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Motivation and problem

Problem:  Individual content provider that wants to minimize its 
delivery costs under the assumptions that 

• the storage and bandwidth resources it requires are elastic, 

• the content provider only pays for the resources that it consumes, and 

• costs are proportional to the resource usage.

• Early flow classification is important for network 
operators in order to operate network at high 
utilization while still providing good quality of 
experience for the users
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Motivation and problem

Problem:  Individual content provider that wants to minimize its 
delivery costs under the assumptions that 

• the storage and bandwidth resources it requires are elastic, 

• the content provider only pays for the resources that it consumes, and 

• costs are proportional to the resource usage.

• Early flow classification is important for network 
operators in order to operate network at high 
utilization while still providing good quality of 
experience for the users

• End-to-end encryption render traditional deep 
packet inspection techniques useless

• Most flow classification approaches are unable to 
properly capture the non-linear characteristics of 
network flows

• Problem: Current classification methods are too 
slow or inaccurate to benefit network operators
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Contributions

• A man-in-the-middle based evaluation framework, 
utilizing the multi-fractal features of encrypted traffic 
flows to diffrentiate application types

• Early traffic categorization via tuning of said framwork 
achieving F1-scores of 0.814 after only 5 seconds, 
using only multi-fractal features

• In-class categorization of live video versus video on 
demand delivered from the same services, using only 
multi-fractal features



High-level categorization

Application categories Example service

Video streaming Youtube

Web browsing Reddit

Social media Facebook

Audio communication Skype

Text communication Messenger

Bulk download Google Play
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Feature extraction

• Given a time series repesenting the arrival of a 
packet in a timeslot, calculate the wavelet 
coefficients for different scales of the signal using 
the Discrete Wavelet Transform

• Extract the time- or space localized suprema of the 
coefficents, the so called wavelet leaders

• Form a multi-resolution structure function to 
estimate the scaling exponents by regression

• Derive the Hausdorff dimensions and 
corresponding Holder Exponents for the signal

The multi-fractal features, representing how the observed 

self-similiarty of the signal changes over time
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Building the model

• The collection of samples were randomly split into 
two parts, half the samples were used to build the 
model

• Multiple Binary Support Vector Machine classifiers 
were used, fitting the maximun margin separating 
hyperplane between each class of data

Multi-fractal 

features

Model

SVM with radial basis kernel function
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T-SNE visualization
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Early classification

Duration F1-score Precision Recall

20 seconds 0.958 0.958 0.958

15 seconds 0.892 0.891 0.894

10 seconds 0.844 0.838 0.851

5 seconds 0.814 0.823 0.805

2.5 seconds 0.631 0.594 0.673

2 seconds 0.409 0.404 0.415

1 second 0.214 0.202 0.228

Randomly picking one category: 1/6 ≈ 0.167



Impact of added variance in the 
dataset.
• All packet arrival instances in the evaulation set 

were perturbed according to a normal distribution:

σ 10 25 50 100 250 500 1000

F1-
score

0.952 0.942 0.925 0.927 0.891 0.834 0.695

Ɲ(0, 𝜎)



Impact of added variance in the 
dataset.
• All packet arrival instances in the evaulation set 

were perturbed according to a normal distribution:

σ 10 25 50 100 250 500 1000

F1-
score

0.952 0.942 0.925 0.927 0.891 0.834 0.695

31.8% of the packets arrivals move by 

more than ± 0.5 seconds

Ɲ(0, 𝜎)



In-class categorization, live vs VoD

Category Live Vod

Samples 616 616

Class Composition Youtube: 214
Twitch: 214

SVT Play: 188

Youtube: 214
Twitch: 214

SVT Play: 188

• Same IP addresses may 
be used for both live and 
VoD content, 
categorization needs to 
be done online



Conclusion

• The classification method used is able to quickly 
and effectivly classify encrypted traffic belong to 
the six most popular traffic types



Conclusion

• The classification method used is able to quickly 
and effectivly classify encrypted traffic belong to 
the six most popular traffic types

• The method relies only on access to timing 
information of the packets in a flow and is highly 
resistant to perturbations of this information



Conclusion

• The classification method used is able to quickly 
and effectivly classify encrypted traffic belong to 
the six most popular traffic types

• The method relies only on access to timing 
information of the packets in a flow and is highly 
resistant to perturbations of this information

• The method can be applied to distinguish between 
classes of data belonging to the same services (Vod 
and live streaming)



Thanks for listening! 
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