
Empowering the Creative User:
Personalized HTTP-based

Adaptive Streaming of Multi-path Nonlinear Video

1 Linköping university, Sweden
2 University of Saskatchewan, Canada

3 NICTA, Australia

Vengatanathan Krishnamoorthi1, Patrik Bergström1, Niklas Carlsson1,
Derek Eager2, Anirban Mahanti3, Nahid Shahmehri1

Proc. ACM FhMN, Hong Kong, China, August 16, 2013

Presenter
Presentation Notes
Hello, good afternoon and welcome to this presentation. My name is Vengat, and I will be talking about the paper titled Empowering the creative user: personalized http based adaptive streaming of multipath nonlinear video. This is joint work between myself, my advisors Niklas and Nahid, Patrik: a local undergrad student, Derek: who is a professor at University of Saskatchewan, Canada, and Anirban: who is a principal researcher at NICTA, Australia.

Most of us have seen Tom & Jerry
movies, what if they could create

their own versions of these
movies??

2

Presenter
Presentation Notes
Most of us have seen Tom & Jerry movies, and may be familiar with their epic battles. Before diving into our work, I wanted to first ask the question how such a movie may look if they could pick their own personalized versions of these movies??

For a minute...think that you are Tom

3

Presenter
Presentation Notes
First, consider Tom. If Tom created his own version, he may like the videos to focus on when he has fun chasing Jerry and does other playful things. However, he may also want to avoid or remove any scenes in which he is beaten up by Jerry. Tom’s movie version may therefore look something like this …

For a minute...think that you are Tom

3

Likes:

Presenter
Presentation Notes
First, consider Tom. If Tom created his own version, he may like the videos to focus on when he has fun chasing Jerry and does other playful things. However, he may also want to avoid or remove any scenes in which he is beaten up by Jerry. Tom’s movie version may therefore look something like this …

For a minute...think that you are Tom

3

Likes:

Presenter
Presentation Notes
First, consider Tom. If Tom created his own version, he may like the videos to focus on when he has fun chasing Jerry and does other playful things. However, he may also want to avoid or remove any scenes in which he is beaten up by Jerry. Tom’s movie version may therefore look something like this …

For a minute...think that you are Tom

3

Likes:

Dislikes:

Presenter
Presentation Notes
First, consider Tom. If Tom created his own version, he may like the videos to focus on when he has fun chasing Jerry and does other playful things. However, he may also want to avoid or remove any scenes in which he is beaten up by Jerry. Tom’s movie version may therefore look something like this …

Tom’s video

4

“We do not, in any way, shape or form, claim any ownership to the characters, sounds, images, or anything else related
to 'Tom and Jerry'. Those rights belong to Time Warner and Turner Entertainment. This presentation is for educational
purposes only."

ACROBAT READER IS REQUIRED TO PLAY THE VIDEO, NOT COMPATIBLE WITH OTHER PDF VIEWERS

Presenter
Presentation Notes
As you can see, Tom had lots of fun chasing Jerry and always got away without getting hurt.

http://www.warnerbrothers.com/
http://www.warnerbrothers.com/
http://www.turner.com/

5

Now, lets look at his opponent Jerry

Presenter
Presentation Notes
Now let’s consider Jerry. He likes to do fun things with Tom, and loves when Tom gets into trouble with Spike, a big dog in their neighborhood. If Jerry was creating his own version of the same events as Tom’s featured in his movie version, it may look something like this

5

Now, lets look at his opponent Jerry

Likes:

Presenter
Presentation Notes
Now let’s consider Jerry. He likes to do fun things with Tom, and loves when Tom gets into trouble with Spike, a big dog in their neighborhood. If Jerry was creating his own version of the same events as Tom’s featured in his movie version, it may look something like this

5

Now, lets look at his opponent Jerry

Likes:

Presenter
Presentation Notes
Now let’s consider Jerry. He likes to do fun things with Tom, and loves when Tom gets into trouble with Spike, a big dog in their neighborhood. If Jerry was creating his own version of the same events as Tom’s featured in his movie version, it may look something like this

5

Now, lets look at his opponent Jerry

Likes:

Dislikes:

Presenter
Presentation Notes
Now let’s consider Jerry. He likes to do fun things with Tom, and loves when Tom gets into trouble with Spike, a big dog in their neighborhood. If Jerry was creating his own version of the same events as Tom’s featured in his movie version, it may look something like this

Jerry’s video

“We do not, in any way, shape or form, claim any ownership to the characters, sounds, images, or anything else related
to 'Tom and Jerry'. Those rights belong to Time Warner and Turner Entertainment. This presentation is for educational
purposes only."

ACROBAT READER IS REQUIRED TO PLAY THE VIDEO, NOT COMPATIBLE WITH OTHER PDF VIEWERS

Presenter
Presentation Notes
As you may expect, both Tom and Jerry were very happy watching their own personalized versions :) and as a neutral viewer, the storyline was different in both versions of the same video.

That brings us to our work ... Motivated by Tom and Jerry ... or perhaps more accurately, motivated by the big differences in the tastes and desires of individual movies watchers, we designed a framework that would allow one to deliver personalized media.

http://www.warnerbrothers.com/
http://www.warnerbrothers.com/
http://www.turner.com/

Contributions
• Framework that allows the creator to easily create customized

playback experiences for the viewer

• Combines ideas of personalized multi-path video and HTTP-
based adaptive streaming (HAS)

• Creator can use a light-weight personalized metafile to define
any arbitrary set of paths and path choices through some original
video (or file that concatenate multiple linear video clips)

• Allows viewer to traverse through the video by interacting with
the player and choosing among multiple path options

• Seamless video playback using rate-adaptive prefetching and
buffer management based on current network conditions

7

Presenter
Presentation Notes
In this presentation I will present the high-level design and evaluation of our framework. I will show how it allow easy personalization and video delivery that would make both Tom and Jerry, as well as many other movie watchers happy :)

Our framework allows for user specific customizations, and effectively combines multipath video and HAS. The framework allows for easy creation and modification of content by using a simple metafile that specifies different paths and path options through the original video, or a combined video that concatenate multiple videos or video scenes. The creator can cater for different viewer preferences and provide the viewer with path choices. When playing the movie, the viewer can chose between these path choices, and the player easily adapt the content that is downloaded such as to ensure seamless playback. In particular, we have designed careful buffer management policies and rate adaptive prefetching that helps the player download different path options in parallel such as to ensure that the movie watching is not interrupted due to missing data when the user is late making their path selection.

HTTP-based streaming

• HTTP-based streaming
• Split into fragments

• Use of HTTP allows: Easy caching, get through NATs/firewalls, etc.

• Some support for interactive VoD

8

Presenter
Presentation Notes
Having briefly outlined our contributions, I will now talk about the technical aspects of the paper. As mentioned earlier, we make use of HAS as our delivery mechanism. HAS is slowly becoming the defacto standard to deliver streaming video, and is used by companies such as Netflix and hulu. The use of HTTP has many benefits. HTTP is client-driven and enables efficient delivery for clients behind NATs and firewalls. HTTP also allows the existing architecture to be efficiently leveraged, as the video can be cached and replicated by existing and widely deployed caches. These benefits makes HTTP-based streaming very attractive. In many cases, the video is also encoded in a way that it can be split into smaller fragments. These are typically 2-5 seconds long and each fragment is identifiable by a unique URL. The use of fragments helps reduce wasteful downloads when using interactive features, such as forwarding and rewinding, as one can directly request the next desired fragment instead of downloading the whole file sequentially. Another benefit of splitting the files into fragments with independent URLs, is that it reduces the cache side memory requirements when users only watches part of the file.

HTTP-based adaptive streaming (HAS)

• HTTP-based adaptive streaming
• Multiple encodings of each fragment (defined in manifest file)

• Clients adapt quality encoding based on (buffer and network) conditions

9

Presenter
Presentation Notes
Having described fragment-based streaming with HTTP, I will next describe to the adaptive portion of HAS. In addition to splitting the file into fragments, the video is encoded in multiple encoding rates, and fragments of different qulities can therefore be downloded by different users and/or at different times during a single playback session. By choosing the quality of the next fragment as the one that best fits the current bandwidth and buffer conditions, we can adaptively adjust the playback quality and bandwidth usage on a per-fragment basis. This can be visualized from the diagram here.

Consider a player starting from the lowest quality for the first two fragments but with good bandwidth conditions, that would allow a higher playback quality. Once the player observe that the download rate is significantly greater than what is needs to download these fragments to meat their playback deadlines, it is will typically increase the playback quality in steps of one when making another fragment request. This continues, until the most apt quality is reached. In the case shown here, the player found sufficient bandwidth to playback at 1300Kb/s and will remain stable at this quality unless conditions changes.

To inform the player about available encodings and fragments, HAS makes use of a manifest file that each user download before beginning playback. Bear in mind that any adaptive player will make use of such a file to give the player information about bootstrap information and available encodings.

Nonlinear multi-path video

10

• Nonlinear segments: non-contiguous fragments of video can be
stitched together to form what we term nonlinear video segments

• Multi-path and branch points: The video can include branch
points at which there are multiple choices of which segment to play
back next

Presenter
Presentation Notes
As mentioned before we have implemented a multipath nonlinear video player. I will now describe what non-linear and multipath video are. First, as shown at the top, we allow the media creator to define nonlinear segments, which non-contiguous fragments of video can be stitched together to form what we term a ``nonlinear'' video segment. For example, in this example, we see that the series of fragments are not linear, with clear discontinuities compared to regular “linear” fragment sequences. A second aspects is the use of multipath selection and branch points. A multipath video is one in which users can influence or select the path that he/she takes through the video. To do this, the creator specifies branch points which are places at which the player may provide the user with path selections from which the user can select one path. Based on the user input different segments are played back. There typically also is a default path which would be taken if there were no user input.

A separate flexible and personalizable metafile

• In addition to regular manifest file, we use a separate metafile

• Allows the creator to define any arbitrary set of paths and path
choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example)
• Nonlinear segments and branch points

• Longest path matching
• Maintain history of player path

• Break ties when multiple contenders

11

Presenter
Presentation Notes
In order to specify multipath video, we make use of a separate metafile, different than the manifest file used to define the fragments and encodings of the HAS media itself. This file is a simple text file which defines nonlinear segments and branch points. In the following example, we illustrate the use of branch points. And how they can be used to define multipath video.

For example, consider the multipath structure to the right and the branch points along the red path, which we can assume that the user selected ... First, consider the first branch points. Here, 1 is the incoming segment and 2,3,and 4 are the potential segments that the user can select between. We note that anything before a (is the segment numbers hat distinguish the path to the branch point, and any numbers within brackets specifies potential landing segments, or candidate segments to be played next.

Comparing the metafile on the left and the structure on the right, we note that selected path, outlined with the red line, corresponds to the branch points within the red boxes on the left. As you can see after segment 1, there is a branch point which presents the option to reach either 2 3 or 4 .. Similarly, after segment 4, the user can select between … (fill in) The other branch points can also be explained in this way.

By using this representation, we can provide for any possible structure through the video. If there are multiple branch points at the same fragment number, then the player keeps track of its playback history and chooses the path which the history most closely matches. We call this as longest path matching. This is for example, shown by comparing the choices after 4 … (Compare
1 3 4 (5, 7)
1 2 4 (5, 6)

A separate flexible and personalizable metafile

• In addition to regular manifest file, we use a separate metafile

• Allows the creator to define any arbitrary set of paths and path
choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example)
• Nonlinear segments and branch points

• Longest path matching
• Maintain history of player path

• Break ties when multiple contenders

11

Presenter
Presentation Notes
In order to specify multipath video, we make use of a separate metafile, different than the manifest file used to define the fragments and encodings of the HAS media itself. This file is a simple text file which defines nonlinear segments and branch points. In the following example, we illustrate the use of branch points. And how they can be used to define multipath video.

For example, consider the multipath structure to the right and the branch points along the red path, which we can assume that the user selected ... First, consider the first branch points. Here, 1 is the incoming segment and 2,3,and 4 are the potential segments that the user can select between. We note that anything before a (is the segment numbers hat distinguish the path to the branch point, and any numbers within brackets specifies potential landing segments, or candidate segments to be played next.

Comparing the metafile on the left and the structure on the right, we note that selected path, outlined with the red line, corresponds to the branch points within the red boxes on the left. As you can see after segment 1, there is a branch point which presents the option to reach either 2 3 or 4 .. Similarly, after segment 4, the user can select between … (fill in) The other branch points can also be explained in this way.

By using this representation, we can provide for any possible structure through the video. If there are multiple branch points at the same fragment number, then the player keeps track of its playback history and chooses the path which the history most closely matches. We call this as longest path matching. This is for example, shown by comparing the choices after 4 … (Compare
1 3 4 (5, 7)
1 2 4 (5, 6)

A separate flexible and personalizable metafile

• In addition to regular manifest file, we use a separate metafile

• Allows the creator to define any arbitrary set of paths and path
choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example)
• Nonlinear segments and branch points

• Longest path matching
• Maintain history of player path

• Break ties when multiple contenders

11

length: 4 3 2 2 3 2 2 2 2 2

begin 1(2,3,4)

12(3,4)

24(5,6)

13(4,5)

34(5,7)

14(5,6)

146(7,9) end

Presenter
Presentation Notes
In order to specify multipath video, we make use of a separate metafile, different than the manifest file used to define the fragments and encodings of the HAS media itself. This file is a simple text file which defines nonlinear segments and branch points. In the following example, we illustrate the use of branch points. And how they can be used to define multipath video.

For example, consider the multipath structure to the right and the branch points along the red path, which we can assume that the user selected ... First, consider the first branch points. Here, 1 is the incoming segment and 2,3,and 4 are the potential segments that the user can select between. We note that anything before a (is the segment numbers hat distinguish the path to the branch point, and any numbers within brackets specifies potential landing segments, or candidate segments to be played next.

Comparing the metafile on the left and the structure on the right, we note that selected path, outlined with the red line, corresponds to the branch points within the red boxes on the left. As you can see after segment 1, there is a branch point which presents the option to reach either 2 3 or 4 .. Similarly, after segment 4, the user can select between … (fill in) The other branch points can also be explained in this way.

By using this representation, we can provide for any possible structure through the video. If there are multiple branch points at the same fragment number, then the player keeps track of its playback history and chooses the path which the history most closely matches. We call this as longest path matching. This is for example, shown by comparing the choices after 4 … (Compare
1 3 4 (5, 7)
1 2 4 (5, 6)

A separate flexible and personalizable metafile

• In addition to regular manifest file, we use a separate metafile

• Allows the creator to define any arbitrary set of paths and path
choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example)
• Nonlinear segments and branch points

• Longest path matching
• Maintain history of player path

• Break ties when multiple contenders

11

length: 4 3 2 2 3 2 2 2 2 2

begin 1(2,3,4)

12(3,4)

24(5,6)

13(4,5)

34(5,7)

14(5,6)

146(7,9) end

Presenter
Presentation Notes
In order to specify multipath video, we make use of a separate metafile, different than the manifest file used to define the fragments and encodings of the HAS media itself. This file is a simple text file which defines nonlinear segments and branch points. In the following example, we illustrate the use of branch points. And how they can be used to define multipath video.

For example, consider the multipath structure to the right and the branch points along the red path, which we can assume that the user selected ... First, consider the first branch points. Here, 1 is the incoming segment and 2,3,and 4 are the potential segments that the user can select between. We note that anything before a (is the segment numbers hat distinguish the path to the branch point, and any numbers within brackets specifies potential landing segments, or candidate segments to be played next.

Comparing the metafile on the left and the structure on the right, we note that selected path, outlined with the red line, corresponds to the branch points within the red boxes on the left. As you can see after segment 1, there is a branch point which presents the option to reach either 2 3 or 4 .. Similarly, after segment 4, the user can select between … (fill in) The other branch points can also be explained in this way.

By using this representation, we can provide for any possible structure through the video. If there are multiple branch points at the same fragment number, then the player keeps track of its playback history and chooses the path which the history most closely matches. We call this as longest path matching. This is for example, shown by comparing the choices after 4 … (Compare
1 3 4 (5, 7)
1 2 4 (5, 6)

A separate flexible and personalizable metafile

• In addition to regular manifest file, we use a separate metafile

• Allows the creator to define any arbitrary set of paths and path
choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example)
• Nonlinear segments and branch points

• Longest path matching
• Maintain history of player path

• Break ties when multiple contenders

11

length: 4 3 2 2 3 2 2 2 2 2

begin 1(2,3,4)

12(3,4)

24(5,6)

13(4,5)

34(5,7)

14(5,6)

146(7,9) end

Presenter
Presentation Notes
In order to specify multipath video, we make use of a separate metafile, different than the manifest file used to define the fragments and encodings of the HAS media itself. This file is a simple text file which defines nonlinear segments and branch points. In the following example, we illustrate the use of branch points. And how they can be used to define multipath video.

For example, consider the multipath structure to the right and the branch points along the red path, which we can assume that the user selected ... First, consider the first branch points. Here, 1 is the incoming segment and 2,3,and 4 are the potential segments that the user can select between. We note that anything before a (is the segment numbers hat distinguish the path to the branch point, and any numbers within brackets specifies potential landing segments, or candidate segments to be played next.

Comparing the metafile on the left and the structure on the right, we note that selected path, outlined with the red line, corresponds to the branch points within the red boxes on the left. As you can see after segment 1, there is a branch point which presents the option to reach either 2 3 or 4 .. Similarly, after segment 4, the user can select between … (fill in) The other branch points can also be explained in this way.

By using this representation, we can provide for any possible structure through the video. If there are multiple branch points at the same fragment number, then the player keeps track of its playback history and chooses the path which the history most closely matches. We call this as longest path matching. This is for example, shown by comparing the choices after 4 … (Compare
1 3 4 (5, 7)
1 2 4 (5, 6)

A separate flexible and personalizable metafile

• In addition to regular manifest file, we use a separate metafile

• Allows the creator to define any arbitrary set of paths and path
choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example)
• Nonlinear segments and branch points

• Longest path matching
• Maintain history of player path

• Break ties when multiple contenders

11

length: 4 3 2 2 3 2 2 2 2 2

begin 1(2,3,4)

12(3,4)

24(5,6)

13(4,5)

34(5,7)

14(5,6)

146(7,9) end

Presenter
Presentation Notes
In order to specify multipath video, we make use of a separate metafile, different than the manifest file used to define the fragments and encodings of the HAS media itself. This file is a simple text file which defines nonlinear segments and branch points. In the following example, we illustrate the use of branch points. And how they can be used to define multipath video.

For example, consider the multipath structure to the right and the branch points along the red path, which we can assume that the user selected ... First, consider the first branch points. Here, 1 is the incoming segment and 2,3,and 4 are the potential segments that the user can select between. We note that anything before a (is the segment numbers hat distinguish the path to the branch point, and any numbers within brackets specifies potential landing segments, or candidate segments to be played next.

Comparing the metafile on the left and the structure on the right, we note that selected path, outlined with the red line, corresponds to the branch points within the red boxes on the left. As you can see after segment 1, there is a branch point which presents the option to reach either 2 3 or 4 .. Similarly, after segment 4, the user can select between … (fill in) The other branch points can also be explained in this way.

By using this representation, we can provide for any possible structure through the video. If there are multiple branch points at the same fragment number, then the player keeps track of its playback history and chooses the path which the history most closely matches. We call this as longest path matching. This is for example, shown by comparing the choices after 4 … (Compare
1 3 4 (5, 7)
1 2 4 (5, 6)

The player

12

Multi-path navigation

Presenter
Presentation Notes
To give a feeling for the player, I include a image of how our proof-of-concept player looks. For our proof of concept implementation, we have used OSMF as the basic framework, it is a open source library which includes a media player and necessary functionality to build a customized player as well.

Here, the user have two ways to specify and input their path choices to the player. Both are shown at the bottom-left corner. The first approach allow the the user to click on an arrow that switches between a left-turn or a right-turn. This allow the user to traverse a binary tree. The second approach is more general, and reads a numeric input from the keyboard. In particular, we allow the user to chose from up to 10 different path choices. This chosen path choice is shown at the bottom-left corner, and can be changed up until the time the player reach the play point of the first fragment of the selected path. The text shown in the centre is the message that is shown to the user when close to the branch point to have an idea of what lies ahead.

Prefetching and rate adaptation
• Adapt prefetch quality requests based on branch points and

buffer/network conditions

• Player modifications include
• Internal prefetch buffer

• Prefetch module for requests

• Buffer managament for branch points

13

Presenter
Presentation Notes
We now move to a more detailed system description. In order to provide for the flexible multipath through the video, we had to make other considerations as well. In order to achieve seamless playback, the player has to prefetch and buffer at least a few fragments along each potential path. For this purpose we implemented a prefetching routine that takes care of prefetching these fragments well ahead of time. This system is also adaptive as it adapts to the estimated bandwidth and also accounts for other fragments that the player requires to reach a branch point as well. In order to do this we implemented a secondary player buffer which we call as the prefetch buffer. The prefetched fragments are available here. We also implemented a rate-aware prefetch module that would request both fragemnts along the default path and prefetch fragments along the alternative paths. Prefetch requests go through a different set of port numbers to keep things going smoothly. Whenever a prefetch request is made the data makes its way to the prefetch buffer. When the non-default path is selected, the player waits until the right time, and flushes its playback buffer, inserts the content from the prefetch buffer into the regular buffer, and starts consuming the data as playback is resumed again. At the same time, it places requests for subsequent fragments as well.

Proof-of-concept evaluation
• Setup

• Server (Adobe media server 5.0); Client (Firefox)

• Available bandwidth (dummynet: 1, 2, 3 Mbps)

• Prefetch ahead of branch points

• No stall events (late data)

• Adapt prefetch quality to current conditions

Presenter
Presentation Notes
The following slide shows our evaluation setup and how our system works. We made use of a testbed using AMS and a firefox client. The client-side bandwidth was restricted by using dummynet. The graph shows the time at which different requests were made, the request completion time and how the player progressed through the video. In this example scenario, the player starts requests for the first two fragments and begins playback after it has built up a buffer. At the same time after the completion of its first request, it also places two requests to prebuffer the two possible land points. This request was placed three fragments ahead of the branch point. When the player reached a branch point, the user in this case made a decision to take one of the non-default paths, this can be seen by the jump in the timeline, followed by normal playback again. The first fragment of this branch was already prebuffered and this was made use of initially to resume playback seamlessly. The same thing can also be seen in other branch points and using this as our basis, we can provide seamless multipath nonlinear video.

Proof-of-concept evaluation
• Setup

• Server (Adobe media server 5.0); Client (Firefox)

• Available bandwidth (dummynet: 1, 2, 3 Mbps)

• Prefetch ahead of branch points

• No stall events (late data)

• Adapt prefetch quality to current conditions

Presenter
Presentation Notes
The following slide shows our evaluation setup and how our system works. We made use of a testbed using AMS and a firefox client. The client-side bandwidth was restricted by using dummynet. The graph shows the time at which different requests were made, the request completion time and how the player progressed through the video. In this example scenario, the player starts requests for the first two fragments and begins playback after it has built up a buffer. At the same time after the completion of its first request, it also places two requests to prebuffer the two possible land points. This request was placed three fragments ahead of the branch point. When the player reached a branch point, the user in this case made a decision to take one of the non-default paths, this can be seen by the jump in the timeline, followed by normal playback again. The first fragment of this branch was already prebuffered and this was made use of initially to resume playback seamlessly. The same thing can also be seen in other branch points and using this as our basis, we can provide seamless multipath nonlinear video.

Proof-of-concept evaluation
• Setup

• Server (Adobe media server 5.0); Client (Firefox)

• Available bandwidth (dummynet: 1, 2, 3 Mbps)

• Prefetch ahead of branch points

• No stall events (late data)

• Adapt prefetch quality to current conditions

Presenter
Presentation Notes
The following slide shows our evaluation setup and how our system works. We made use of a testbed using AMS and a firefox client. The client-side bandwidth was restricted by using dummynet. The graph shows the time at which different requests were made, the request completion time and how the player progressed through the video. In this example scenario, the player starts requests for the first two fragments and begins playback after it has built up a buffer. At the same time after the completion of its first request, it also places two requests to prebuffer the two possible land points. This request was placed three fragments ahead of the branch point. When the player reached a branch point, the user in this case made a decision to take one of the non-default paths, this can be seen by the jump in the timeline, followed by normal playback again. The first fragment of this branch was already prebuffered and this was made use of initially to resume playback seamlessly. The same thing can also be seen in other branch points and using this as our basis, we can provide seamless multipath nonlinear video.

Proof-of-concept evaluation
• Setup

• Server (Adobe media server 5.0); Client (Firefox)

• Available bandwidth (dummynet: 1, 2, 3 Mbps)

• Prefetch ahead of branch points

• No stall events (late data)

• Adapt prefetch quality to current conditions

Presenter
Presentation Notes
The following slide shows our evaluation setup and how our system works. We made use of a testbed using AMS and a firefox client. The client-side bandwidth was restricted by using dummynet. The graph shows the time at which different requests were made, the request completion time and how the player progressed through the video. In this example scenario, the player starts requests for the first two fragments and begins playback after it has built up a buffer. At the same time after the completion of its first request, it also places two requests to prebuffer the two possible land points. This request was placed three fragments ahead of the branch point. When the player reached a branch point, the user in this case made a decision to take one of the non-default paths, this can be seen by the jump in the timeline, followed by normal playback again. The first fragment of this branch was already prebuffered and this was made use of initially to resume playback seamlessly. The same thing can also be seen in other branch points and using this as our basis, we can provide seamless multipath nonlinear video.

Proof-of-concept evaluation
• Setup

• Server (Adobe media server 5.0); Client (Firefox)

• Available bandwidth (dummynet: 1, 2, 3 Mbps)

• Prefetch ahead of branch points

• No stall events (late data)

• Adapt prefetch quality to current conditions

Presenter
Presentation Notes
We now move to the player evaluation. The following table shows results of different experiments. To illustrate the effectiveness of the approach, we implemented an adaptive example policy and compared its performance with that of a naïve baseline policy that does not from where we have ample to little bandwidth to perform prefetching.
prefetch data from the alternative paths. We show statistics for three different scenarios, ranging
The table shown here shows that the adaptive example policy is able to eliminate stall events, in which the data is not downloaded in time of the branch point. This is illustrated by the 0% cases in the left-most column. The small, non-zero branch times on the right are due to moving data in and out of the playback buffer.

Proof-of-concept evaluation
• Setup

• Server (Adobe media server 5.0); Client (Firefox)

• Available bandwidth (dummynet: 1, 2, 3 Mbps)

• Prefetch ahead of branch points

• No stall events (late data)

• Adapt prefetch quality to current conditions

Presenter
Presentation Notes
We next illustrate the adaptive aspect of the player and example policy. Here, we show the observed video quality at the player for the three different bandwidth cases. Here, the four qualities 0, 1, 2, and 3 corresponds to increasing quality encodings, starting at 250Kb/s and ending at 1300Kb/s.

Looking at the obtained qualities, we can clearly see that the case with adaptive prefetching has truly been adaptive. It has been able to lower and increase the quality levels based on the available bandwidth, while as we showed on the previous slide avoid stall events. In contrast, the naïve non-prefetch policy aggresively use the full bandwidth for the default path and get stuck at branch points, at which time they need to wait for the alternative paths to be downloaded.

Conclusions and future work
• Conclusions

• We have designed and developed an interactive multi-path
nonlinear media player; leveraging fragment-based nature and
differentiated quality levels of HTTP-based adaptive streaming

• Endless personalization of content using a simple metafile

• Seamless playback achieved by careful prefetching and buffer
management policies

• Future work
• Design and evaluation of improved prefetching and buffer

management policies

• Detailed player evaluation under a wider range of scenarios

17

Presenter
Presentation Notes
That brings us to the end of this talk, which described our design and proof-of-concept evaluation of an interactive multipath nonlinear media player built on top of HAS. This allows for a high degree of personalization by the creator, or any other user that might generate a customized version of an existing video by making use of our player. These benefits are available at reasonable complexity and by making use of a simple text based metafile. The player provides seamless playback by performing rate adaptive prefetching and branch management.

As extensions to this work, we will design and evaluate improved prefetch and buffer management policies. We also plan to evaluate the player under a wider range of scenarios.

In summary, we believe that our player will enable Tom, Jerry, and all their friends to create an endless number of personalized contents …

www.liu.se

Contact: Vengatanathan (Vengat) Krishnamoorthi
vengatanathan.krishnamoorthi@liu.se

Empowering the Creative User:
Personalized HTTP-based Adaptive
Streaming of Multi-path Nonlinear Video

Presenter
Presentation Notes
Thank you for your attention!

	Slide Number 1
	Most of us have seen Tom & Jerry movies, what if they could create their own versions of these movies??
	For a minute...think that you are Tom
	For a minute...think that you are Tom
	For a minute...think that you are Tom
	For a minute...think that you are Tom
	Tom’s video
	Now, lets look at his opponent Jerry
	Now, lets look at his opponent Jerry
	Now, lets look at his opponent Jerry
	Now, lets look at his opponent Jerry
	Jerry’s video
	Contributions
	HTTP-based streaming
	HTTP-based adaptive streaming (HAS)
	Nonlinear multi-path video
	A separate flexible and personalizable metafile
	A separate flexible and personalizable metafile
	A separate flexible and personalizable metafile
	A separate flexible and personalizable metafile
	A separate flexible and personalizable metafile
	A separate flexible and personalizable metafile
	The player
	Prefetching and rate adaptation
	Proof-of-concept evaluation
	Proof-of-concept evaluation
	Proof-of-concept evaluation
	Proof-of-concept evaluation
	Proof-of-concept evaluation
	Proof-of-concept evaluation
	Conclusions and future work
	Slide Number 32

