
Early Online Classification of Encrypted Traffic

Streams using Multi-fractal Features

Erik Areström

Linköping University, Sweden

Niklas Carlsson

Linköping University, Sweden

Abstract—Timely and accurate flow classification is important
for identifying flows with different service requirements, opti-
mized network management, and for helping network operators
simultaneously operate networks at higher utilization while
providing end users good quality of experience (QoE). With
most services starting to use end-to-end encryption (HTTPS and
QUIC), traditional Deep Packet Inspection (DPI) and port-based
approaches are no longer applicable. Furthermore, most flow-
level-based approaches ignore the complex non-linear charac-
teristics of internet traffic (e.g., self similarity). To address this
challenge, in this paper, we present and evaluate a classification
framework that combines multi-fractal feature extraction based
on time series data (which captures these non-linear charac-
teristics), principal component analysis (PCA) based feature
selection, and man-in-the-middle (MITM) based flow labeling.
Our detailed evaluation shows that the method is able to quickly
and effectively classify traffic belonging to the six most popular
traffic types (video streaming, web browsing, social networking,
audio communication, text communication, and bulk download)
and to distinguish between video-on-demand (VoD) and live
streaming sessions delivered from the same services. Our results
show that good accuracy can be achieved with only information
about the timing of the packets within a flow.

I. INTRODUCTION

In an increasingly competitive market, network operators

must compete based on both the price and the quality of

experience (QoE) that they offer their end users. Typically,

network operators can reduce their costs per user (and hence

also the prices that they can offer their customers) by operating

some networks at higher bandwidth utilization. However, with-

out careful flow scheduling and traffic-aware prioritization,

this can easily result in reduced QoE. For optimized network

management it is therefore important to have the ability to

quickly and accurately classify flows based on the end-to-end

services that they deliver.

Flow classification is a relatively well explored research

topic and have, for example, been used by network providers to

prioritize real-time streaming and interactive services at times

when the more elastic demands of peer-to-peer networks have

used up much of the bandwidth [1], [2], [3]. Deployments of

these methods have traditionally used Deep Packet Inspection

(DPI) [4], [5], in which the classification is done by analyzing

the payloads of the packets. However, over the past few

years, flow classification has been significantly complicated

by the majority of flows today being delivered over end-to-

end encrypted (HTTPS) connections [6], preventing access to

payload information.

Recently there has therefore been an upswing in research

trying to extract application level information from the en-

crypted traffic, including to determine the application class

itself. Much of this work applies machine learning algorithms

on high-level network and transport layer features such as port

numbers, packet size statistics, and flow durations [4], [7], [8],

[9], [10]. However, these types of summary statistics (easily

obtained using Netflow [11] and similar tools) cannot capture

the complex non-linear characteristics of internet traffic (e.g.,

self-similarity [12], [13], [14]) and may not allow classification

until after the flow has completed (e.g., if using the flow

duration as a feature). Shi et al. [15] therefore recently

proposed to combine multi-fractal feature extraction based on

time series data (which captures these non-linear characteris-

tics) and principal component analysis (PCA) based feature

selection methods for traffic classification. In this paper, we

present enhanced variations of these methods and a man-in-

the-middle (MITM) based evaluation framework that allows

us to consider encrypted traffic (while they only considered

unencrypted traffic), apply the methods on encrypted data from

different application types (rather than protocols), and focus

on early classification. Detailed evaluations and the impact

of various model choices are presented for six of the most

popular traffic types (video streaming, web browsing, social

networking, audio communication, text communication, and

bulk download) as well as to distinguish between video-on-

demand (VoD) and live streaming sessions delivered from the

same services (and IP addresses). The high accuracy for the

second of these use cases are particularly encouraging as the

three services considered (YouTube, Twitch, and SVT play)

all use HTTP-based Adaptive Streaming (HAS) for both their

VoD and live contents, and our technique only needs access

to timing information of the packets within a flow.

The remainder of this paper is organized as follows. Sec-

tion II describes how we collected and labeled the datasets

used for training and evaluation. Section III describes our

multi-fractal feature based model, how it was used to classify

flows, and provides step-by-step results to help understand the

classification process. Section IV presents evaluation results

using the same dataset. Section V then uses another example

use case (with complementing datasets) to demonstrate how

the approach also can be used to distinguish between VoD and

live streaming flows, even when delivered using the same HAS

services. Finally, Sections VI and VII discuss related works

and present our conclusions, respectively.

This is the authors version of the work (as accepted). It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version is published in Proc. IEEE INFOCOM Workshop on Intelligent Cloud Computing and

Networking (IEEE ICCN @INFOCOM), Paris, France, Apr/May 2019, and is available at IEEE Xplore Digital Library via http://dx.doi.org/[doi].



II. COLLECTING LABELED TIME-SERIES DATA

For training and evaluation, we need labeled time-series

data for example flows1 of each traffic category of interest.

However, such labeling is significantly complicated when

working with encrypted traffic. For this reason, we use a

trusted proxy approach.

A. Trusted proxy approach

All the data collected needs to be available both in its

encrypted and non-encrypted form so that a ground truth can

be established. This is done by using a mitmproxy [16]. In

particular, all traffic to and from the smartphone is setup

to pass through the trusted proxy, which also decrypt and

(re)encrypt the traffic before forwarding it to its destination.

Packet captures are then split into short flows using the

SplitCap [17] tool. Finally, for each flow, we create a per-

millisecond time series of the packet arrivals during the first

20 seconds of the flow. In particular, by going through all

packets in each flow, we create a 20,000 time-slot long time

series array in which a time-slot during which a packet arrived

(from the server) is one, and zero otherwise.

B. Data generation

Using the trusted-proxy approach to label real-world en-

crypted user data would require the users’ consent. As this

may not be feasible in practice, in this paper, data is instead

generated by automatic instrumentation of mobile applications.

More specifically, for each application of interest, we run a

Python script (on a laptop) that forwards commands to the

smartphone via the Android Debug Bridge (ADB), over the

Universal Serial Bus (USB), so to control that application.

Every script was uniquely created to capture example use cases

of the traffic that each application may generate. However,

to ensure fair comparison of how well different services can

be classified early during the flow, each script generated a

series of shorter 20 second connections followed by 10-second

pauses (without traffic).

C. Example applications

Example applications to be evaluated were selected to

represent six dominating traffic categories, each with different

Quality of Experience (QoE) expectations and related Quality

of Service (QoS) requirements. More specifically, we selected

to consider the following six classes: video streaming, web

browsing, social networking, audio communication, text com-

munication, and bulk download. These six categories together

represent over 80% of the total mobile access traffic in North

America [18]. While video streaming is an obvious choice to

include due to the prospect of available bandwidth savings

and QoE optimizations recently presented for this category

(e.g., [19]), other sub-categories are likely to see similar

optimization frameworks developed. Of this reason we keep

web browsing and social networking separate.

1Following standard convention, we define a flow as a sequence of packets
sent between a source IP-port pair and a destination IP-port pair.

Fig. 1. Summary of the number of sessions per type.

Figure 1 summarizes the applications that were used for

each category and the number of samples for each application

(with the area of each rectangle proportional to the number of

samples for that application). In total, we collected data for

7,154 sessions (or approx. 60 hours) of labeled data. We next

describe how sample flows of each category were generated.

Video streaming: Videos from five different video services

were used, including YouTube, Netflix, Twich, HBO, and SVT

play. Flows were generated by starting a randomly selected

video, found using each service search function. To gener-

ate random samples, random keywords were selected from

the 10,000 most commonly occurring words in the English

language, as determined by frequency analysis of Google’s

Trillion Word Corpus [20].

Web browsing: Flows were generated by having the smart-

phone visit a sub-site of one of six different example websites:

http://reddit.com (link collector), http://nouw.com (popular

local blogging platform), http://svt.se/nyheter (popular local

news), http://dn.se (popular local news), and http://di.se (pop-

ular local news). The visited sub-sites were chosen randomly

from a list found by crawling the sites.

Social networking: We used Facebook and Instagram as

examples. After entering the service, the script generated addi-

tional traffic by slowly and continuously “swiping” the screen

vertically for the vertical length of three screens, causing new

content to load throughout the full 20 second duration.

Audio communication: For this category, a phone call using

one of two services (Discord audio and Skype audio) was

made to a client that automatically accepted the call. For the

20 second call duration, the background sounds from a nearby

radio is transmitted.

Text communication: We used the three services Messenger,

Skype text, and Discord text. For each session, traffic was

generated by sending and receiving four messages at random

times during the 20 second session, where each message

contains one to three words randomly selected from the list of

the 10,000 most common English words.

Bulk download: For this category, we downloaded random

applications from Google Play [21]. Here, random applications

were identified using the search function together with random

keywords from the 10,000 most common English words.

III. MULTI-FRACTAL FEATURE BASED MODEL

We next describe, step-by-step, how a model is created

based on the multi-fractal features of a set of time series.



 0

 1

 2

 3

 4

 5

 6

h(-5)

h(-4)

h(-3)

h(-2)

h(-1)

h(1)
h(2)

h(3)
h(4)

h(5)
D
(h(-5))

D
(h(-4))

D
(h(-3))

D
(h(-2))

D
(h(-1))

D
(h(1))

D
(h(2))

D
(h(3))

D
(h(4))

D
(h(5))

F
e

a
tu

re
 w

e
ig

h
t

Fig. 2. Feature selection results using NCA.

A. Feature extraction

First, for each time series, we extract two sets of multi-

fractal features, consisting of the estimated Holder exponents

h(q) and the Hausdorff dimensions D(h(q)), respectively, of

the linearly-spaced moments q. More specifically, the features

are extracted from the time series by computing the wavelet

coefficients for different scales of the signal by using the

Discrete Wavelet Transform (DWT) with the Symlet wavelet

of order six.2 From these, the time- or space-localized suprema

of the coefficients, called the wavelet leaders, are calculated.

The wavelet leaders are then used to form a multi-resolution

structure function which in turn enables estimation of the scal-

ing exponents by regression. Finally, from these, the Holder

exponents h(q) and the Hausdorff dimensions D(h(q)) are

derived for the (integer) moments q = −5 to q = 5, q 6= 0.

Consequently, each time series has 20 features.

B. Feature selection

Not all features are significant or add to the model. To

remove non-contributing features, we performed a Neighbor-

hood Component Analysis (NCA). An optimized value for

the feature regularization parameter λ, was found by applying

the limited memory BFGS optimization algorithm [22], and

features with a feature value below 0.01 were removed.

Figure 2 shows example NCA results were we used half of

the dataset for training and the feature selection regularization

parameter λ was calculated to be 2.8 ·10−4. Here, 11 features

had a feature weight value higher than the threshold and were

included in the model.

C. Support Vector Machine

A multi-class Support Vector Machine (SVM) [23] classifier

was built based on multiple binary classifiers, were the values

for the hyperparameters of the model were obtained by apply-

ing a Bayesian optimization algorithm (with the “expected-

improvement” acquisition function). The SVM classifier was

implemented in the Statistics and Machine Learning Toolbox

(SMLT) in Matlab and the “fitcecoc” function in SMLT was

used for multi-class model fitting. Table I shows example

results where we used half of the samples for each class

as training data. Based on these optimizations, the resulting

model was then built using a radial basis kernel function with

a kernel scale of 6.203, a box constraint (cost of misclassi-

fication) of 432.09, and a one-versus-one encoding. We note

2Section IV evaluates and discusses the use of other wavelets.

TABLE I
THE MODEL HYPER PARAMETERS.

Parameter Value

Kernel function Radial basis function

Kernel scale 6.203

Box constraint 432.09

Multi-class encoding One versus one

TABLE II
SUMMARY STATISTICS ACROSS TEN EXAMPLE EVALUATIONS.

Metric F1-score Precision Recall

Average 0.960 0.959 0.961

Stdev 0.002 0.002 0.003

Min 0.956 0.956 0.955

Median 0.961 0.961 0.964

Max 0.960 0.959 0.961

that the box constraint is the cost of misclassification (which

will happen as the datasets are not perfectly separable), used

to control how strict the separation of data needs to be, and

the use of one-versus-one encoding simply means that binary

classifiers were made for each pair of classes.

D. Basic classification

Having built a model (e.g., as exemplified above), a new

flow can quickly be classified by (i) monitoring the packet

arrivals, (ii) creating a time series, (iii) extracting the time

series multi-fractal spectrum, and (iv) feeding the spectrum

into the model which classifies the flow. We next present the

evaluation of such a classification model.

IV. MODEL EVALUATION

To evaluate the model, half of the samples were used to

build the model and the other half was used for evaluation.

For each classified flow in the evaluation set we then compared

the model-based classification (using only the time series info)

with the ground truth labels. This process was repeated for ten

random sample sets and summary metrics were reported for

all flows and broken down for each class.

A. Baseline comparison

Table II reports summary statistics (e.g., average, stan-

dard deviation, min, median, and max) for all flows and

Table III breaks down the average results observed per class,

as observed across the ten experiments. Here, we report the

precision (i.e., the number of flows correctly classified as a

class divided by the total number of flows classified as that

class), the recall (i.e., the number of flows correctly classified

as a class divided by the total of flows actually belonging to

that class), and the F1-score (that incorporates both precision

p and recall r according to the equation F1 = 2pr

p+r
).

First, note that the average F1-score is high (0.960) with

small variations. The high F1-score shows that the model is

effective and the small variation (e.g., as indicated by small

min-max difference and the small standard deviation) suggests

that the average results are significant to two decimals (e.g.,

the 95% confidence interval using the Student’s t distribution

is [0.959,0.961]).



TABLE III
PER-CLASS BREAKDOWN OF F1-SCORE, PRECISION, AND RECALL.

(AVERAGES OVER 10 SAMPLES.).

Class F1-score Precision Recall

Audio communication 0.986 0.988 0.986

Bulk download 0.994 0.989 0.996

Text communication 0.958 0.957 0.959

Social media 0.900 0.892 0.910

Video 0.958 0.962 0.954

Web 0.952 0.960 0.944

Looking closer at the per-class breakdown (Table II), we

note that the audio communication and bulk download classi-

fiers got very high F1-scores (0.986 and 0.994, respectively).

Also the text communication (0.958), video (0.958), and web

(0.952) classifiers performed very well. The worst performing

classifier was the social media classifier, which sometimes got

mixed up with web and video, both of which the social media

sessions contain elements of. (These and other cross-category

misclassifications are captured by the confusion matrix in

Figure 3, where we have aggregated the results across all ten

sample experiments.3) Yet, also this classifier performed well,

achieving an average F1-score of 0.900.

To provide some intuition for how the classification is

achieved Figure 4 visualizes the 11-dimensional dataset in

3-dimesnions using t-distributed Stochastic Neighbor Embed-

ding (t-SNE). As part of this method we perform a Principal

Component Analysis (PCA) on the 11 selected features to

identify the principal components that explain most of the vari-

ance in the dataset, and then embedded data points into such a

3-dimensional space so that points in the 11-dimensional space

also are close in this 3-dimensional space. We note that there

are some significant clustering of data points associated with

the same classes, suggest that these points likely are closeby

in the 11-dimensional used by the SVM classifier.

B. Early detection

In the above evaluation we used the full 20-second traces.

While 20 seconds provide fairly quick detection, an important

question is how soon a purely time-series-based method,

such as the one explored here, actually can provide accurate

classification. Clearly, a shorter time-series duration would

allow earlier predications, but would have less packets to base

those predictions on. Table IV presents summary statistics

when we use the first 20, 15, 10, 5, 2.5, 2, and 1 seconds

of each flow for the training and evaluation. To provide a

more fair comparison we kept the number of time-slots fixed

at 20,000 (instead reducing the slot durations as we tried to

make earlier predictions). We note that the model achieved

an F1-score of 0.814 already after 5 seconds, suggesting that

good accuracy can be achieved early in a flow (e.g., after only

5 seconds). Of course, such early classification can easily be

combined with re-classification later in the flow (e.g., at 10

and 20 seconds), so to further improve the overall accuracy.

3The small differences observed between Table III and Figure 3 are due to
the average of ratios not necessarily being equal to the ratio of sums.

Fig. 3. Confusion matrix (based on an aggregate over all 10 samples).

Fig. 4. t-SNE visualization of the chosen multi-fractal features.

C. The impact of added packet delay variation

To evaluate the impact of packet delay variations, the

evaluation set was modified through random perturbations of

the packet arrival times. In particular, for each of the packets in

the time-series of the evaluation set, we drew a random number

x from the normal distribution N (0, σ), and then “moved” the

arrival time of this packet int(x) timeslots. Four our evaluation,

we used σ = 0, 10, 25, 50, 100, 250, 500, and 1000. Table V

presents the resulting F1-scores from these experiments. We

note that the F1-score remains above 0.8 even for perturbations

as large as with σ = 500 (in which case 31.8% of the packet

arrivals are perturbed by more than ±0.5 seconds).

D. Impact of other features and model choices

We have evaluated the model with many other features and

model choices. Here, we briefly discuss some of our findings.

First, the Symlet wavelet of order six typically gives the best

result. For example, for our default experiments, a Symlet

wavelet of order six had the highest F1-score (0.958) of all

wavelets considered, which include all Daubechies wavelets

of orders one-to-eight, all Symlets of orders one-to-eight, and

all Coiflets of orders one-to-eight. As a comparison, we note

that the best Daubechies wavelet (of order six) had an F1-

score of 0.938, and the best Coiflet (of order five) had an

F1-score of 0.943. Second, we have not found any added

value from (i) adding the number of packets for each time slot

(same combined F1-score of 0.958), (ii) adding the number of



TABLE IV
IMPACT OF THE DURATION ON THE F1-SCORE. (20,000 TIMESLOTS.)

Duration F1-score Precision Recall

20 seconds 0.958 0.958 0.958

15 seconds 0.892 0.891 0.894

10 seconds 0.844 0.838 0.851

5 seconds 0.814 0.823 0.805

2.5 seconds 0.631 0.594 0.673

2 seconds 0.409 0.404 0.415

1 second 0.214 0.202 0.228

TABLE V
F1-SCORES WHEN PACKET ARRIVAL INSTANCES ARE PERTURBED

ACCORDING TO A NORMAL DISTRIBUTION N (0, σ).

σ 10 25 50 100 250 500 1000

F1-score 0.952 0.942 0.925 0.927 0.891 0.834 0.695

transmitted bytes for each time slot (F1=0.949), (iii) adding

the time since last packet in each time slot (F1=0.823),

and (iv) multiplying all timeslots with bytes transmitted thus

far (F1=0.951). Third, further improvements are possible if

combining the multi-fractal features studied here with more

traditional baseline features such as the total number of packets

and the total number of bytes transmitted during the full time

window (e.g., first 20 seconds). Figure 5 shows the results

when adding these two factors to the model. Overall, we

observe a slight increase in F1-score from 0.958 to 0.968.

V. ANOTHER USE CASE: VOD VS LIVE

Thus far we have evaluated the approach on classes that

typically also could be classified on a per-service basis. In this

section, we take the evaluation one step further and classify

flows within the same set of services. In particular, we use

the same methodology framework as explained in Sections II

and III on sites that deliver both video on demand (VoD) and

live streaming, often from the same IP addresses.

A. Data generation and collection

A dataset is first generated using the same setup as described

in Section II, this time using only the three streaming services

YouTube, Twitch and SVT play. In fact, for the VoD data

we used the set of sessions collected above, and for the

live streaming we randomly selected live streams from each

application’s list of current live streams. Table VI shows the

breakdown of the 616 samples used for each class.

B. Model and feature selection

NCA resulted in a reduction from 20 to 7 multi-fractal

features and the optimized SVM model resulted in a model

with the same kernel function (radial basis function), but now

with a kernel scale of 1.0213 and box constraint of 121.39.

C. Evaluation

Figure 6 shows the evaluation results. Here, the right column

shows the precision of each classifier, the bottom row shows

the recall of each classifier, and the cell in the bottom right

shows the overall accuracy. The model managed an F1-score of

0.893, with similar performance of both classes. For a binary

classifier this is a good result; showing that classification is

possible with satisfying, but not perfect, accuracy.

Fig. 5. Confusion matrix when evaluating the framework with the addition
of two non-fractal features (based on the first example sample).

TABLE VI
NUMBER OF COLLECTED SAMPLES FOR EACH CLASS.

Class Samples Class traffic composition

Live 616 Youtube: 214, Twitch: 214, SVT play: 188

VoD 616 Youtube: 214, Twitch: 214, SVT play: 188

VI. RELATED WORK

Online flow classification has been used for many differ-

ent application areas (e.g., security and management [24],

accounting [25], and providing QoS guarantees [26]), efficient

online performance has been demonstrated using many tech-

niques (e.g., supervised techniques based on Naı̈ve Bayes [27],

and automated and semi-automated clustering techniques [10],

[2], [28]), and solutions have been based on a wide range

of features (ranging from simple flow-based metrics [3] to

statistical analysis of specific properties [29], for example).

The majority of this work ignores the burstiness of current

internet traffic and do not capture its complex non-linear

characteristics (e.g., self-similarity [12], [13], [14]).

The work closest to ours is the work by Shi et al. [15],

who first demonstrated the value of using multi-fractal features

for traffic classification. In their work, they show that multi-

fractal features can be used to differentiate between traffic

associated with different protocols. In this paper, we extend

the framework for training and evaluation of encrypted traffic,

and then show that the method effectively classifies encrypted

traffic associated with delivery of different application types

(rather than protocols) and demonstrate that the method is

effective for early classification.

Encrypted traffic has also been classified by others. Pan et

al. [30] shows that characteristics in the SSL/TLS handshake

process can be used to discriminate between 12 websites and

Muehlstein et al. [31] used 53 features calculated based on

transport layer attributes to discriminate between YouTube,

Facebook and Twitter. Other researchers have shown that, even

when the data is encrypted, it is possible to identify the operat-

ing system, browser and the application of unknown hosts [31],

the language used on an encrypted VoIP channel [32], what

Netflix videos users watch [33], and even to estimate the QoE

and buffer conditions of video streaming clients [34], [35].



Fig. 6. The resulting confusion matrix from evaluating the model.

VII. CONCLUSION

This paper presents and evaluates a classification framework

that combines multi-fractal feature extraction based on time

series data (that captures the non-linear characteristics of in-

ternet traffic), PCA-based feature selection, and MITM-based

flow labeling. Our detailed evaluation shows that the method

is able to quickly and effectively classify traffic belonging

to the six most popular traffic types (video streaming, web

browsing, social networking, audio communication, text com-

munication, and bulk download) and to distinguish between

VoD and live streaming sessions delivered from the same

services. The high accuracy for the second of these use cases

are particularly encouraging as the three streaming services

considered (YouTube, Twitch, and SVT play) use HAS-based

streaming for both their VoD and live contents. Furthermore,

since the method only requires access to timing information of

the packets within a flow, it is significantly more future-proof

than approaches that rely on DPI (already not possible due to

high HTTPS/QUIC usage) and port numbers (easily obscured

and typically the same across classes as the majority of traffic

is HTTP-based anyway today, although often delivered over

TLS or QUIC).

ACKNOWLEDGMENTS

The authors are very thankful to Peter Alvarsson and Eric

Henziger for their feedback and help with this work. This work

was funded in part by the Swedish Research Council (VR).

REFERENCES

[1] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identifying and
discriminating between web and peer-to-peer traffic in the network core,”
in Proc. WWW, 2007.

[2] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identi-
fication,” in Proc. ACM CoNEXT, 2006.

[3] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” in Proc. ACM SIGCOMM, 2005.

[4] A. W. Moore and K. Papagiannaki, “Towards the accurate identification
of network applications,” in Proc. PAM, 2005.

[5] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: automated
construction of application signatures,” in Proc. ACM SIGCOMM work-

shop on Mining network data, 2005.

[6] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS adoption on the web,” in Proc. USENIX Security

Symposium, 2017.

[7] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate
flow-based network traffic classification: Evaluation and comparison,”
Performance Evaluation, vol. 67, no. 6, pp. 451–467, 2010.

[8] R. Yuan, Z. Li, X. Guan, and L. Xu, “An SVM-based machine learning
method for accurate internet traffic classification,” Information Systems

Frontiers, vol. 12, no. 2, pp. 149–156, 2010.
[9] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service

mapping for QoS: a statistical signature-based approach to IP traffic
classification,” in Proc. ACM IMC, 2004.

[10] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms,” in Proc. ACM SIGCOMM Workshop on Mining

Network Data, 2006.
[11] B. Claise, “Cisco systems Netflow services export version 9,” RFC 3954,

Tech. Rep., 2004.
[12] W. E. Leland, W. Willinger, M. S. Taqqu, and D. V. Wilson, “On the

self-similar nature of Ethernet traffic,” ACM SIGCOMM CCR, vol. 25,
no. 1, pp. 202–213, 1995.

[13] A. Feldmann, A. C. Gilbert, and W. Willinger, “Data networks as
cascades: Investigating the multifractal nature of internet WAN traffic,”
ACM SIGCOMM CCR, vol. 28, no. 4, pp. 42–55, 1998.

[14] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz, “The chang-
ing nature of network traffic: Scaling phenomena,” ACM SIGCOMM

CCR, vol. 28, no. 2, pp. 5–29, 1998.
[15] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and robust

feature extraction and selection for traffic classification,” Comput. Netw.,
vol. 119, no. C, pp. 1–16, 6 2017.

[16] mitmproxy. [Online]. Available: https://mitmproxy.org/
[17] Splitcap. [Online]. Available: https://www.netresec.com/?page=SplitCap
[18] Sandvine, “2016 Global internet phenomena report, Latin America and

North America,” Tech. Rep., 2016.
[19] V. Krishnamoorthi, N. Carlsson, and E. Halepovic, “Slow but steady:

Cap-based client-network interaction for improved streaming experi-
ence,” in Proc. IEEE/ACM IWQoS, 2018.

[20] P. Norvig. Natural language corpus data: Beautiful data. Visited on
01/06/2018. [Online]. Available: http://norvig.com/ngrams/

[21] Google Inc. Google Play. [Online]. Available: https://play.google.com/
[22] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for

large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[24] R. Bendrath and M. Mueller, “The end of the net as we know it? deep
packet inspection and Internet governance,” New Media & Society, 2011.

[25] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani, “Fast
monitoring of traffic subpopulations,” in Proc. ACM IMC, 2008.

[26] N. Cascarano, L. Ciminiera, and F. Risso, “Optimizing deep packet
inspection for high-speed traffic analysis,” Journal of Network and

Systems Management, vol. 19, no. 1, pp. 7–31, 2011.
[27] A. Moore and D. Zuev, “Internet traffic classification using Bayesian

analysis techniques,” in Proc. ACM SIGMETRICS, 2005.
[28] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network

traffic classification,” IEEE/ACM Trans. Netw., vol. 23, pp. 1257–1270,
2015.

[29] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification
and application identification using machine learning,” in Proc. IEEE

LCN, 2005.
[30] W. Pan, G. Cheng, and Y. Tang, “WENC: HTTPS encrypted traffic

classification using weighted ensemble learning and Markov chain,” in
Proc. IEEE Trustcom/BigDataSE/ICESS, 2017.

[31] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir,
and O. Pele, “Analyzing HTTPS encrypted traffic to identify user’s
operating system, browser and application,” in Proc. IEEE CCNC, 2017.

[32] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson, “Language
identification of encrypted VoIP traffic: Alejandra y roberto or alice and
bob?” in Proc. USENIX Security Symposium, 2007.

[33] A. Reed and M. Kranich, “Identifying HTTPS-protected Netflix videos
in real-time,” in Proc. ACM CODASPY, 2017.

[34] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan,
“BUFFEST: predicting buffer conditions and realtime requirements of
HTTP(S) adaptive streaming clients,” in Proc. ACM MMSys, 2017.

[35] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for HTTPS and QUIC,” in Proc. IEEE INFOCOM, 2018.


