QUIC Throughput and Fairness over Dual Connectivity*

David Hasselquist, Christoffer Lindstrom, Nikita Korzhitskii, Niklas Carlsson, Andrei Gurtov

Link&ping University, Sweden

Abstract

Dual Connectivity (DC) is an important lower-layer feature accelerating the transition from 4G to 5G that also is expected to play
an important role in standalone 5G radio networks. However, even though the packet reordering introduced by DC can significantly
impact the performance of upper-layer protocols, no prior work has studied the impact of DC on QUIC. In this paper, we present
the first such performance study. Using a series of throughput and fairness experiments, we show how QUIC is affected by different
DC parameters, network conditions, and whether the DC implementation aims to improve throughput or reliability. Results for
two QUIC implementations (aioquic, ngtcp2) and two congestion control algorithms (NewReno, CUBIC) are presented under both
static and highly time-varying network conditions. Our findings provide network operators with insights and understanding into
the impacts of splitting QUIC traffic in a DC environment. With reasonably selected DC parameters and increased UDP receive
buffers, QUIC over DC performs similarly to TCP over DC and achieves optimal fairness under symmetric link conditions when
DC is not used for packet duplication. The insights can help network operators provide modern users with better end-to-end service

when deploying DC.

Keywords: QUIC, Dual Connectivity, Throughput, Fairness, Transport Protocol, Multipath

1. Introduction

The end-to-end performance depends on the interactions be-
tween protocols in different network layers. As new features
are introduced on the lower layers, it is therefore important to
understand the impact that such features and their parameters
have on the upper layer protocols [2]. One such feature is Dual
Connectivity (DC). DC was introduced in 4G, gained popularity
with the introduction of 5G, and currently plays an integral role
in accelerating the generational transition from 4G to 5G [3].

With DC, users can transmit and receive data from two base
stations concurrently. This allows users to use both 4G and
5G radio networks in parallel, simplifying the above-mentioned
generational transition. However, it has also been argued that
DC should be a part of future 5G solutions needed to meet the
requirements of Ultra-reliable and Low-Latency Communica-
tions (URLLC) [4, 5]. Combined with its increased usage, this
has made DC an important 5G feature.

Like multipath transport protocols [6, 7, 8], DC can be used
to combine WiFi with 4G and 5G solutions. Furthermore, like
these protocols, DC can be used to achieve improved through-
put (by sending different data over different paths), to increase
reliability (by transmitting the same data over the different
paths), or both. However, in contrast to the transport-layer mul-
tipath solutions, DC is performed within the link layer of the
network stack and is therefore in practice invisible to transport

*A shorter preliminary version of this work appeared in the IEEE MAS-
COTS 2020 workshop [1].

Published in Computer Networks by Elsevier

layer protocols such as TCP and QUIC. This is an important ob-
servation since DC may introduce jitter or reordering of packets
that can significantly impact TCP and QUIC performance.

In parallel with the transitioning of different cellular network
generations, Google recently introduced QUIC as a next gener-
ation transport-layer solution aimed at addressing some short-
comings with TCP [9]. In contrast to TCP, QUIC is imple-
mented in the user-space, on top of UDP, and provides much
improved stream multiplexing compared to TCP. This is im-
portant to speed up web connections in the presence of packet
losses and/or modern HTTP/2 traffic. Initial research shows that
QUIC allows performance improvements over TCP in several
cases while providing an easy way to achieve fast incremental
deployment [9]. Popular services that already today use QUIC
include Google search services, Chrome, Chromium, YouTube,
and Facebook [9, 10].

Due to the increasing use and popularity of both QUIC and
DC, combined with the continuous rollout of 5G networks us-
ing DC, it is important to understand how QUIC performs over
DC under different network conditions, and the impact that dif-
ferent DC parameters have on QUIC performance.

In this paper, we present the first performance evaluation
of QUIC over DC. First, a testbed is set up to simulate DC.
The testbed captures QUIC and TCP performance under a wide
range of network behaviors (based on bandwidth, delay, and
loss conditions) and the impact of different DC parameters.
Second, using a series of throughput and fairness experiments,
we show how QUIC is affected by different DC parameters,
network conditions, and whether the DC implementation aims
to improve throughput or reliability. For our throughput eval-

https:/jdoi.org/10.1016/j.comnet.2022.109431

uation, we primarily compare the throughput of QUIC over
DC with that of TCP over DC, and for our fairness compar-
isons we compare the throughput (and calculate a fairness in-
dex) of competing flows when using QUIC over DC. We also
present results using different QUIC implementations (aioquic,
ngtcp2), congestion control algorithms (NewReno, CUBIC),
and for networks with both static and highly time-varying band-
widths. Our findings provide insights into the impact that DC
and its parameters have on QUIC performance. Furthermore,
we show the value of increasing the UDP receive buffers when
running QUIC over DC, that QUIC over DC can achieve sim-
ilar throughput as TCP over DC, and that QUIC over DC can
achieve optimal fairness under symmetric link conditions, ex-
cept if DC duplicates packets to increase reliability.

Overall, the experimental findings presented in this paper
provide an important step towards understanding the interplay
between DC and QUIC under different conditions and scenar-
ios. Again, while much prior work have studied either DC or
QUIC, we are the first to consider these in combination.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 introduce DC and present related works, respec-
tively. The following sections present our methodology (Sec-
tion 4) and performance evaluation results (Section 5), includ-
ing a summary of our key findings, before we present our con-
clusions (Section 6).

2. Dual Connectivity

DC, also sometimes called inter-node radio resource aggre-
gation, is a multi-connectivity technique introduced in release
12 of the third-generation partnership project (3GPP) [11]. The
aim was to increase reliability, performance, and signaling due
to frequent handovers in scenarios where macro and micro cells
are connected with a non-ideal backhaul (X2) link. DC tries to
achieve this by splitting the traffic over multiple paths.

Figure 1 shows an overview of DC in a Radio Access Net-
work (RAN) environment. With DC, a User Equipment (UE)
connects to two different network nodes, also known as Evolved
Node Bs (eNBs) [5]. One of the network nodes will serve as
Master eNB (MeNB), and the other one will serve as Secondary
eNB (SeNB). Each of the MeNB and SeNB contains a separate
Radio Link Control (RLC) and Media Access Control (MAC)
layer, while sharing the same Packet Data Convergence Proto-
col (PDCP) layer.

DC is similar to carrier aggregation [12], but is performed
in the PDCP layer instead of the MAC layer. Carrier aggrega-
tion uses the same scheduler for the separate connections and
requires an ideal X2 link. The split connections are therefore
often transmitted from the same node. In contrast, DC uses two
separate packet schedulers together with a non-ideal X2 link,
and packets are often originating from two different nodes.

PDCP is a sublayer located inside the link layer, just below
the network layer and above RLC and MAC. The main tasks
of PDCP are header compression and decompression, cipher-
ing, integrity protection, transfer of data, sequence numbering,
reordering and in-order delivery [13]. The PDCP layer can be

‘[PDCP (ink layer) | —~ \
== T P sgw
,,/Packeh\ / \) —

‘ ‘ NS5
\Pro'caePssor/ { PGW |
PP __/

GTPU G

TP, S
/7 NS lingy 7T 3\
(RLC (link layer)) (‘ RLC (link layer)
MAC (link layer) MAC (link layer)
Physical layer l Physical layer

Master (@) «——T el T @ ’))Secondary
_ eNB \ eNB

Figure 1: Dual connectivity overview.

broken out into a unit called a Packet Processor (PP), which
connects to Serving Gateway (SGW), MeNB and SeNB using
a GTPU-tunnel. SGW is connected to the Packet Data Network
Gateway (PGW), which in turn connects to the public internet.
The PP can also be a part of MeNB. In this case, MeNB splits
the traffic and the link between MeNB and SeNB becomes the
X2 link. In both scenarios, the traffic is split in the PDCP layer.

3. Related Work

Dual connectivity: Unlike TCP, QUIC is relatively new, and
there are few studies of it in specific scenarios such as DC. As
QUIC shares similarities with TCP, we can obtain initial in-
sights from research about DC that uses TCP as the transport
protocol. Polese et al. [14] study the performance of TCP when
using DC to perform mobile handovers for a UE and compare
the performance with different single connection mobility man-
agement solutions. They show that DC can improve TCP good-
put by quickly moving the traffic from one of the two DC links
to the other.

Other studies have focused on specializations of DC; e.g.,
LTE-WLAN Aggregation (LWA) [15, 16], which allows for
network traffic over LTE and WLAN. Jin et al. [15] propose
LTE-W and show that splitting TCP over LTE and WiFi links at
the PDCP layer can achieve similar throughput and better fair-
ness than MP-TCP; demonstrating the value of lower-layer traf-
fic splitting. Khadraoui et al. [16] investigate the effect of PDCP
reordering when using TCP in LWA over heterogeneous links.
Their results show that PDCP reordering can have adverse ef-
fects on TCP throughput, and that in some cases it is better
to use only one link. Others have presented performance opti-
mizations for DC [17, 18, 19, 20] but have not considered QUIC
over DC. For example, Wu et al. [17] present an optimized DC
traffic scheme for offloading the uplink of mobile users. Con-
sidering various tradeoffs, they achieve significant performance
benefits compared to when using a fixed bandwidth allocation
or scheduling scheme. At a high level, our study differs as we
focus on QUIC and experimentally study its performance when
using DC. While some works have looked at TCP with DC, no
prior work has studied the performance of QUIC over DC.

Upper-layer multipathing: Multipathing is similar to DC
but performed higher up in the network stack. Most such so-
lutions are implemented in the transport layer, e.g., SCTP [§]
and MP-TCP [7], but some are implemented in the network

 ErEa e e
QUIC server QUIC server| QUIC server QUIC server
port 4433 port 9000 port 4433 port 8000
T Ll
. v :
Server ‘ Proxy ‘ { Proxy ‘ ‘ Proxy ‘ { Proxy ‘
) \ v v
\¥en02—eno1 g// \"—EHOZ nol —— /
——eno2—enol —— eno2 not—
// \\ f { \—/ :
((())) ((())) - 5 — —Y
‘ Proxy ‘ { Proxy ‘ ‘ Proxy ‘ { Proxy ‘
—i— . g
A &
Client vethO vethO
veth1 Network vethi
Netns namespace 7 i ‘
(a) Conceptual overview of the QUIC client QUIC client | QUIC client | QUIC client
DC SC DC SC

experimental setup

N

(b) Throughput

)

(c) Fairness

Figure 2: Testbed for throughput and fairness tests.

layer [21]. Here, we focus on QUIC-based solutions. De Con-
inck and Bonaventure [6] implement Multipath QUIC (MP-
QUIC) based on quic-go and lessons learned from MP-TCP,
and show that serving QUIC over multiple paths is benefi-
cial. Mogensen et al. [22] expands MP-QUIC to Selective
Redundant MP-QUIC (SR-MPQUIC). Their solution modifies
the congestion control algorithm, the scheduler, and the stream
framer. SR-MPQUIC reduces latencies and improves reliabil-
ity for priority data at a small increase in bandwidth usage and
latencies for background data. The results show the importance
of proper packet scheduling and the value of packet duplication.
While additional cross-layer communication would be required
to benefit DC, QUIC (and HTTP/3) also includes some unique
attributes to assist packet/flow scheduling [23].

Fairness: Fairness can be difficult to judge when there are
multiple paths with different amount of resources. As such, we
take a look at studies on multipathing fairness. Becke et al. [24]
study the fairness of different congestion control algorithms in
multipath scenarios, targeting TCP-friendliness and focusing
on two fairness types: link-centric fairness (where each flow
share the link capacity equally), and network-centric flow fair-
ness (where fairness of flows is considered in the whole network
with several paths). Raiciu et al. [25] study how MP-TCP can
replace single connections and load balancing in data centers
with different network topologies. For specific topologies, MP-
TCP significantly improved fairness and provided throughput
closer to optimal compared to single connectivity using ran-
dom load balancing. To judge the fairness, they and many oth-
ers [25, 7, 26] evaluate multipathing using Jain’s fairness index
(JFD) [27]. Similar to these works, we use JFI here.

4. Methodology

4.1. Dual connectivity testbed

To evaluate the QUIC performance over DC, we used two
machines in our evaluation framework: one machine to capture

client-side behavior and performance, and one machine to cap-
ture server- and network-side effects. The two machines were
connected via two network interface pairs (enol and eno2),
each supporting 10 Gbps full duplex. To simulate different net-
work conditions, tc in Linux was used to add extra delay, jitter,
loss, and bandwidth limitations for each of the two links.

Depending on the specific experiment, we ran one or
three QUIC/TCP clients on the client side and one or three
QUIC/TCP servers on the server side. Figure 2 shows an
overview of the testbed, starting with a high-level conceptual
overview (Figure 2(a)) and then two sub-figures (Figures 2(b)
and 2(c)) that captures the specific designs used for our through-
put and fairness experiments. Furthermore, to simulate the
functionality of DC and PDCP, two proxies were implemented
for each QUIC client-server pair: one on the client side and one
on the server side. Finally, each QUIC client was launched in-
side a network namespace (kernel functionality in Linux). This
is to avoid the QUIC clients binding to a random interface and
to ensure that we can control which interface each DC connec-
tion eventually is sent over. Here, two virtual interfaces were
created to forward data to and from the namespace. We also
note that there is no need for a network namespace on the server
side, as the server will respond over the incoming interface, and
DC is only studied on the downlink (server to client).

Table 1 specifies the hardware used in our experiments. We
next describe the specific configurations used for our through-
put and fairness tests, respectively, as well as our proxy imple-
mentation used to simulate DC and PDCP.

Throughput test configuration: For our throughput tests
(Figure 2(b)), we used one client, one server, and studied the
performance impact of DC parameters and the network condi-
tions between them. In our baseline tests, both the QUIC server
and QUIC client used aioquic [28]. When comparing with TCP,
we used a Hypercorn server using HTTP/2 over TLS 1.3, and
the client used curl to make HTTP/2 requests. As baseline, both
TCP and QUIC used NewReno for congestion control.

Table 1: Hardware and operating systems used in tests.

Component Client Server
oS Ubuntu 18.04.3 LTS Ubuntu 18.04.3 LTS
Kernel Linux 4.15.0-74-lowlatency Linux 5.3.0-26-generic

Processor 1 & 2

Intel(R) Xeon(R) CPU E5-2690 v3

Intel(R) Xeon(R) CPU E5-2667 v3

enol & eno2

82599ES 10-Gigabit SFI/SFP+

82599ES 10-Gigabit SFI/SFP+

Fairness test configuration: For our fairness tests (Fig-
ure 2(c)), we used three clients and three servers. One end-to-
end connection was performing DC, while the other two used
single connectivity (SC) over interface enol and eno2, respec-
tively. The server with port 8000 was operating only on enol,
while the server on port 9000 only on eno2. The QUIC server
on port 4433 used DC and operated on both interfaces.

Proxy-based implementation: Since traffic splitting with
DC is implemented in the link layer, QUIC (and TCP) are un-
aware that the traffic is sent over multiple paths, and therefore
do not need to be modified. However, as DC was introduced
for radio technology, the link layer functions and structure dif-
fer from the Ethernet links used here. To simulate the func-
tionality of DC and PDCP, two proxies were implemented: one
at the client and one at the server. First, to capture the PDCP
functionality, packets originating from the server are caught by
iptables OUTPUT chain and delivered to a NFQUEUE, before
being read by the server proxy. The server proxy then adds a
2-byte PDCP sequence number to each packet and routes the
packets to the client over two interfaces. When running DC,
the server proxy alternates between the two interfaces.

At the client proxy, packets are caught in the PREROUTING
chain and delivered to NFQUEUE. The client proxy can then
read from the queue, perform PDCP convergence of the two
streams, do PDCP reordering, and remove the sequence num-
bers that were added by the server proxy.

If a packet is received in order, it is immediately forwarded to
the client. However, if a packet is out of order, it is kept until the
missing packets are processed or until a PDCP timer of 200 ms
is reached. If the timer is reached, all packets before the missing
packet and all consecutive packets after the missing packets are
delivered. The reordering algorithm follows the PDCP standard
described in 3GPP [13] and the testbed was developed in close
consultation with Ericsson. Our proxy adds around 1 ms to the
total RTT, assuming that the packets arrive in order. Without
PDCP, large reordering occurs, resulting in QUIC having a very
low throughput.

4.2. Performance testing

To understand how DC affects QUIC, a series of tests are per-
formed that captures the impact of different DC parameters and
network conditions. In our experiments, we vary one parameter
at a time, starting with a default configuration, while keeping
the others constant (as per the default configuration). In the
throughput tests, the client downloads a 100MB file, and in the
fairness tests each client downloads a 1GB file and we measure
the clients’ performance for the first three minutes of the down-
load. For each test configuration, we run ten tests and calculate

both average and standard deviation values for the metrics of in-
terest (i.e., throughput and JFI). When discussing JFI, we also
stress that there is no global JFI threshold that can be considered
as a threshold for what is “fair”” and “not fair”. Rather than sug-
gesting any threshold, we instead focus on relative comparisons
as a parameter changes or between the JFI of two alternative
configurations operating under otherwise similar conditions.
DC parameters and default configurations: The primary
DC parameters we varied were the DC batch size and DC batch
split. These parameters determine how many packets are sent
over each interface before the server proxy switches to the other
interface. For example, with a DC batch size of 100 and a DC
ratio of 9:1 (90% enol and 10% eno2), the proxy would send
90 packets over enol, before switching over to send 10 packets
over eno2. In our default experiments, the default DC batch
size and DC ratio was configured to 100 and 1:1, respectively.

Network emulation parameters and default configura-
tions: To capture different network conditions, we primarily
varied the bandwidths, delays, and loss rates of the links. For
both the bandwidths and delays, we present experiments both
where we vary the average values and where we vary the ratio
between the two links. In the case we vary one of the ratios, we
keep the average value of that metric constant. For example, a
bandwidth ratio of 3:1 corresponds to 30 Mbps and 10 Mbps
for the downlink interfaces enol and eno2, respectively. In our
default experiments, each link operates at 20 Mbps and has nor-
mally distributed per-packet delays with a mean of 10 ms and a
coefficient of variation of 10%.

QUIC and TCP configurations/versions: Throughput tests
for QUIC are performed both with the default UDP receive
socket buffer size and a larger receive buffer size. The larger
size is used to give a fair comparison to TCP, as the kernel per-
forms buffer autotuning for TCP [29]. When studying fairness,
QUIC with modified buffer size is used and the fairness is cal-
culated using JFI. Furthermore, we use Qvis and Qlog [30, 31]
to debug and study QUIC at a more detailed level.

In our default scenarios we use aioquic with NewReno. How-
ever, as discussed by McMillan and Zuck [32], the QUIC RFC
is ambiguous, open for interpretation, and differences between
QUIC implementations following the same RFC have been
demonstrated using specification testing. Marx et al. [33] also
highlight this diversity by comparing 15 different QUIC im-
plementations and showing that they are highly heterogeneous.
We therefore repeated our experiments with both another QUIC
implementation (ngtcp2 [34]) and congestion control algorithm
(CUBIC).

Trace-based evaluation: Finally, to capture a use case with
varying bandwidth, experiments were repeated using a real

-
o

(6]

Bandwidth (Mbps)

0 40 80 120 160 200
Time (s)

Figure 3: Example LTE bandwidth trace [35]

Table 2: Average throughput and RTT with and without PDCP proxy. Standard
deviations within parentheses.

Without proxy | With proxy
RTT (ms) 56.01 (0.62) 58.07 (0.85)
Throughput (Mbps) 18.28 (0.17) 17.00 (0.30)

LTE bandwidth trace collected by Raca et al. [35]. The spe-
cific bandwidth trace (Static A_2018.02.12_16.14.02) is used for
both downlinks and has an average throughput of 4.5 Mbps for
the first 200 seconds. Figure 3 shows the sampled bandwidth
trace used as a function of time.

4.3. Dual connectivity overhead

To evaluate the overhead invoked by our testbed simulating
DC, we perform 10 independent measurements using our de-
fault configuration and capture both the bandwidth and RTT
with and without using our PDCP proxies. When running with-
out a proxy, packets are being passed directly to the interfaces,
skipping the NFQUEUE. Table 2 shows the evaluation results
with their standard deviations. When using PDCP proxy, the
average RTT increases with 2 ms. This corresponds to 1 ms per
proxy, as packets are passed through both a client and server
proxy. The increase of RTT causes the throughput to drop from
18.28 Mbps to 17.00 Mbps. This shows that only small perfor-
mance overheads are added from our DC simulations.

5. Evaluation Results

In this section, we present our performance evaluation results
under different scenarios and configuration. First, we show the
impact of DC parameters that network operators control (Sec-
tion 5.1). Then, we present our experiments under different
network conditions (Section 5.2), before showing the impact
of using DC to duplicate packets and improve reliability (Sec-
tion 5.3). Next, we repeat our experiments using another QUIC
implementation and congestion control algorithm (Section 5.4),
and over a variable bandwidth scenario (Section 5.5). Finally,
we give a summary of the main observations from our results
(Section 5.6). Table 3 summarizes our experiments and pro-
vides an overview of the presented figures in this section.

5.1. Dual connectivity parameters

DC batch size: When using DC, network operators must se-
lect a good DC batch size for each connection. To illustrate the

impact of this choice on QUIC performance, Figure 4(a) shows
the throughput as a function of the DC batch size. (We omitted
the standard deviations from all figures, as they are small; e.g.,
well within 1 Mbps in more than 90% of the cases.) In general,
large DC batch sizes result in lower throughput. One reason
for this is reduced link utilization. For example, Figures 4(b)
and 4(c) show the link utilization of the two links when using
a DC batch size of 50 and 500, respectively. With a large DC
batch size, we see significant periods during which one of the
links is underutilized as almost all packets are being forwarded
over the other interface. With smaller DC batch sizes, both links
can better be used concurrently. However, there is also a penalty
to using too small batch sizes, as this increases the number of
re-order events. The best batch sizes are instead typically in
the mid-range (e.g., around 100-150), with the sweet spot de-
pending on the protocol being used. Finally, we note that QUIC
with modified buffers performs similar to TCP for much of the
parameter range.

Figure 5(a) shows summary results for our fairness tests with
varying DC batch sizes. Here, we measure fairness using Jain’s
fairness index (JFI), shown using purple text, as averaged over
10 full runs. When discussing fairness, it is important to note
that the relative throughput of the competing clients can vary
significantly over time. This is illustrated in Figure 5(b) where
we show example throughput for the three competing clients
over a 3-minute long experiment with the default settings. Here,
it is important to note that the 3-minute time frame (duration of
x-axis) is 60 times greater than the total duration shown for the
example traces shown in Figures 4(b) and 4(c). We observe that
short-term variations in the fairness persist up to time scales
of about 30 seconds. By using 3-minute traces and reporting
averages over 10 runs, such temporal unfairness are filtered out.
As an additional reference point, Appendix A presents example
traces with pairs of competing SC clients: (i) QUIC vs. QUIC,
(i1) QUIC vs. TCP, and (iii) TCP vs. TCP.

Similar to the throughput, the fairness is negatively affected
by large DC batch sizes. In fact, the user using DC observe
a significant throughput reduction with batch sizes of 150 and
above. Here, SC clients can monopolize the links during the
DC client’s off periods, while DC is always sharing the link it
is currently sending to at every point of time. This allows SC
clients to increase their congestion window further than the DC
client and to use a larger bandwidth share.

DC batch split: Network operators also control the DC ra-
tio. This parameter determines the split over the two links. In
contrast to Figures 4(b) and 4(c), Figure 6 illustrates an unbal-
anced example with a DC batch split of 9:1, in which 90% of
the packets are sent over the main interface (enol), and Fig-
ure 7(a) shows the throughput as a function of the percent of
packets sent over enol. As per our default case, both links have
the same network conditions. Compared with the utilization ex-
amples of balanced DC ratio (Figures 4(b) and 4(c)), we note
that the less loaded link almost never reaches its full capacity;
not even during burst periods. This results in sub-optimal link
utilization in which only one of the links are well-utilized (close
to 100%). This case corresponds to the 10% case (and by sym-
metry the 90% case) shown in Figure 7(a). More generally, the

Table 3: Performance evaluation results overview.

Class Parameter QUIC impl. | CC algorithm Throughput Fig. | Fairness Fig.
DC parameters DC batch size 4(a) 5(a)
(Section 5.1) DC batch split 7(a) 8(a)
BW ratio 7(b) 8(b)
Network conditions BW & DC rat.lo aioquic NewReno 7(©) 8(0)
(Section 5.2) Low delay ratio 9(a) 10(a)
’ High delay ratio 9(b) 10(b)
Loss rates 9(c) 10(c)
Duplicate packets (Section 5.3) | Loss rates 11(a) 11(b)
. NewReno 12(b)
DC batch size CUBIC 12(a) 1200
. NewReno 14(a)
DC batch split CUBIC 13(a) 15()
. . NewReno 14(b)
High delay ratio CUBIC 13(b) 15(b)
QUIC implementation Loss rates NewReno 13(c) 14(0)
. CUBIC 15(c)
and congestion control ngtcp2 NewReno 16(b)
algorithm (Section 5.4) BW ratio CUBIC 16(a) 16(0)
. NewReno 17(b)
BW & DC ratio CUBIC 17(a) 70
. NewReno 18(b)
Low delay ratio CUBIC 18(a) 180)
Loss rates with NewReno 19(a) 19(b)
duplicate packets CUBIC 19(c)
. aioquic NewReno 20(a)
DC batch size ngtcp2 NewReno + CUBIC | 20(d)
. . aioquic NewReno 20(b)
High delay ratio | ros NewReno + CUBIC | 20(c)
Loss rates aioquic NewReno 20(c)
Bandwidth variability ngtcp2 NewReno + CUBIC | 20(f) .
. — N/A
(Section 5.5) DC batch split aioquic NewReno 21(a)
sp ngtcp2 NewReno + CUBIC | 22(a)
. aioquic NewReno 21(b)
Low delay ratio ngtcp2 NewReno + CUBIC | 22(b)
Loss rates with aioquic NewReno 21(c)
duplicate packets | ngtcp2 NewReno + CUBIC | 22(c)

* After validating that the throughput results held with variable bandwidth conditions, it was decided to not run a full set of corresponding fairness tests.

throughput peaks when using a 50/50 split, and decreases as
a convex function as the split becomes more uneven. The de-
crease in throughput caused by poor link utilization of the less
loaded link (eno2 in Figure 6) highlights the value of careful
batch split selection to best achieve the full potential of DC.
Figure 8(a) shows our corresponding fairness results. When
the ratio is significantly skewed (e.g., below 20% or above
80%), the throughput of the SC with the higher throughput in-
crease/decrease at roughly the same rate as the DC’s throughput
increase/decrease, whereas the other SC with lower throughput
has fairly constant throughput over these skewed splits. In this
region, the DC compete (almost) fairly only over the more uti-
lized interface. As the DC split becomes more even, the over-
all fairness improves, with optimal fairness and all connections
having roughly equal throughput when perfectly balanced.

5.2. Network conditions
We next look closer at the impact of the network conditions.
Again, we consider one parameter at a time, keeping the other

parameters fixed as in our default case.

Bandwidth ratio: Figures 7(b) and 7(c) show the throughput
for different bandwidth ratios. Figure 7(b) shows results for the
case when the batch split is 50/50, and Figure 7(c) shows results
for when the batch split is selected to match the bandwidth ratio.
Figure 7(b) illustrates the importance of matching ratios, as the
highest throughputs are achieved with a ratio of 1:1. As the ratio
increases, a 50/50 batch split underutilizes the link with higher
bandwidth. In contrast, when the DC batch split is selected to
match the bandwidth ratio (Figure 7(c)), a much better overall
throughput is achieved. With QUIC buffer modified and TCP,
the impact is very small. The reason for the worse performance
of QUIC with default buffers is the higher burstiness caused by
increased reordering. Despite PDCP mitigating reordering, it
results in increasing RTTs.

The fairness results for the cases when we vary the band-
width ratio of the two links are shown in Figures 8(b) and 8(c).
Similar to the throughput results, relatively higher fairness is

40 30 30
— —_ menol ®eno2 - menol ®eno2
8 30 3 3
Q
= S20 S20
320] H
) 210 210
S0 95 : :
< < =
= X QUIC buffer modified = =
0 | | | |] 0 0
0 100 200 300 400 500 00 05 10 15 20 25 30 00 05 10 15 20 25 30
DC batch size Time (s) Time (s)
(a) Impact of DC batch size (b) Link utilization with batch size of 50 (c) Link utilization with batch size of 500
Figure 4: Throughput and link utilization for different DC batch sizes
25 20 30
s oQUICSC1 +QuiCDC mQUICDC mQUICSC1 =QuUICSC2 menol ®eno2
2 X QUIC SC 2 Fl @ @
820 ") B 2
= s $20 il
5 5 5
a a a
% 5 510
3 ot 3 o
S50 & P of oot taTets £ £
o o’ $9 §° ;,9 & :,9 & 39 , 0
0 ‘
0 100 200 300 400 500 0 30 60 90 120 150 180 00 05 10 15 20 25 30
DC batch size Time (s) Time (s)

(a) Impact of DC batch size

Figure 5: Fairness for different DC batch sizes

N
o
I
o

w
o
w
o

oTCP
+QuiIC

-
o
=
o

Throughput (Mbps)
S
Throughput (Mbps)
N
o

(b) DC fairness example

Figure 6: Link utilization example with unbal-
anced DC ratio of 9:1

N
o

w
o

OTCP
+QUIC

fury
o

Throughput (Mbps)
N
o

OTCP +QUIC xQUIC buffer modified
L L

X QUIC buffer modified
L L

X QUIC buffer modified
L L

5:1

L
2:1 3:1 4:1
Bandwidth ratio and DC ratio

(¢) BW & DC ratio

0
1:1

N
(6]

OoQUICSC1 +QuiCDC
XQUICSC2 mFI

=N
v o

=
o

(6,]

O 1 1 | 0 1 |
0 20 40 60 80 100 1:1 2:1 3:1 4:1 5:1
Interface enol (%) Bandwidth ratio
(a) DC batch split (b) BW ratio
Figure 7: Throughput for different batch splits and bandwidth ratios
25 25
. oQuUICSC1 +QuICDC R oQUICSC1 +QuICDC .
820 xQUICSC2 = Fl 80 | xQUICSC2 wJF 2
= = =
= =15 =
3 3 3
£ £ g
= S 10 <
3 3 3
2 5 2 5 2
E PP PSP PSS £ - VI £

1.00 0.96 0.88 0.81 0.75 0.70 0.65 0.62 0.59
[] [] []] L] [] [] L]

1.:)0 0.98 0.94 0.90 0.85 0.81 0.76 0.72 0.70
[] L] []]]] []

0 [[[" L) [[[[)

40 60
Interface enol (%)

(a) DC batch split

80 100 1:1 2:1

Bandwidth ratio
(b) BW ratio

3:1 4:1 1:1 2:1 3:1 4:1

Bandwidth and DC ratio
(¢) BW & DC ratio

5:1

Figure 8: Fairness for different batch splits and bandwidth ratios

achieved when the DC split is selected based on the capacity of
the two links. For example, even when the bandwidth ratio is
5:1, the scenario in which the DC split matches the bandwidth
ratio achieves a JFI of 0.70, compared to 0.59 in the case a 50/50
split is used. In both cases, the bandwidth usage is dominated
by the SC user with higher bandwidth and the DC user relies
heavily on the throughput achieved via the weaker link. How-
ever, the fairness improves as DC moves more traffic to the link
with the higher bandwidth. Yet, the highest fairness (JFI=1.00)
is achieved only when the ratios are equal.

Delay ratio: Both the throughput and fairness are negatively

affected by increasing delays, and in the case of a high average
delay, these metrics are also negatively affected by an increas-
ing delay ratio. This is illustrated by comparing the throughput
Figures 9(a) and 9(b) or fairness Figures 10(a) and 10(b). For
both types of experiments, the two figures show results for low-
delay and high-delay scenarios, respectively. In the low-delay
scenarios, the sum of the delays over the two links is 20 ms, and
in the high-delay scenario the sum is 200 ms.

The throughput decrease is mostly due to increased packet re-
ordering caused by the higher delays. In these cases, the PDCP
layer will buffer more packets before performing a batch deliv-

40 40 40
n 5 oTcp — oTCP
a 8 +QUIC a2 N +QUIC
230 2307, xQUIC buffer modified 230 X QUIC buffer modified
35’ = § = i
320 2 320
S))
=] OTCP > S
©10 o ©10
= +QUIC - £ E
= X QUIC buffer modified = =

0 1 1 1 | 0 1 1 | o 1 1 1 1 |
1:1 2:1 3:1 4: 5:1 1:1 2:1 3:1 : 5:1 0.00 0.04 0.08 0.12 0.16 0.20
Delay ratio (sum 20ms) Delay ratio (sum 200ms) Random loss per interface (%)
(a) Low delay ratio (b) High delay ratio (c) Random loss
Figure 9: Throughput for different delay and loss ratios

25 25 25
- oQUICSC1 +QuICDC - oQUICSC1 +QuUICDC - oQUICSC1 +QuUICDC
B0 | xQUICSC2 =JF B0 | xQUICSC2 = JF 820 XQUICSC2 = JFI
= = =
=15 — 15 — 15
3 3 3
2 g 100
< €10 €105
> > >
g s g s g s
< S] S ())))) (] < <
=K S N R A e = F

0 ! 3 0
1:1 2:1 3:1 4:1 5:1 1:1 2:1 3:1 4:1 5:1 0.00 0.05 0.10 0.15 0.20

Delay ratio (sum 20m.s)
(a) Low delay ratio

Delay ratio (.sum 200ms)
(b) High delay ratio

Random loss per interface (%)
(c) Random loss

Figure 10: Fairness for different delay and loss ratios

iy
o

30 4ttady, QUICDC (links total) +

- OTCP —_
a +QuIC 825 Fay QUICDC (0N S
230 N o) +
= X QUIC buffer modified = 50 +4 QUIC SC 2 x
= = +
z = JFlm
220 al5
c <
310 5’10
_E _E g&A g
= =

| | | | |

0
0.00 1.00 2.00 3.00 4.00 5.00
Random loss per interface (%)

(a) Throughput

0.00 1.00 2.00 3.00 4.0 5.00
Random loss per interface (%)

(b) Goodput fairness

Figure 11: DC throughput and fairness with duplicate packets

ery to the QUIC client, causing packet bursts as well as a higher
RTT. Furthermore, after receiving a batch delivery, the clients
will send a cumulative ACK for many packets, which will, for
a short time, largely decrease the number of packets in flight
when received at the server. The draft for QUIC [36] recom-
mends a pacer, which helps the QUIC server recover from an
ACK-burst by sending new packets at a steadier pace. The ad-
vantage of more even pacing can be seen by the higher values
observed with a delay ratio of 1:1 in Figure 9(b).

The increasing delays and delay ratios also negatively impact
fairness. For example, in the low-delay case (Figure 10(a)),
JFI reduces from 0.9996 to 0.9986 (both rounded to 1.00 in
the figure) as the delay ratio increases from 1:1 to 5:1, whereas
JFI drops from 0.9903 to 0.8758 for the high-delay case (Fig-
ure 10(b)). While the reductions of the fairness index for the
high-delay case are significant, these reductions are still much
smaller than those observed when increasing the bandwidth ra-
tions equally (e.g., Figures 8(b) and 8(c)). These relative com-
parisons suggest that fairness is less affected by network-delay-
ratio differences than by equally large bandwidth-ratio differ-
ences even under the large-delay case. The higher throughput
of SC 2 compared to that of SC 1 is due to its lower RTT.

Loss rates: While increased packet losses negatively impact
the throughput (Figure 9(c)), small packet losses have very lim-
ited impact on the fairness index (Figure 10(c)).

5.3. Use of duplicate packets

Thus far we have considered a simple use case in which DC
primarily is used to improve throughput and no packet is sent
over both interfaces. Besides improving throughput, DC can
also be used to increase connection reliability. In Figure 11(a),
we show the throughput when duplicating every packet and
sending them on two separate paths. Compared to previous
cases where we use DC to improve throughput and obtain an
aggregated bandwidth of 40 Mbps, here we are only able to ob-
tain a maximum bandwidth capacity of 20 Mbps, as the two
links are used to send redundant data. This clearly shows the
tradeoffs and importance of balancing the throughput and re-
liability. However, DC with packet duplication negatively af-
fects fairness. For example, in fairness tests with loss rates of
0-to-5% (Figure 11(b)) JFI is in the range from 0.39 to 0.48.
For DC in Figure 11(b), we show both the combined interface
throughput (B) and the goodput (X), which under an indepen-
dence model with retransmissions (after simplification) can be

A4O Azs ongtcp2 SC1 +ngtep2 DC _ 25 ongtcp2 SC1 +ngtcp2 DC
a 250 | Xngtcp2 SC2 = JFI @50 | xngtcp2 SC2 = JFI
230 a i)
= s =
= — 15 15
§20 é_ o _§ .
1 1
%’10 oTCP CUBIC g I 2 [
= +ngtcp2 Reno E5l 606 o o Fodd E 5] 0 o o o ofatatet +
F X ngtcp2 CUBIC = NGNS K S ST S K S F TP &P S8
0 1 | | | | 0 ol T b L] L]] L] ["= 0w 0 pow [) [-) - » P
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

DC batch size
(a) Throughput

DC batch size
(b) Fairness with NewReno

DC batch size
(¢) Fairness with CUBIC

Figure 12: Impact of congestion control algorithm (NewReno and CUBIC): Performance examples with ngtcp2 as QUIC version for different batch sizes

related as X = B(1+ p)/2, where p is the loss rate. The low fair-
ness stems from DC having a much higher end-to-end packet
delivery probability (i.e., 1—p? vs. 1-p under independence as-
sumptions) and lower end-to-end packet loss probability (i.e.,
p?* vs. p) compared to SC. This results in DC having less end-
to-end packet losses, and obtaining a much larger share of the
link bandwidths. As SC packets are not duplicated and have no
redundancy, packet losses will lead to much performance degra-
dation. These results show that packet duplication can provide
much higher reliability at the cost of fairness and goodput. We
note that with 0% added random loss per interface, packet loss
still occur due to full buffers dropping packets (e.g., from con-
gestion control bandwidth probing). When duplicating packets,
QUIC DC is able to better recover and obtain a large bandwidth
share, while QUIC with SC struggles to recover, causing high
unfairness.

5.4. QUIC implementation and congestion control algorithm

To explore the impact of other QUIC implementations and
congestion control algorithms, experiments were repeated us-
ing (1) the QUIC implementation named ngtcp2, and (2) the
congestion control algorithm CUBIC. For throughput experi-
ments, Figure 12(a) shows little to no differences in the results
between different congestion control algorithms when varying
DC batch size. However, when compared to Figure 4(a), dif-
ferences can be observed between the QUIC implementations.
While the results follow the same patterns for both implementa-
tions, the considerable throughput drop occurs at different batch
sizes. Another noticeable difference is that ngtcp2 has a slightly
higher throughput than aioquic at smaller batch sizes, exceed-
ing the throughput for TCP.

Figures 12(b) and 12(c) show the corresponding fairness re-
sults for different DC batch sizes. Again, only small differ-
ences between the NewReno and CUBIC results are observed.
For example, the JFI differ by at most 0.02 (DC batch size
of 500) between the algorithms. DC using CUBIC is initially
slightly more resilient to performance drops occurring with a
larger batch size. In contrast, NewReno allows the SC con-
nections to achieve slightly higher throughput at larger batch
sizes while the DC throughput is similar to CUBIC at higher
batches. When comparing Figures 12(b) and 12(c) to 5(a),
some differences can be seen between the QUIC implementa-
tions. Ngtcp2 is more aggressive, leading to the DC connection
having slightly higher throughput than the SC connections at
smaller batch sizes and a drastic reduction in throughput when

the batch size increases. Aioquic has a more balanced sharing
of the bandwidths at smaller batch sizes and see a smaller re-
duction in throughput at larger batch sizes.

When studying the DC batch split using ngtcp2 and different
congestion control algorithms (Figure 13(a)), minimal differ-
ence in the overall throughput is observed. Compared to aioquic
in Figure 7(a), little differences are observed at more uneven ra-
tios. Ngtcp2 achieves a higher throughput than aioquic and TCP
at more balanced ratios. Comparing to the corresponding fair-
ness results in Figures 14(a) and 15(a) to 8(a), larger differences
is seen between the QUIC implementations. While the two im-
plementations exhibit similar behavior at the most uneven split,
the DC connection using ngtcp2 grows more aggressively than
the aioquic counterpart when the ratio becomes more balanced.
This growth leads to optimal fairness for aioquic, but results in
a slightly unfair bandwidth allocation for ngtcp?2.

A significant throughput difference between the QUIC im-
plementations can be seen when comparing the high delay ra-
tio experiments in Figures 13(b) and 9(b). Ngtcp2 achieves a
significantly lower throughput than aioquic throughout the ex-
periment. This is most likely due to differences in the pacer
implementations. Differences can also be seen when compar-
ing corresponding fairness tests (Figures 14(b) and 15(b) vs.
Figure 10(b)). Here, the DC connection using ngtcp2 achieves
more fair throughput than the aioquic counterpart at balanced
ratios and sees a slower drop when the ratio gets skewed. How-
ever, after the 2:1 ratio point, the DC connections’ throughputs
become the same for the two implementations. The ngtcp2 SC
connection with a higher delay has a much worse performance
than the aioquic counterpart at more skewed ratios.

Finally, for loss rates using ngtcp2 and CUBIC, we observe
only small differences compared to our default scenario with
aioquic and NewReno (throughput Figure 13(c) compared to
Figures 9(c), and fairness Figures 14(c) and 15(c) compared to
Figure 10(c)). However, in contrast to the other experiments,
ngtcp2 using CUBIC shows a noticeable better performance
compared to TCP CUBIC. Looking closer at the 0.08% loss
case in Figure 13(c), we observe that the TCP implementation
more often stays in CUBIC’s TCP mode (used when detecting
growth slower than Reno counterparts, e.g., due to low band-
width delay products). This also explains why TCP CUBIC,
TCP NewReno, and ngtcp2 NewReno perform similarly here.

In general, ngtcp2 achieves higher throughput than aioquic,
even though both follow the same IETF recommendations. As
discussed, differences can occur due to the RFC being open for

40 40 40
OTCP CUBIC

+ngtcp2 Reno
X ngtcp2 CUBIC

OTCP CUBIC
+ngtcp2 Reno
xngtcp2 CUBIC

w
o
w
o
w
o

Throughput (Mbps)
S
Throughput (Mbps)
>
Throughput (Mbps)
N
o

10 OTCP CUBIC +ngtcp2 Reno 10 10
X ngtcp2 CUBIC
0 1 1 1 1 | 0 o
0 20 40 60 80 100 1:1 2:1 3:1 4:1 5:1 0.00 0.04 0.08 0.12 0.16 0.20
Interface enol (%) Delay ratio (sum 200ms) Random loss per interface (%)
(a) DC batch split (b) High delay ratio (c) Random loss

Figure 13: Throughput when using ngtcp2 (as QUIC implementation) with NewReno and CUBIC (as congestion control algorithms) for different parameters

- 25 ongtcp2 SC1 +ngtcp2 DC A25 ongtcp2 SC1 +ngtcp2 DC - 25 ongtcp2 SC1 +ngtcp2 DC
_§20 xngtcp2 SC2 = JFI §20 xngtcp2 SC2 = JFI _§20 xngtcp2 SC2 = JFI
= = =
15 = 15
> > >
£ 2 g
10 S & 10
> > >
o 5 o 5 + + + g 5
F R T PP T ?e?® F P PP FELS® F
0 = ¢ = F = f = ® = 4 0 Fo= & - = 8 = 5 0
0 20 40 60 80 100 1:1 2:1 3:1 11 5:1 0.00 0.05 0.10 0.15 0.20
Interface enol (%) Delay ratio (sum 200ms) Random loss per interface (%)
(a) DC batch split (b) High delay ratio (c) Random loss
Figure 14: Fairness when using ngtcp2 (as QUIC implementation) with NewReno (as congestion control algorithm) for different parameters
25 25 25
ongtcp2 SC1 +ngtcp2 DC - ongtcp2 SC1 +ngtcp2 DC ongtcp2 SC1 +ngtcp2 DC
20 xngtcp2 SC2 = JFI 320 X ngtcp2 SC2 = FI 20 xngtcp2 SC2 =]FI
15 X 15 15

+ —g
S BVSIEVS X

wv

O ¥V L N
I)

Throughput (Mbps)
Throughput (Mbps)

ol g
© ® & D L D A D o T Tt
9’ o
o? o7 o o” o7 o o® 2 SN o P

" Q Qo Q Q Q Q
of = % = & & § & 5 = 4 oF = r & 4 e 8 0
0 20 40 60 80 100 1:1 2:1 3:1 1 5:1 0.00 0.05 0.10 0.15 0.20
Interface enol (%) Delay ratio (sum 200ms) Random loss per interface (%)
(a) DC batch split (b) High delay ratio (c¢) Random loss

Figure 15: Fairness when using ngtcp2 (as QUIC implementation) with CUBIC (as congestion control algorithm) for different parameters

interpretation. The execution speed and resources required by ~ ures 9(a) and 10(a).) Comparing with the corresponding re-
the two implementations also differ. Ngtcp2 is implemented in sults using aioquic, in all three cases, the observation from Sec-
C and aioquic in Python. With ngtcp2, a larger receive buffer ~ tion 5.4 holds true, including that ngtcp2 is more aggressive and

did not impact throughput, as the client buffer was quickly emp- achieves higher throughput than aioquic. The results are con-
tied. Ngtcp?2 is also noted to be greedier than aioquic over DC, sistent regardless of whether NewReno or CUBIC is used as
often introducing some unfairness to scenarios that were fair for congestion control algorithm.

aioquic. One potential reason is the difference in pacer imple- Finally, we note that the conclusions regarding the protection

mentation, as the IETF only recommends a pacer but does not that duplicate packets offer during lossy scenarios are consis-
specify it in detail. The difference in pacer implementation is tent across QUIC versions and congestion control algorithms.

also clearly shown in high delay ratio tests. In all cases, duplication provides better loss protection at the
Additional tests using ngtcp2 with different congestion cost of fairness and goodput. Also in this special scenario does
control algorithms: To demonstrate the generality of our ob- ngtcp2 achieve higher throughput than aioquic. These results

servations, we next present additional throughput and fairness are shown in Figure 19 and can be compared to Figure 11.
results when using ngtcp2 with NewReno and CUBIC.
Figure 16 shows the throughput and fairness impact of the 5.5. Bandwidth variability scenario

bandwidth ratio when keeping the DC ratio fixed. (The cor- Baseline comparisons: To capture a more realistic band-
responding sub-figures for aioquic with NewReno are Fig- width user scenario, Figures 20(a) to 20(c) show repeated ex-
ures 7(b) and 8(b). Aioquic does not support CUBIC.) Fig- periments with aioquic for DC batch size, high delay ratio and
ure 17 shows the impact of the bandwidth ratio when using a loss rates performed over a LTE sampled bandwidth trace. Fig-
matching DC ratio. (The corresponding sub-figures for aioquic ures 20(d) to 20(f) show these results but using ngtcp2 with
with NewReno are Figures 7(c) and 8(c).) Figure 18 shows the CUBIC. For DC batch size and loss rates, similar trends are
impact of the delay ratio for our low-latency scenarios. (The observed as when using a fixed bandwidth capability. Simi-
corresponding sub-figures for aioquic with NewReno are Fig- lar trends are also observed in the case of delay ratio, but with

10

IS
o

w
o

OTCP CUBIC

+ngtcp2 Reno

x ngtcp2 CUBIC
1

Throughput (Mbps)
= N
S) o

4:1 5:1

0
1:1 2:1

3:1
Bandwidth ratio
(a) Throughput

N
w

ongtcp2 SC1 +ngtcp2 DC
xngtcp2 SC2 = JFI

S)

p
N
o

[y
(6]

+

+

Throughput (Mb
S

fans—vay R —
0.99 0.95 0.88 0.80 0.74 0.69 0.64 061 0%9
0 [] [] [] [L] L] [] []
1:1 2:1 4:1 5:1

3:1
Bandwidth ratio
(b) Fairness with NewReno

- 25 ongtcp2 SC1 +ngtcp2 DC

_§20 xngtcp2 SC2 = JFI

£

— 15

>

£

g 10 § + +

) Ko S SR

s 5 Ko X

F 0.99 0.95 0.89 0.82 0.76 0.70 0%66 063 0%1
0 L] [] L] [] L]] [] L]
1:1 2:1 4:1 5:1

3:1
Bandwidth ratio
(c) Fairness with CUBIC

Figure 16: Impact of the bandwidth ratio when using ngtcp2 as QUIC version with two different congestion control algorithms: NewReno and CUBIC

IS
o

w
o

OTCP CUBIC

+ngtcp2 Reno

x ngtcp2 CUBIC
1

Throughput (Mbps)
= N
S) o

0 1 1 |
1:1 2:1 3:1 4:1 5:1
Bandwidth ratio and DC ratio

(a) Throughput

25

ongtcp2 SC1 +ngtcp2 DC
xngtcp2 SC2 = JFI

S)

p
N
o

[y
(6]

Throughput (
= =
o wu
[~ ; +
: +
-
la 3

Throughput (Mb
S

K-
5 Koo Koo
0.99 0.98 0.95 0.91 0.87 0.85 0.83 0.79 0.78
[[] [] [] L] L] L]]
1:1 2:1 3:1 4:1 5:1

Bandwidth and DC ratio
(b) Fairness with NewReno

25 ongtcp2 SC1 +ngtcp2 DC

xngtcp2 SC2 = JFI

S)

p
N
o

0.99 0.98 0.95 0.92 0.88 0.85 0.83 0.81 0.79
[] [] [] L] []

1:1 2:1 3:1 4:1 5:1
Bandwidth and DC ratio

(c) Fairness with CUBIC

Figure 17: Impact of the bandwidth ratio when having a matching DC ratio and using ngtcp2 as QUIC version with two different congestion control algorithms:

NewReno and CUBIC

B
o

w
o

Throughput (Mbps)
N
)

10 OTCP CUBIC
+ngtcp2 Reno
xngtcp2 CUBIC
O 1 1 1 |
1:1 2:1 3:1 4:1 5:1

Delay ratio (sum 20ms)
(a) Throughput

’\25 ongtcp2 SC1 +ngtcp2 DC

§20 xngtcp2 SC2 = JFI

=

=15

>

o

<

(o)}

>

S5

< 090: 059 099 °9<a 099 090 e“q ~,~°° ~°°
P = x LI B |

1:1 2:1 3:1 4:1 5:1
Delay ratio (sum 20ms)

(b) Fairness with NewReno

- 25 ongtcp2 SC1 +ngtcp2 DC

éZO Xngtcp2 SC2 = JFI

=

— 15

>

2

= 10

>

S

= 5

'_
O L
1:1 2:1 3:1 4:1 5:1

Delay ratio (sum 20m.s)
(c) Fairness with CUBIC

Figure 18: Impact of the delay ratio in a low-delay scenario, when using ngtcp2 as QUIC version with two different congestion control algorithms: NewReno and

CUBIC

IS
o

OTCP CUBIC
+ngtcp2 Reno
xngtcp2 CUBIC

w
o

=
o

Throughput (Mbps)
N
<]

0
0.00 1.00 2.00 3.00 4.00 5.00
Random loss per interface (%)

(a) Throughput

30 e ngtcp2 DC (links total) +

+.ngtcp2 DC (goodput) a
§25 +_,9+ ngtcp2 SC 10
= 20 ++Egtcp2 SC2x
+ JFIm
ESE They,
g_ AA&AAAAAA“‘AA +++
210 e T
g ® o W D D P P O O St
E 50 FF TP e ? o7 % o oF o of

9 R o

0 5
0.00 1.00 2.00 3.00 4.00 5.0
Random loss per interface (%)

(b) Fairness with NewReno

30 ngtcp2 DC (links total) +
n +++++++++++ng$_cp2 DC (goodput) a
%25 ++., ngtcp2 SC 10
=20 hgtep2 SC 2

++ JFim
5 iy
_%15 AAAAAAAAA‘AA““ +
210 e,
o A
S50 PO O OO O PP OO
£ ST o oY o o o o7 g7 o oM o o

0
0.00 1.00 2.00 3.00 4.00 5.00
Random loss per interface (%)

(c) Fairness with CUBIC

Figure 19: DC throughput and fairness when using duplicate packets and ngtcp2 as QUIC version with two different congestion control algorithms: NewReno and

CUBIC

the effect of the pacer more clearly shown. Lastly, we note
that ngtcp2 is more aggressive than aioquic and that CUBIC

achieves higher throughput.

Additional trace-based results: Figures 21 and 22 show ad-

ngtcp2 and aioquic than for the other scenarios (Figures 21
and 22 compared to Figure 20), as well as between CUBIC and

NewReno (Figure 22), also for these cases do we observe the

ditional trace-based results using the two QUIC versions aio-

quic and ngtcp2, respectively. Here, we show results for (a)
the impact of the DC ratio, (b) the impact of the delay ratio
when operating in the low-latency range, and (c) the loss pro-
tection provided by the use of duplicate packets in loss scenar-
ios. While the throughput differences here are smaller between

11

same trends as to when using a fixed bandwidth capability.

5.6. Summary of results

Throughput: In general, QUIC performs better with a larger
receive buffer size. With a modified buffer, it reaches similar
throughput as the TCP counterparts. For DC parameters batch
size and batch split, the throughput is negatively affected by a

N
o

=
w

OTCP

+QUIC

X QUIC buffer modified
1 1 1

w

Throughput (Mbps)
=
S

o

0 100 200 300 400 500
DC batch size

(a) DC batch size, aioquic (repeated Fig. 4(a))

N
o

=
w

OTCP CUBIC

+ngtcp2 Reno

xngtcp2 CUBIC
1 1

w

Throughput (Mbps)
=
S)

0 100 200 300 400 500
DC batch size

(d) DC batch size, ngtcp2 (repeated Fig. 12(a))

o

N
o

OTCP
+QUIC
x QUIC buffer modified

fury
v

(6]

Throughput (Mbps)
=
o

0 1 1 1 |
1:1 5:1

2:1 3:1 4:1
Delay ratio (sum 200ms)
(b) High delay ratio, aioquic (repeated Fig. 9(b))

N
o

OTCP CUBIC
+ngtcp2 Reno
X ngtcp2 CUBIC

[y
w

w

+

Throughput (Mbps)
=
o

0 1 1 1
1:1 2:1 3:1 4:1 5:1
Delay ratio (sum 200ms)

(e) High delay ratio, ngtcp2 (rep. Fig. 13(b))

N
o

OoTCP
+QUIC
X QUIC buffer modified

=
wv
IRV

w

Throughput (Mbps)
=
o

0
0.00 0.04 0.08 0.12 0.16 0.20
Random loss per interface (%)

(c) Random loss, aioquic (repeated Fig. 9(c))

N
o

OTCP CUBIC
+ngtcp2 Reno
xngtcp2 CUBIC

Throughput (Mbps)
=
o

0
0.00 0.04 0.08 0.12 0.16 0.20
Random loss per interface (%)

(f) Random loss, ngtcp2 (repeated Fig. 13(c))

Figure 20: Trace-driven bandwidth variability tests using aioquic and ngtcp2 as QUIC implementations

N
o

OTCP +QUIC xQUIC buffer modified

=
w

w

Throughput (Mbps)
=
S)

O 1 1 1 1 J
0 20 40 60 80 100
Interface enol (%)

(a) DC batch split (repeated Fig. 7(a))

N
o

[y
w

4

OTCP

+QUIC

X QUIC buffer modified
1 1

w

Throughput (Mbps)
=
o

0 1 |
1:1 2:1 3:1 4:1 5:1
Delay ratio (sum 20ms)
(b) Low delay ratio (repeated Fig. 9(a))

20
oTCP
+QUIC

15 % QUIC buffer modified

Throughput (Mbps)

0
0.00 1.00 2.00 3.00 4.00 5.00
Random loss per interface (%)

(c) Duplicate packets (repeated Fig. 11(a))

Figure 21: Additional trace-based throughput validation tests using aioquic as QUIC implementation

N
o

OTCP CUBIC
X ngtcp2 CUBIC

+ngtcp2 Reno

=
w

w

Throughput (Mbps)
=
S)

1 1
0 20 40 60 80 100
Interface enol (%)

(a) DC batch split (repeated Fig. 13(a))

N
o

[y
w

OTCP CUBIC

+ngtcp2 Reno

xngtcp2 CUBIC
1

w

Throughput (Mbps)
=
o

0 1 1 |
1:1 2:1 3:1 4:1 5:1
Delay ratio (sum 20ms)

(b) Low delay ratio (repeated Fig. 18(a))

20
oTCP CUBIC
+ngtcp2 Reno

15 x ngtcp2 CUBIC

Throughput (Mbps)

0
0.00 1.00 2.00 3.00 4.00 5.00
Random loss per interface (%)

(c) Duplicate packets (repeated Fig. 19(a))

Figure 22: Additional trace-based throughput validation tests using ngtcp2 as QUIC implementation

larger batch size and an uneven split due to reduced link utiliza-
tion. With a large batch size, we see significant periods where
one link is underutilized and idle while packets are forwarded
through the second link. We achieve the highest throughput us-
ing a batch size near 100-150 and an even batch split of 50/50 to
send half of the packets over each interface. When varying the
bandwidth ratio, we observe the highest throughput when the
two links have a similar capacity and that the throughput de-

high delay. Finally, as expected, higher loss results in lower
throughput. However, when using DC to duplicate packets, the
throughput is much more stable as the packet losses increase.
Fairness: The fairness of competing connections reduces
with a large DC batch size as SC clients monopolize the link
during DC client’s off periods. We observe the highest fairness
using a small batch size and an even batch split. High fairness
is achieved using a bandwidth ratio of 1:1, but decreases with

a more uneven ratio. When the DC ratio is selected to match
the bandwidth ratio, the fairness still decreases but at a slower
rate. When varying the delay ratio, the fairness is only signif-
icantly impacted when having a high delay. For packet losses,
the fairness is in general not impacted. However, the fairness

creases with an uneven link capacity. However, we obtain high
throughput for all ratios if the DC ratio is selected to match the
bandwidth ratio. When studying the delay, we observe the high-
est throughput achieved with a ratio of 1:1. For other ratios, the
throughput is only negatively impacted in the case of having a

12

is much affected when using DC packet duplication, showing
much unfairness regardless of the loss rate.

Additional experiments: We generally observe similar
trends when repeating the experiments using another QUIC im-
plementation (ngtcp2) and congestion control algorithm (CU-
BIC). The main differences observed are (1) the optimal point
can vary slightly due to implementation differences (e.g.,
pacer), (2) ngtcp2 is more aggressive than aioquic, leading to
higher throughput and less fairness, and (3) only small differ-
ences are observed between CUBIC and NewReno. Our perfor-
mance experiments over variable bandwidth links show similar
trends, validating our results under the more realistic scenario.

6. Conclusions

In this paper, we present the first performance study of QUIC
over DC. Key insights are given for network operators to un-
derstand how different DC parameters and network conditions
affect QUIC performance. Regardless if we use aioquic or
ngtcp2 as the QUIC implementation or whether we use CU-
BIC or NewReno as the congestion control algorithm, QUIC’s
throughput is found to be similar to that of TCP in general
cases, provided that the UDP receive buffer (when using aio-
quic) has been increased to a similar size as the corresponding
TCP buffer. We show that QUIC can take advantage of DC
when the links share similar properties, and the DC batch size is
small. When the properties of the links are too far apart, QUIC
performance suffers to the degree that the performance would
be better if DC was turned off. Furthermore, we show that
QUIC can achieve system-wide fairness, provided that the link
properties are similar. Otherwise, the DC connection will suffer
more than the single connections, showing poor performance
and a high degree of unfairness. We also show that packet du-
plication allows QUIC to improve throughput for lossy environ-
ments at the cost of substantially increased unfairness.

With aioquic, the QUIC throughput is considerably lower if
the UDP receive buffer remains at default values for Linux, as
PDCP introduces packet bursts, causing packet drops due to full
buffers. This occurs especially often in asymmetric link scenar-
ios with high throughput. With the increased use of QUIC, we
emphasize the importance of studying and optimizing the re-
sources provided by the kernel to QUIC.

As QUIC is implemented in user-space, interesting future
work include studying CPU usage and NIC offloading when
used in conjunction with DC. Other future work include math-
ematical modeling and evaluation of the performance of using
QUIC over DC. Here, we take only an experimental approach.

Acknowledgement

The authors are very thankful to Stefan Sundkvist (at Erics-
son) for his feedback and help with this work. This work was
funded in part by the Swedish Research Council (VR) and the
Wallenberg Al, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

13

References

[1] D. Hasselquist, C. Lindstrom, N. Korzhitskii, N. Carlsson, A. Gurtov,
QUIC Throughput and Fairness over Dual Connectivity, in: Proc. IEEE
Modelling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS) Workshop, 2020.

S. Alfredsson, A. Brunstrom, M. Sternad, Cross-layer analysis of TCP
performance in a 4G system, in: Proc. of SoftCOM, 2007.

1. Da Silva, G. Mildh, J. Rune, P. Wallentin, J. Vikberg, P. Schliwa-
Bertling, R. Fan, Tight integration of new 5G air interface and LTE to
fulfill 5G requirements, in: Proc. of VTC Spring, 2015.

N. H. Mahmood, M. Lopez, D. Laselva, K. Pedersen, G. Berardinelli,
Reliability Oriented Dual Connectivity for URLLC services in 5G New
Radio, in: Proc. of ISWCS, 2018.

3GPP, Summary of Rel-15, Tech. Rep. 21.915 Release 15, 2019.

Q. De Coninck, O. Bonaventure, Multipath QUIC: Design and Evalua-
tion, in: Proc. of ACM CoNEXT, 2017.

D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, Design, Implementa-
tion and Evaluation of Congestion Control for Multipath TCP, in: Proc.
of USENIX Symposium on NSDI, 2011.

J. R. Iyengar, P. D. Amer, R. Stewart, Concurrent multipath transfer us-
ing SCTP multihoming over independent end-to-end paths, IEEE/ACM
Trans. on Networking (2006).

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, Z. Shi, The QUIC Transport Protocol: Design
and Internet-Scale Deployment, in: Proc. of ACM SIGCOMM, 2017.
IETF 106 Singapore, Some updates on QUIC deployment num-
bers, 2019. URL: https://datatracker.ietf.org/meeting/106/
materials/slides-106-maprg-quic-deployment-update.

3GPP, Study on Small Cell enhancements for E-UTRA and E-UTRAN;
Higher layer aspects, Tech. Rep. 36.842 Release 12, 2013.

A. Ravanshid, P. Rost, D. S. Michalopoulos, V. V. Phan, H. Bakker,
D. Aziz, S. Tayade, H. D. Schotten, S. Wong, O. Holland, Multi-
connectivity functional architectures in 5G, in: Proc. of IEEE ICC, 2016.
3GPP, Evolved Universal Terrestrial Radio Access; Packet Data Conver-
gence Protocol specification, Tech. Rep. 36.323 Release 16, 2020.

M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Mobility Management
for TCP in MmWave Networks, in: Proc. ACM mmNets, 2017.

B. Jin, S. Kim, D. Yun, H. Lee, W. Kim, Y. Yi, Aggregating LTE and Wi-
Fi: Toward Intra-Cell Fairness and High TCP Performance, IEEE Trans.
on Wireless Communications (2017).

Y. Khadraoui, X. Lagrange, A. Gravey, TCP Performance for Practical
Implementation of Very Tight Coupling between LTE and WiFi, in: Proc.
of IEEE VTC Fall, 2016.

Y. Wu, Y. He, L. P. Qian, J. Huang, X. Shen, Optimal resource allocations
for mobile data offloading via dual-connectivity, IEEE Trans. on Mobile
Computing (2018).

Y. Wu, X. Yang, L. P. Qian, H. Zhou, X. Shen, M. K. Awad, Optimal dual-
connectivity traffic offloading in energy-harvesting small-cell networks,
IEEE Trans. on Green Communications and Networking (2018).

L. Sharma, B. B. Kumar, S.-L. Wu, Performance analysis and adap-
tive DRX scheme for dual connectivity, IEEE Internet of Things Journal
(2019).

M. He, C. Hua, W. Xu, P. Gu, X. S. Shen, Delay optimal concurrent trans-
missions with raptor codes in dual connectivity networks, IEEE Trans. on
Network Science and Engineering (2021).

A. Gurtov, T. Polishchuk, Secure multipath transport for legacy Internet
applications, in: Proc. of IEEE Broadnets, 2009.

R. S. Mogensen, C. Markmoller, T. K. Madsen, T. Kolding, G. Pocovi,
M. Lauridsen, Selective Redundant MP-QUIC for 5G Mission Critical
Wireless Applications, in: Proc. of IEEE VTC Spring, 2019.

A. Rabitsch, P. Hurtig, A. Brunstrom, A Stream-Aware Multipath QUIC
Scheduler for Heterogeneous Paths, in: Proc. of ACM SIGCOMM work-
shop EPIQ, 2018.

M. Becke, T. Dreibholz, H. Adhari, E. P. Rathgeb, On the fairness of
transport protocols in a multi-path environment, in: Proc. of IEEE ICC,
2012.

C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, M. Han-
dley, Data center networking with multipath TCP, in: Proc. of ACM
SIGCOMM workshop HotNets, 2010.

(2]
(3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

- N
u o

Troughput (Mbps)

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

o

[63]

N
o

mQUIC1 mQUIC?2

= QUIC = TCP

-
3]

[3,]

Troughput (Mbps)
o

o

0 30 60 90 120 150 180 0 30 60 90 120
Time (s) Time (s)
(a) QUIC vs. QUIC (JFI=1.000)

150

(b) QUIC vs. TCP (JFI=0.995)

180

Figure 23: Pairwise example traces using SC

X. Zhang, B. Li, Dice: A Game Theoretic Framework for Wireless Mul-
tipath Network Coding, in: Proc. of ACM MobiHoc, 2008.

R. K. Jain, D.-M. W. Chiu, W. R. Hawe, A quantitative measure of
fairness and discrimination for resource allocation in shared computer
systems, Technical Report DEC-TR-301, Eastern Research Lab, Digital
Equipment Corporation, 1984.

aioquic, aioquic, 2020. URL: https://github.com/aiortc/aioquic.
C. Paasch, R. Khalili, O. Bonaventure, On the Benefits of Applying
Experimental Design to Improve Multipath TCP, in: Proc. of ACM
CoNEXT, 2013.

R. Marx, W. Lamotte, J. Reynders, K. Pittevils, P. Quax, Towards QUIC
Debuggability, in: Proc. of ACM SIGCOMM workshop EPIQ, 2018.

R. Marx, M. Piraux, P. Quax, W. Lamotte, Debugging QUIC and HTTP/3
with glog and qvis, in: Proc. of Applied Networking Research Workshop,
2020.

K. L. McMillan, L. D. Zuck, Formal Specification and Testing of QUIC,
in: Proc. of ACM SIGCOMM, 2019.

R. Marx, J. Herbots, W. Lamotte, P. Quax, Same Standards, Different
Decisions: A Study of QUIC and HTTP/3 Implementation Diversity, in:
Proc. of ACM SIGCOMM workshop EPIQ, 2020.

ngtep2, ngtep2, 2020. URL: https://github. com/ngtcp2/ngtcp2.
D. Raca, J. J. Quinlan, A. H. Zahran, C. J. Sreenan, Beyond Throughput:
A 4G LTE Dataset with Channel and Context Metrics, in: Proc. of ACM
MMSys, 2018.

J. Iyengar, 1. Swett, QUIC Loss Detection and Congestion Control,
Internet-Draft draft-ietf-quic-recovery-29, IETF, 2020.

Appendix A. Pairwise fairness example using SC

Figure 23 shows throughput example traces with two com-
peting SC clients using the following three configuration pairs:
(a) QUIC vs. QUIC, (b) QUIC vs. TCP, and (c) TCP vs. TCP.
While the fairness index in all three cases are close to one (i.e.,
optimal fairness), the differences in the time-variation between
the different connections are smallest for the two competing
QUIC flows (i.e., Figure 23(a)). One contributing factor to this
difference may be the QUIC pacer smoothing out the saw-tooth
behavior of NewReno.

14

20

—_
(6)]

(4]

Troughput (Mbps)
o

o

o

30

wTCP1 mTCP2

60

90
Time (s)

120

150

(c) TCP vs. TCP (JFI=0.999)

180

