than ± 0.5 seconds

In-class categorization, live vs VoD

 Same IP addresses may be used for both live and VoD content, categorization needs to be done online



Category	Live	Vod
Samples	616	616
Class Composition	Youtube: 214 Twitch: 214 SVT Play: 188	Youtube: 214 Twitch: 214 SVT Play: 188

Conclusion

 The classification method used is able to quickly and effectivly classify encrypted traffic belong to the six most popular traffic types

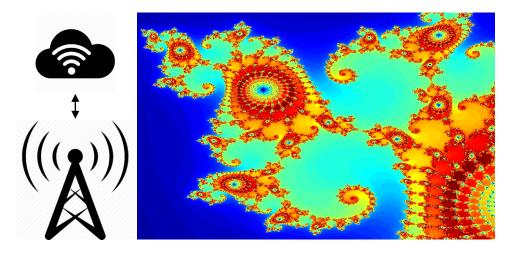
Conclusion

- The classification method used is able to quickly and effectivly classify encrypted traffic belong to the six most popular traffic types
- The method relies only on access to timing information of the packets in a flow and is highly resistant to perturbations of this information

Conclusion

- The classification method used is able to quickly and effectivly classify encrypted traffic belong to the six most popular traffic types
- The method relies only on access to timing information of the packets in a flow and is highly resistant to perturbations of this information
- The method can be applied to distinguish between classes of data belonging to the same services (Vod and live streaming)

Thanks for listening!



Early online classification of encrypted traffic streams using multi-fractal features

Erik Areström (erik.arestrom@gmail.com) Niklas Carlsson (niklas.carlsson@liu.se)