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ABSTRACT
Most state-of-the-art facial recognition systems (FRS:s) use face
embeddings. In this paper, we present the IdDecoder framework,
capable of effectively synthesizing realistic-neutralized face images
from face embeddings, and two effective attacks on state-of-the-art
facial recognition models using embeddings. The first attack is a
black-box version of a model inversion attack that allows the at-
tacker to reconstruct a realistic face image that is both visually and
numerically (as determined by the FRS:s) recognized as the same
identity as the original face used to create a given face embedding.
This attack raises significant privacy concerns regarding the mem-
bership of the gallery dataset of these systems and highlights the
importance of both the people designing and deploying FRS:s pay-
ing greater attention to the protection of the face embeddings than
currently done. The second attack is a novel attack that performs
the model inversion, so to instead create the face of an alternative
identity that is visually different from the original identity but has
close identity distance (ensuring that it is recognized as being of
the same identity). This attack increases the attacked system’s false
acceptance rate and raises significant security concerns. Finally,
we use IdDecoder to visualize, evaluate, and provide insights into
differences between three state-of-the-art facial embedding models.
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1 INTRODUCTION
Advances in deep learning, and Convolutional Neural Networks
(CNNs) in particular, have helped push the state-of-the art in face
recognition. Today, most state-of-the-art facial recognition systems
(FRS:s) use models that embed facial images to low dimensional
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embeddings (usually 128 or 512 dimensions). This approach has
several advantages. First, the use of embeddings provides a robust
and lightweight way to cluster and recognize an identity without
the need to access the real image dataset. Second, it avoids having
to store privacy-sensitive biometric data such as facial images.

Given these advantages, it is not surprising that the top perform-
ing (in terms of accuracy), recently proposed models are embedding
models [1–3]. However, face embeddings are currently not consid-
ered confidential and most models do not conceal their embeddings.
Furthermore, there is pressure on many organizations to digitize
and move their services to the cloud. Combined, based on these
observations, we foresee an increasing number of embeddings to
be easily obtained by attackers. For example, an attacker may learn
about embeddings due to poor protection when the embeddings
are at rest (e.g., the stored embeddings associated with a gallery
set) or in transit (e.g., the remote database lookups when checking
whether a person is in the galley set). With the embeddings corre-
sponding to facial representations, one of the most clear personal
identifiers, it is therefore important to ask (1) whether and to what
degree exposed face embeddings can reveal privacy-sensitive informa-
tion. For example, is it possible to build a model that can reveal the
identity (or face) of a person given an exposed embedding from the
gallery set? If so, an attacker that gains access to the embeddings of
a gallery set could easily expose all registered identities (and hence
also group membership). Furthermore, non-protected or weakly
protected database lookups against cloud-hosted databases (e.g.,
criminal database used by the police) can reveal people of interest
to whoever performs the lookup.

Here, it should be noted that several embedding APIs are publicly
open (e.g., Clarifai, Microsoft face API, Rekognition, etc.) and many
pre-trained embedding models (e.g., FaceNet, Dlib, ArcFace) are
easily accessible on the Internet. To further motivate the importance
of this question, we note that, at the time of writing, Clarifai [4]
provides an API that allows users to submit face images and receive
back a face embedding in plaintext (e.g., see police use case above).

Assuming successful inversion, it is also important to ask (2) to
what degree alternative identities can be created that tricks FRS:s using
embeddings in new ways that weakens their security and reputation.

In this paper, we present the IdDecoder framework and two
novel attacks on state-of-the-art facial recognition models using
embeddings. Both attacks incorporate IdDecoder in their design and
together address questions (1) and (2). The first attack, a new variant
of model inversion attack [5], is shown to successfully synthesize
a face capturing the identity of the person from its corresponding
embedding (exposing their identity to the attacker). The second
one is a novel attack against the FRS called a false acceptance attack.
This attack provides the attacker with a tool to create synthesized
faces of different identities that trick the attacked FRS to believe
that the different identities are the same as the original identity
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despite clearly depicting other people (significantly reducing the
systems accuracy). The first attack raises privacy risks with state-
of-the-art FRS and demonstrates the importance of protecting face
embeddings. The second attack demonstrates security risks for
systems using such FRS, as they may be tricked to wrongly accept
a different identity. We also use IdDecoder to provide visual (and
numeric) insights into the relative efficiency of different state-of-the-
art models under attack. The idea behind IdDecoder is derived from
the first presented attack, while the other contributions are derived
via desirable properties inherited from our design of IdDecoder.

Model Inversion (MI) attack: In 2015, Fredrikson et al. [5]
demonstrated a black-box-based model inversion attack against a
facial recognition API, where the attacker can submit images to the
API and receives back a confidence value on a specific or the whole
range of labels (classes). In their work, the attacker’s goal is to
reconstruct the training images corresponding to the label, raising
concern that privacy-sensitive information in the training dataset
is leaked. However, given the limited information provided by the
confidence values, the reconstructed images are usually blurred, and
the human eye is typically not able to recognize the same identity.
Others [5–8] have since proposedMI attacks that make use of white-
box settings, auxiliary information, or both to improve the results.
Most of these attacks (cf. Table 2) are against classification models
that are simpler and less accurate than the current state-of-the-art
solutions using face embeddings (considered here).

Here, we present a model inversion attack against facial recog-
nition models using face embeddings that achieves more realistic
results than prior work (see Section 5) despite operating in a black-
box setting and without access to any auxiliary information. Our
attack is a black-box attack in the sense that the attacker does not
have access to the parameters but instead assumes that the attacker
can obtain the embeddings generated by the model.

Given the model and one or more embeddings of interest, the
goal of the attacker is to decode the face embedding and reconstruct
a realistic face image that is visually recognized as the same identity
as the original face used to create the embedding(s). We realize this
goal through the introduction of a mapper (that we train) and an
optimizer (that does not need training but benefits from output
from the mapper). These two components are at the heart of our
IdDecoder framework and allow us to recreate a synthesized face
with the same identity and high visual resemblance as the face
corresponding to any given embedding associated with the attacked
model. The power and generality of IdDecoder is demonstrated
through evaluation on several state-of-the-art embedding models,
including FaceNet [1], ArcFace [2], CurricularFace [3], and Dlib [9].

False Acceptance (FA) attack:We next propose a false accep-
tance (FA) attack that undermines the FRS by increasing its false
acceptance rate. Assuming knowledge of a face embedding, the
attack is achieved by the attacker generating face images of a dif-
ferent identity than the victim identity but that has sufficiently
similar embedding as the original identity that the FRS considers
them to be of the same identity. We again leverage IdDecoder in the
design of this attack but make a change to the objective function
of the model so to generate different faces that belong to the same
embedding. The main differences compared to the MI attack is that
the FA attack generates a face that visually belongs to a different
identity, but the FRS is fooled to classify them as the same identity.

The efficiency of our FA attack highlights a major weakness in
current state-of-the-art FRS:s, allowing an attacker to significantly
reduce the security and reputation of deployed FRS:s. While having
received much less attention than the MI attack, our results show
the need to consider FA attacks in the design of future FRS:s.

Summary of contributions: (1)We propose a novel face embed-
ding decoder framework, IdDecoder, that effectively can synthesize
realistic-neutralized face images from face embeddings. (2) We use
IdDecoder to perform an effective black-box model inversion attack
against state-of-the-art facial recognition models. (3) We present a
false acceptance attack against facial recognition models, demon-
strate how it can be implemented using IdDecoder, and show that it
can significantly affect the accuracy and security of facial recogni-
tion models. (4) We us IdDecoder to visualize and provide insights
into the effectiveness of different facial embedding models.

Outline: Section 2 describes the problem and threat models
considered. After a technical background to GANs in Section 3,
Section 4 presents the design of the IdDecoder framework and the
specific attacks that it enables. Evaluation results are presented in
Section 5. Sections 6 and 7 present related work and conclusions.

2 PROBLEM AND THREAT MODELS
We focus on FRS:s using embeddings. These embeddings can be
seen as learned representations of facial features.

2.1 Facial Recognition
The two main approaches to building a FRS using CNNs are to
build: (1) a multiple-class classifier [10–12] in which each class is
an identity, and (2) a representational model [1–3, 9] that learns
a lower-dimensional face embedding from the face images. While
the multi-class approach typically achieves high accuracy using
standard benchmark such as LFW [13], the complexity of these
models increases substantially with the number of identities in the
system and they do not work well for open-set facial recognition [2].
Due to its higher accuracy and greater flexibility, the embedding
approach has recently become more popular.

In addition to superior facial recognition performance, the use of
embeddings can improve efficiency, reduce the need to store facial
images sets (only the embeddings must be stored), and they make
it easier to scale up the tasks of face verification and face clustering
with open-face datasets (i.e., datasets not used for training).

2.2 Training, Gallery, Probe Set
At least three types of datasets are used by a FRS based on embed-
dings: (1) The training dataset T is used for training the embedding
model. This set can include both evaluation and testing sets used to
learn the unique identity features in each face (i.e., the face embed-
ding). For simplicity, we refer to the combined set as the training
set. (2) The gallery set G includes the set of known faces (registered
faces). This set may include many subjects not in the training set T.
Yet, the system must be able to extract identity features uniquely
from all the registered faces. (3) Finally, the probe set P includes
the set of faces that the system should try to find matches for in G.
Also the subjects in the probe set P might differ from the two prior
sets, and may therefore include faces totally new to the FRS.
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Our attacks at a glance: We present two attacks against FRS:s
using embeddings. In the model inversion (MI) attack, we try to
learn faces from the gallery set given only access to the embeddings.
In the false acceptance (FA) attack, we again target the gallery set.
However, in this case we try to create new face images of a different
identity but that have sufficiently similar embedding that the two
images (with different identities) are classified as the same person.

2.3 Embedding-based Facial Recognition
The face embedding model M can be seen as a deterministic func-
tion M : R𝐻×𝑊 ×𝐷 ↦→ F𝑑 that maps from the pixel space of an
input face image (where 𝐻 ,𝑊 , and 𝐷 are the image height, width,
and depth) to an identity feature space of dimension 𝑑 . Let G =

{𝐺0,𝐺1, ...,𝐺𝑚−1} be a gallery set with𝑚 registered faces and F𝑔 =

M(G) = {M(𝐺0),M(𝐺1), ...,M(𝐺𝑚−1)} = {𝑔0, 𝑔1, ..., 𝑔𝑚−1} be
the embedding representation of these faces in G, where F𝑔 ∈ F.
Then, given a probe set P = {𝑃0, 𝑃1, ..., 𝑃𝑛−1} with 𝑛 face images,
the face embedding 𝑝𝑖 = M(𝑃𝑖 ) is first extracted for each face 𝑃𝑖
(0≤𝑖<𝑛). Second, each such embedding 𝑝𝑖 is compared against each
face embedding in the set of embeddings F𝑔 of the gallery set so to
obtain a ranking order of the 𝑘 closest faces of each image 𝑃𝑖 . We de-
note the top-𝑘 list for image 𝑃𝑖 as 𝑅𝑖 = rank𝑘F𝑔 (𝑝𝑖 ) = (𝑟1, 𝑟2, ..., 𝑟𝑘 ).

2.4 Threat Models for the Two Attacks
Face embedding MI attack: The traditional MI attacks [5, 7, 14]
focus on black-box settings (adversary is given access to the API)
or white-box setting (given full access to the model) and use predic-
tions on chosen labels to extract sensitive features in the training set
T (equal to the gallery set G in the case of [5]). These prior attacks
specifically target classifier models. In contrast, our MI attack tar-
gets FRS:s using embeddings. Specifically, we consider an adversary
who intercepts and captures the face embeddings and uses these to
reconstruct the corresponding faces. The attack assumes that the
attacker can query the (black-box) facial recognition API for face
embeddings of submitted faces but that it may not have access to
the whole gallery/training dataset. Given an embedding, we show
that the attacker can reconstruct a clear and realistic face with high
success rate and resemble almost exactly the identity under attack.
Compared to the above discussed related works [5, 7, 14] (targeting
classifier-based models), our results provide much better identity
resemblance and is applicable to more modern systems.

In addition, our attack is both feasible and practical. First, several
face embedding APIs are publicly open (e.g., Clarifai, Microsoft
face API, Rekognition, etc.) and the many pre-trained embedding
models (e.g., FaceNet, Dlib, ArcFace) are easily accessible on the
Internet. Furthermore, at the time of writing, the face embeddings
are not considered confidential or necessary to conceal (e.g., using
encryption). Instead, APIs such as Clarifai [4] have an option to
return the face embedding via their API.

FA attack: In the second attack, we consider an attacker who
seeks to undermine the FRS by increasing its false acceptance rate.
In the simplest case, involving a single identity, the attacker is as-
sumed to have access to the face embedding of the victim’s identity.
(This embedding can either be obtained in the same way as for the
MI attack, or more generally, the attacker can extract the victim’s
face embedding from almost any face images available via social

media, CCTV cameras, or collected any other way). Using this
embedding, the goal of the attacker is to generate a non-identical
clone of the victim’s face with the same or very similar embed-
ding. By non-identical clone we mean that the generated face looks
sufficiently different than the original face that a human easily
distinguished it as belonging to a different identity, even though
the FRS classifies it as belonging to the same identity. By generat-
ing many such images, the attacker can substantially increase the
systems false acceptance rate. To avoid (or get around) the subjec-
tive nature of human evaluation, we make creative use of different
face embedding models in the design of this attack. Specifically,
the attacker creates an optimal clone that passes the verification
threshold of the FRS under attack (say system 𝐴) while it stays well
below the verification threshold of another FRS (say 𝐵). Using the
systems against each other this way, we show that the attacker
typically can find vulnerabilities (or gaps) in system 𝐴 (with the
help of system 𝐵) that can be used to generate false positives.

While we are only concerned with 2D images here, the attack
naturally expands to 3D. In this case, the attack could also be used to
break state-of-the-art face authentication such as face ID on iPhones
and Androids. While these authentication systems incorporate the
use of 3D-depth sensors (for higher security), the fact that these
systems rely only on well-matching embeddings combined with our
approach’s ability to identify an alternative identity with the same
(or very similar) embeddings, but for a different identity, suggests
that a 3D model of a face that produce the same embedding can be
created. With the help of a 3D printer the attacker can then print a
3D clone face that passes the facial authentication systems.

3 TECHNICAL BACKGROUND ON GANS
Our IdDecoder relies heavily on the use of GANs. Here, we provide
the technical background and notation used to describe IdDecoder.

During the training phase, a GAN model aims to learn the data
distribution of the original training data. Once trained, the model
can randomly generate samples from this distribution.

More technically, without loss of generality, we can consider
some input data with 𝑁 samples {𝐼1, 𝐼2, ..., 𝐼𝑁 }. Typically, the sam-
ples 𝐼 ∈ R𝑞 are high-dimensional data (e.g., images, voices, text
encodings) assumed to be randomly sampled from a distribution
𝑃𝐼 ; i.e., 𝐼𝑖 ∼ 𝑃𝐼 . Given this, the objective of a GAN is to learn a
generative model that can produce samples from 𝑃𝐼 .

During training, GANs use a special training workflow called
adversarial learning. Here, two entities, the generator 𝐺 (which
generates new samples) and the discriminator 𝐷 (which tries to
distinguish the generator’s samples as real or fake), are trained
adversarially, while gradually helping each other to improve. More
specifically, 𝐺 takes random noise vectors 𝑧 ∈ Z of dimension
𝑝 ≪ 𝑞, where Z = R𝑝 as inputs, and generates a new sample 𝐼
with the expectation that 𝐼 ∼ 𝑃𝐼 . In contrast, the discriminator 𝐷 is
a classifier network that takes a sample 𝐼 as input and classifies it
as real or fake, 𝐷 : R𝑞 ↦→ [0, 1].

One of the important advantages of using a GAN on image
data is its highly disentangled latent space W = R𝑝 , which is
an intermediate space between the latent space Z and sample
space R𝑞 . Slightly different from the canonical GAN [15] described
above, the state-of-the-art StyleGAN models for images [16–18]
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Figure 1: Overview of the IdDecoder framework both during
training and execution of the two different attacks.

introduce the latent spaceW and map the vector 𝑧 ∈ Z to latent
codes 𝑤 ∈ W. The 𝑤 vector is replicated as a layered array in
W+ of size 𝑝 × 𝑙 , where 𝑙 is number of layers, and then passed
through different layers of the pyramid structure of the generator
𝐺 to produce the sample 𝐼 . Empirical results have shown that the
latent spacesW andW+ are more disentangled compared toZ.
Specifically, different layers of the latent codes𝑤 (and𝑤+) typically
are responsible for different visual attributes of the image sample.
For example, with facial images, the vector 𝑧 typically has a regular
size 𝑝 = 512 and a latent codes 𝑤 has 𝑙 = 18 layers. Hence, 𝑤 has
size (512 × 18). Furthermore, Karras et al. [16] have shown that the
coarse layers 1-to-4 represent coarse spatial resolutions such as
pose, general hair style, and face shape; the medium layers 5-to-8
are responsible for smaller-scale facial features such as hair style,
eyes open/closed; and the fine layers 9-to-18 represents the color
scheme and microstructures observed in a facial image.

4 IDDECODER FRAMEWORK
In this section, we present the IdDecoder framework and the loss
functions used during training and optimization.

4.1 Framework Overview
Fig. 1 presents an overview of the IdDecoder framework. In the
preparation phase (top row), the mapper (or as we will see a map-
per network) is trained using a catalogue of images and one out
of two loss functions. One for the MI attack and one for the FA
attack. Here, the main differences is that for the MI attack we design
the loss function 𝐿𝑀𝐼 to help reconstruct the face of a given face
embedding, whereas for the case of the FA attack we relax some
parts of the loss function to allow generation of a non-identical
clone with 𝐿𝐹𝐴 . During the actual attack, the trained mapper can
then be used to very efficiently generate an inverted face (MI at-
tack) or a face of an alternative identity than the origin face (FA
attack). For the MI attack, our framework also adds an optimization
step in which through a series of optimization steps the results is
optimized with the help of the attacked model, the output from
the previous step, and a loss function 𝐿′

𝑀𝐼
(same as 𝐿𝑀𝐼 but with

different hyperparameter values than with the mapper).
High-levelmapper: Face recognitionmodels using embeddings

compress the information of images into a small embedding 𝑓 ∈R𝑑 ,
where 𝑑 is the system-dependent embedding size. For example,
FaceNet takes a normalized RGB face image of size 160×160 and
extracts a face embedding of size 𝑑=128. This corresponds to a com-
pression ratio of 600 (3×160×160/128). To overcome the challenge
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Figure 2: Overview of the mapper used in the framework.
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Figure 3: Overview of the optimizer used in the framework.

of reconstructing a face from the much smaller embedding 𝑓 , IdDe-
coder uses a mapper network M that maps 𝑓 onto the latent space
W+ of StyleGAN. (W+ has been shown to hold more information
thanW [19].) The key idea here is that, given a good mapper, these
latent codes𝑤∈W+ then can be used to regenerate a facial image
𝑅 using a pre-trained StyleGAN generator 𝐺 .

Fig. 2 presents an overview of the mapper used in IdDecoder.
The framework takes a black-box target model𝑇 as input (red cone),
which itself takes a facial image 𝐼 as input to create a face embedding
𝑓 as output. Then, as described above, a mapper networkM (green
cone in Fig. 1 or green box in Fig. 2) takes the embedding 𝑓 as input
and outputs a latent code𝑤 ∈ W+ that we can use to reconstruct
a facial image 𝑅 using a pre-trained StyleGAN generator 𝐺 . Here,
yellow cones indicate the use of pre-trained models.

In summary, assuming that we have properly trained the mapper
M, we can now reconstruct an input image 𝐼 with face embedding
𝑓 =𝑇 (𝐼 ) by simply passing the facial embedding through the mapper
and then pass the resulting latent code 𝑤=M(𝑓 ) through 𝐺 to
obtain 𝑅=𝐺 (𝑤). The main challenges to achieve good results lie
in the design and training of the mapper. Here, we make use of
several important insights.

4.2 Mapper Abstraction in More Detail
Let us look closer at the steps taking us from embedding 𝑓 to
regenerated image 𝑅 in more detail.

First, the input to the mapper(s) requires the face embedding
𝑓 ∈ R𝑑 to be scaled up to the sample size of the latent codes of
(512 × 18). Here, we use a fully connected multilayer perceptron
(MLP) with Leaky ReLU activation function as scaled-up network,
where the input size 𝑑 depends on the target model 𝑇 . In particu-
lar, 𝑑=128 for FaceNet [1] and dlib [9], 𝑑=512 for ArcFace [2] and
CurricularFace [3], and 𝑑=1024 for Clarifai [4].

Second, and perhaps most importantly, we use three different
mappers, each responsible for their own set of layers: one for the
coarse layers (1-4), one for the medium layers (5-8), and one for
the fine layers (9-18). We call the corresponding mappers “coarse",
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“medium", and “fine", respectively. This design and the naming
of the layers were motivated by prior observations that different
layers in the latent codes𝑤 (used as input to𝐺) are responsible for
different feature sets [16]. Through experiments we have found this
design (with separate mappers for different layers) highly beneficial
compared to using a singlemapper, as it allows eachmapper to focus
on specific features. More specifically, each mapper is implemented
as three smaller fully connected neural networks (illustrated to the
right in Fig. 2), each with four fully connected (FC) layers, and each
of them is a MLP with Leaky ReLU activation function.

Finally, the latent code 𝑤 is passed to a pre-trained StyleGAN
model𝐺 (trained on the FFHQ dataset [16]) that generates an output
image of resolution 1024 × 1024.

4.3 Training of Mapper(s)
During the training phase, we make use of several loss functions
that either extract information from the input images I and the
corresponding regenerated image 𝑅 of each image 𝐼 ∈ I, or in
latent space. Referring to Fig. 2 we include two functions of the
first type (𝐿𝐼𝐷 and 𝐿𝐿𝑃𝐼𝑃𝑆 ) and one of the second type (𝐿2𝑤 ).

First, and perhaps most importantly we calculate the identity
loss 𝐿𝐼𝐷 as the pairwise distance

𝐿𝐼𝐷 = ∥𝐸𝐼𝐷 (𝐼 ) − 𝐸𝐼𝐷 (𝑅)∥2 (1)

between the face embeddings of the original face 𝐼 and the re-
constructed face 𝑅, where the embeddings are calculated using a
pre-trained face embedding model 𝐸𝐼𝐷 capturing identity features
of a face image. Note that 𝐸𝐼𝐷 does not have to be (although it can
be) the same model as the model under attack (i.e., 𝑇 ).

The identity loss helps ensure that the identity features in 𝐼 and
𝑅 are the same. However, it does not provide any guarantee that
the reconstructed image 𝑅 is a facial image. To tackle the challenge
of producing a realistic image, we use the pairwise loss in latent
space 𝐿2𝑤 and the perceptual loss 𝐿𝐿𝑃𝐼𝑃𝑆 [20] in pixel space. 𝐿2𝑤
is calculated as the pairwise distance in latent space in which it
constraints the output𝑊 close to the average latent𝑊𝑎𝑣𝑔 :

𝐿2𝑤 = ∥𝑊 −𝑊𝑎𝑣𝑔 ∥2 . (2)

Finally, 𝐿𝐿𝑃𝐼𝑃𝑆 is calculated based on a pre-trained perceptual fea-
ture extractor 𝐹 , again taking the pairwise distance:

𝐿𝐿𝑃𝐼𝑃𝑆 = ∥𝐹 (𝐼 ) − 𝐹 (𝑅)∥2 . (3)

The choice to use the pre-trained perceptual feature extractors
LPIPS is motivated by works [17, 21] having shown that it outper-
forms standard perceptual losses [16, 22]. We next describe how the
above loss functions and modifications of them are used to achieve
the MI and FA attack, respectively.

4.4 Attack-specific Loss Functions
Face reconstruction in MI attack: The goal when training the
mapperM for use in the MI attack is to learn to construct an output
latent code 𝑤 = M(𝐸𝐼𝐷 (𝐼 )). For reconstruction we give positive
weight to all three losses. In particular, the total loss is defined as:

𝐿(𝐼 , 𝑅) = 𝜆1𝐿𝐼𝐷 + 𝜆2𝐿2𝑤 + 𝜆3𝐿𝐿𝑃𝐼𝑃𝑆 (4)

where 𝜆1, 𝜆2, 𝜆3 are hyperparameters that can be tuned.

Construction of non-identical clones in FA attack: For this
attack, the objective is to generate a non-identical clone 𝑅 of 𝐼
to fool the facial recognition to accept the clone as being of the
same identity. Different from the MI attack, our goal when training
the mapper for the FA attack is to learn to construct an output
that satisfy𝑊 = M(𝐸𝐼𝐷 (𝐼 )) +𝑊𝑎𝑣𝑔 . In other words, we train the
mapper in the way that it learns the difference Δ =𝑊 −𝑊𝑎𝑣𝑔 to
best satisfy the losses 𝐿𝐼𝐷 , 𝐿𝐿𝑃𝐼𝑃𝑆 and 𝐿2𝑤 . This helps direct the
mapper to learn how to project a semantic representation onto
latent space that can allow the reconstruction of an image with
similar identity distance but that avoids identity-specific details
to be enforced. More importantly, we found that the mapper can
learn to project an identity representation that is not visible to the
human eye but that still ensures that the identity distance of the
constructed image is small. This allows us to project the non-visible
identity of any attacked face on to a face image.

However, a technical challenge with this method is that it is easy
that the mapper converges on some random areas in latent space
𝑊 +. As a result, the reconstructed images become visually similar.
To address this problem, we introduce the loss function 𝐿𝐼𝑁𝑁𝐸𝑅 ,
which is the L2 loss between a randomly chosen pair of samples in
the mapper’s output batch. Assuming that each training batch of
the mapperM has𝑚≥2 samples {𝑓0, 𝑓1, ..., 𝑓𝑚}, the mapper outputs
{𝑤0,𝑤1, ...,𝑤𝑚}, where𝑤𝑖=M(𝑓𝑖 ), 𝑖𝑖𝑛[0,𝑚]. We can then define

𝐿𝐼𝑁𝑁𝐸𝑅 = ∥𝑤𝑝 −𝑤𝑞 ∥2, (5)

where 𝑝, 𝑞 ∈ [0,𝑚]. Given this additional loss term, the modified
loss function (used by the FA attack) reads as:

𝐿(𝐼 , 𝑅) = 𝜆1𝐿𝐼𝐷 + 𝜆2𝐿2𝑤 + 𝜆3𝐿𝐿𝑃𝐼𝑃𝑆 + 𝜆4𝐿𝐼𝑁𝑁𝐸𝑅 . (6)

where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are hyperparameters that can be tuned.

4.5 Optimizer (used in MI Attack only)
The optimizer is shown in Fig. 3. In contrast to the mapper (Fig. 2),
the optimizer does not require any training. This has many ad-
vantages. For example, the whole optimization process typically
completes after only 20-40 iterations; hence, it typically only re-
quires 20-40 API queries to the attacked model 𝐸𝐼𝐷 per attacked
embedding 𝑓 . This is attractive in the case we only have access
to a limited number of queries to 𝐸𝐼𝐷 . Moreover, we can easily
swap different target models 𝐸𝐼𝐷 without any complication. In fact,
compared to the mapper, the optimizer is better reconstructing
the unique appearance of a particular person. Starting from𝑊𝑖𝑛𝑖𝑡 ,
the optimizer runs back propagation [23] with the loss function in
equation (4) (with a different hyperparameter set than the mapper).

5 EXPERIMENTS AND EVALUATION
5.1 Datasets and Implement Details
For training and evaluation, we use the following target models:
ArcFace [2], FaceNet [1], CurrricularFace [3]. For training we use
the images from CelebA-HQ [24]. The CelebA-HQ dataset [24] has
30,000 high-resolution face images sampled from the CelebA [25]
dataset, containing images of approximately 8,000 identities. For
evaluation, we use the UTK dataset [26], CelebA, and the Labelled
Faces in the Wild (LFW) dataset [13]. The LFW dataset contains
5,749 identities and provides a good reference point as most FRS:s
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use this dataset for evaluation (not training). The UTK dataset
contains more than 20,000 images labelled with age, gender, and
ethnicity. We use this dataset to evaluate biases.

Our training process is divided into two phases. First, we train the
model for 30,000 steps with learning rate 0.1. The high learning rate
helps the model finding the global minimum better, while avoiding
getting stuck on local minimum. Second, we reduce the learning
rate 0.1 and keep training for another 30,000 steps. This training
strategy helps reduce 𝐿𝐼𝐷 from the first phase and improves the
image quality by reducing artifacts during the second phase. For
the MI attack, we set loss parameters as follows: 𝜆1 = 0.2, 𝜆2 = 0.8,
𝜆3 = 0.8. For FA attack, we set 𝜆1 = 0.2, 𝜆2 = 0.8, 𝜆3 = 0.01, and
𝜆4 = 0.005. In both of the attacks we recommend setting 𝜆1 ≤ 0.2
due to the fluctuation of the 𝐿𝐼𝐷 early in the training process. To
find these settings, we started with empirical settings based on prior
successful models and then iteratively fine-tuned the parameters.

For the evaluation, we simply calculate the face embedding 𝑓 for
each image 𝐼 ∈ I in the evaluation set and then compare it with
the corresponding reconstructed face 𝑅 of each such embedding.
For the reconstruction, we use the mapper, the optimizer, or both.

5.2 Evaluation Metrics
Perhaps the most important aspect of both attacks considered is
the identity distance to the original identity. While we also use an
identity distance in the loss function used for training our mappers
(e.g., equations (4), (6)), it is important to note that we can use
any embedding for this purpose. For fair comparison, we do not
use the same face embedding model 𝐸𝐼𝐷 as we use in the training
process of our mappers. Instead, unless explicitly stated, we will
use the targeted face embedding model 𝑇 to evaluate how effective
the IdDecoder is against 𝑇 . This choice captures that these state-
of-the-art FRS:s (based on face embedding) make their identity
identification decision based on whether two images are within an
identity distance threshold from each other. Here, we calculate the
identity distance between the reconstructed face 𝑅 and the ground
truth face 𝐼 and determine whether the pairwise distance is below
the identification threshold. By repeating this for many images
(i.e., all identities in LFW) we can also report the percentage of
reconstructed faces that pass the identification threshold.

While the identities in LFW may be different than the identities
of the gallery sets G of the actual FRS:s that we evaluate, we believe
that the LFW dataset provides a good sample set for this evaluation.
Finally, we note that in the case of the MI attack the attacker would
only have access to 𝑓 = 𝑇 (𝐼 ) (not 𝐼 ) and we only give IdDecoder
the embedding 𝑓 as input when performing an attack. Image 𝐼 is
therefore only used for evaluation purposes.

When comparing different FRS:s, the best choice of identification
threshold differ between models. In general, a more relaxed thresh-
old increases the classification rates but also the false acceptance
rate (FAR) and the best choice typically depends on the embed-
ding size 𝑑 (e.g., 128, 512 or 1024, etc.). Since regular normalization
methods (e.g., linear scaling, clipping, or log scaling) reduce the
accuracy of the FRS, we base the threshold choices on the results
and discussions provided by the authors of the original models [13].

Beside the identity distance, we also use three other metrics to
measure the similarity and distance between the reconstructed im-
ages to their ground truth: Structural Similarity Index (SSIM) [27],
SSIM’s enhanced version Multiscale SSIM (MS-SSIM) [28], and
LPIPS [20]. These metrics try to imitate the human visual percep-
tion where the structural information is used to compared between
images. For example, SSIM extracts three key features, including
luminance, contrast, and structure from the image and using these
features when comparing two images. MS-SSIM is a variation of
SSIM, where the measurements are conducted by using multiple
scales of sub-sampling. The metric is as good as SSIM or better
on different kinds of images or videos. Finally, LPIPS is the most
advance metric in which highly convolutional networks such as
AlexNet [29], ResNet [30], and VGG [31] are used to extract fea-
tures at first, before those features are used to calculate the dis-
tance/similarity index. To obtain distance-based versions of the
similarity metrics SSIM and MS-SSIM, we take one minus the sim-
ilarity values, and refer to the resulting metrics as the distance
versions of SSIM and MS-SSIM.

5.3 Model Inversion (MI) Attack
We next evaluate the performance of our attack against differ-
ent FRS:s. As described above, for each system under attack, we
trained/optimized IdDecoder using the model under attack (us-
ing our training dataset) and then used the embeddings from our
evaluation dataset to evaluate the success of the attack.

Pairwise identity distances: We first show that the attack
produces images that resemble the ground truth identity associated
with the targeted embeddingmuchmore than a random identity and
that the identity distance compared to the recognition thresholds
of the systems almost always consider the generated faces as being
of the same identity. This is illustrated in Fig. 4. Here, we show a
frequency histogram of the pairwise identity distances between the
ground truth image 𝐼 and either (1) the corresponding reconstructed
images 𝑅 or (2) a random face in the ground truth dataset. It is
important to note that the random face distributions nicely match
the thresholds reported in previous work using the same evaluation
dataset (referred to as ground truth in this subsection).

As desired, for all three systems under attack, we are able to
generate images with much lower pairwise distance to the ground
truth than random (see clear separation between distributions) and
the majority of the pairwise identity distances typically are well
below the identification thresholds of each model (discussed above).

The most successful attack is against ArcFace. With ArcFace,
there is a clear separation between the distributions and the whole
distribution sits well to the left of the 1.25 threshold. ArcFace would
therefore recognize 100% of the reconstructed faces as being an
image of the same identity as seen in the ground truth. We observe
similar trends but with slight shifts toward the baseline when com-
paring the reconstructed distributions and the baseline for both
FaceNet and CurricularFace. However, also here the distributions
are widely separated from the baseline. The results show that our
reconstructed faces provide face embeddings that are highly rec-
ognized as the original faces by the FRS:s even when using other
image sets than those used during training.
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Figure 4: Comparing distance distributions of the recreated images using each attackedmodel (ArcFace, FaceNet, CurricularFace)
against the baseline of random pairs selection. In each case, we use the distances calculated using the model under attack.
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(c) CurricularFace
Figure 5: Example results inverting embeddings of ArcFace, FaceNet and CurricularFace: ground truth images (1st row),
reconstructed images by the optimizer (2nd row) and mapper + optimizer (3rd row).

Insights from visual example results:We next consider the
visual results associated with each model. Figs. 5a-5c show a few
samples of the reconstructed faces using the Optimizer (alone) and
using the Optimizer in combination with the Mapper against Ar-
cFace, FaceNet and CurricularFace. First, it should be noted that
FaceNet uses a significantly smaller embedding size (𝑑 = 128) com-
pared to the other twomodels (𝑑 = 512). It is therefore easy to expect
that the visual results would be the least natural looking for FaceNet.
However, this is not necessarily the case as the systems may use
different degrees of normalization and cropping of non-identity
related areas. We can clearly see that all faces are normalized in
that all reconstructed identities are looking forward and do not
wear lipstick, accessories, or have facial hair. This has advantages
when doing facial recognition. Regarding the identity resemblance,
the Optimizer appears to outperform the Mapper + Optimizer as
the results look more like the ground truth identities. Interestingly,
the Optimizer is capable of reconstructing the hairstyles in some
cases (even though the information might be cropped out by the
facial recognition). Combining the Mapper+Optimizer has other
advantages. First, the combination achieves better normalization
effect, where hairstyles, color scheme, facial expressions are more
consistent. Most importantly, in term of performance, the Optimizer
takes us 10-15 seconds per output, which is double the time that the
option of Mapper+Optimizer requires (after training the Mapper).

5.4 FA Attack
The FA attack aims to create a facial image of a different identity
than the victim but that would have an identity distance (defined
by the attacked model) that is below the identification threshold.

Visual example results: Fig. 6 shows examples of non-identical
clones for four example identities (top row) when attacking ArcFace
(2nd row), FaceNet (3rd row) and CurricularFace (4th row). In all
cases, the clones would have an identity distance to the original
embeddings so that they would be considered to be of the same
identity. Yet, comparing the images between the rows it is clear that
many identity-related properties of the non-identical clones (rows
2-4) are completely different than for the original people (top row).
This example shows that our system can create facial images of
different identities that the facial recognition system FRS still deem
to be of the same identity as the original faces. Here, we have used
the average face as the baseline face but note that other faces also
can be used. Being able to create non-identical clones of an attacked
identity (top row) that to a human look more like an average face (or
some other baseline face) can have serious security consequences
for systems that use such models for authentication. Compared
to the MI attack, we observe more visual artifacts and the facial
appearances are more homogeneous. In particular, the mapper aims
to create the best-looking images that push the boundary where
human perception and the perception of the FRS:s clearly are in
contrast. As seen here this comes at the cost of lower image quality.

Quantitative comparisons: As visual comparisons can be sub-
jective, we next use quantitative metrics to provide more insights
into the tradeoffs made here. First, in Fig. 7, we show the effect
of the FA attack on the FRS:s. The experiment is carried out on
the LFW benchmark [32]. The benchmark has a dataset containing
around 13,000 facial images. The benchmarking protocol is set up
as follows: (1) 12,000 samples of the dataset are selected in the way
that there are 6,000 pairs in which haft of the pairs are matched
identities and the other half consists of mismatched identities. (2)
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Figure 6: Non-identical clone: First row is ground truth image,
and reconstructed image based on embedding ofArcFace (2nd
row), FaceNet (3rd row) and CurricularFace (4th row).
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Figure 7: ROC curves on LFW benchmark after the FRS:es
being attacked by FA attack.

Thresholds are set from 0 to 4 with a step size of 0.04 (400 thresholds
in total); (3) For each threshold 𝑡 , the distance 𝑑 is calculated over
all pairs. If 𝑑 ≤ 𝑡 , the pair is a match; otherwise it is counted as
a mismatch. (4) Using the counts of matches/mismatches and the
labels of match/mismatch, the true positive rate (TPR), false positive
rate (FPR), and the accuracy are calculated. In the evaluation for the
FA attack in the LFW benchmark, we replace the facial images of
pairs with mismatch labels by a selected image (in the pair) and its
non-identical clone. With this replacement, it is still ensured that
the visual looks of the mismatched pair are from different identifies
but the distance 𝑑 (of the pair) is pushed close to 0. As a result, most
of the pairs in the mismatch category is classified as a match by
the FRS:es. In Fig. 7, the effect of the FA attack brings the receiver
operating characteristic (ROC) curve of all the FRS:es under attack
close to diagonal, making the guess if a given pair is a match or not
close to random (given the datasets 50-50 split).

Second, consider the change in identity. Fig. 8a shows the ID dis-
tance for pairwise FA attacks, MI attacks, and the random baseline
for example experiments with CurricularFace. We note that the FA
attack does not provide as good of a identity match as the MI attack

but that the identity distances still typically are well below the
identity recognition threshold of 1.25 (and the random baseline).

Third, to support that the identities we create have been moved
away from the actual identities, we use the MS-SSIM distance to
measure the semantic difference between images. Fig. 8b presents
a comparison of both the FA and MI attack against the random
baseline. We note that the FA attack (as desired) have much higher
overlap with the baseline than the MI attack. We have observed
similar results using SSIM (omitted). Fig. 8c presents the average
values for all three metrics and scenarios. Again, the results clearly
show that the FA attacks is able to create an identity with identity
distance well below the 1.25 threshold while both of them achieving
an SSIM and MS-SSIM distance close to the random baseline.

5.5 Comparing Face Embedding Models
Normalized identity reconstruction comparison: Thus far we
have compared the recreated identities using the identity distances
used by each model under attack. For fair comparison. we next
use the Dlib [9] model (as a fourth model) to measure the identity
distances of the reconstructed face from the ground truth faces.
Fig. 9 shows these results. For completeness, we include both (a)
distribution statistics, (b) average statistics, and (c) percentile plots.
Here, it is important to note that a Dlib threshold (as evaluated in
LWF) achieves an accuracy of 99.55% using a threshold of 0.6. In
our case, ArcFace is able to achieve the lowest identity distances
(including a narrower distribution, with most samples between 0.2
to 0.6). The distribution for FaceNet is similar. While both FaceNet
and ArcFace have larger outliers, most faces extracted from these
FRS would have distances below the identification threshold on
Dlib. In comparison, CurricularFace is more spread out (e.g., main
range 0.3–1.2) with higher average (0.4 vs 0.5).

Visual head-to-head comparison: We next use IdDecoder
to visually compare different embedding models within the same
framework. The basic methodology used here is to first reconstruct
faces from the face embeddings of each system and then compare
how much of the identity related and non-identity related informa-
tion are directly or indirectly (e.g., via correlations with identity
related aspects) included in the embedding.

Fig. 10 presents the reconstructed faces of eight example identi-
ties (top row) for the three evaluated models: FaceNet (row two),
ArcFace (row three), and CurricularFace (row four). In all the cases,
as desired, the main identity features included in the inner facial
area has been reconstructed relatively well. For example, for each
face, we can recognize some degree of similarity between the recon-
structed images and the ground truth images. (Again, in all cases
this is achieved via a black-box attack using only the embeddings.)

We also see that the reconstructed images are mostly normalized
in pose, lighting, and expression. This is an important aspect that
helps understand the embeddings. For example, while face embed-
dings are trained using faces from the wild, with varying poses,
lighting, expressions, etc., those non-identity-attribute-related as-
pects should ideally be excluded from the embedding. In contrast,
attributes such as gender and skin color are preserved for most sam-
ples. We believe that these attributes typically are considered impor-
tant attributes that are part of the identities themselves. Nonethe-
less, when we compare row by row, we can see light differences.
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Figure 8: Distance comparison of results using MI attack, FA attack, and the baseline of random pairs.
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(a) Histogram of identity distances.
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Figure 9: Cross comparison between face embedding models using Dlib to calculate pairwise distances.
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Figure 10: Visual comparison between face embedding models. Comparing the ground truth (1st row) with the reconstructed
faces using the MI attack on three models: FaceNet [1] (2nd row), ArcFace [2] (3rd row), and CurricularFace [3] (4th row).

Comparison using minority groups: One weakness of many
FRS:s is their ability to handle identities from minority groups.
To gain some insights into how these biases (typically introduced
due to lack of diversity in the training datasets) impact the ability
of IdDecoder to reconstruct the original identities, we performed
experiments using the UTK large-scale dataset [26]. Here, we focus
on three minority groups, including young children of ages below
2, and two ethnicity groups: African and Asian. All three of these
groups are often undetected or wrongly recognized by FRS:s [33].

Despite the biasness in the facial embedding, our IdDecoder still
effectively reconstruct identities (in term of visual resemblance)
for those minority groups. This can be observed by comparing the
results for each of these three minority groups (shown in Fig. 11)

with the corresponding example results from LFW dataset (see
Fig. 5c) when using ArcFace. In most these cases, the reconstruction
successfully capture the age correctly. However, when it comes to
ethnicity we the biasness clearly visualized here. For examples, 3/4
Africans (Fig. 11c) appear to be Caucasian. Similarly, this happens
for 1/4 of young children (Fig. 11a) and 1/4 of Asians (Fig. 11b).

Fig. 12 plots the relative identity distance (as calculated using
CurricularFace) for the images associated with each minority group
and compare this with the baselines of random faces and a standard
set. While the minorities all have distance distributions slightly
shifted toward the baseline, the majority of the distribution is over-
lapping with the standard one. This quantitative result might sug-
gest that the FA attack may be more successful against minority
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Figure 11: Reconstruction examples (bottom row) using ArcFace embedding of sample images from minority groups (top row).
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(a) Young children vs baselines.
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(b) Asian vs baselines.
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(c) African vs baselines.
Figure 12: Histogram comparisons of the identity distances observed when reconstructing images of (1) minority groups, (2)
the standard dataset, and (3) the baseline of random pairs in the UTK dataset.

groups. However, it also shows that also the MI attack could be
successful on the minority groups.

5.6 Comparison to other MI Attacks
We next compare the results achieved with IdDecoder to the results
achieved by other MI attacks, each making different assumptions
about the knowledge of the attacker. For the visual comparisons
presented, we extracted images from the papers compare against
and evaluated our results against the same images.

Original MI attack [5]: Fig. 13a compares our results invert-
ing FaceNet’s embedding to the original MI attack demonstrated
against a FRS:s [5].While Fredrikson et al. only considered classifier-
based facial recognitionmodels, they presented several suchmodels,
including stacked denoising autoencoder (DAE), multilayer percep-
tion, and softmax regression. Although they are all shallow models
and are not comparable to the state-of-the-art, we choose to include
results for the DAE version in a black-box setting since the threat
model is themost advanced one and assumes an attack setting closer
to ours than the others. As seen in the figure, the reconstructed
version from their attack (called MIA here) are almost unrecog-
nizable, while our results are more clearly observed, although the
low resolution and black-and-white images were found to present
challenges also to our model (as our training used Celeb-HQ).

White-box attack comparison: We next compare our results
against the work by Yang et al. [6] and Zhang et al. [7]. These results
are shown in Fig. 13b and Fig. 13c. Like us, Zhang et al. [7] use a
GAN. However, they assume a white-box setting and require hard-
to-obtain auxiliary information such as a blurry or masked version
of the target face. This makes their attack much less practical than
ours. In a sense, their method is similar to image in-painting, where
parts of the images are covered/blurred and the task is to recon-
struct the covered/blurred version. In addition to a much more
relaxed requirement and a totally different attack scenario than
ours, we have found that the visual results (e.g., those presented

Table 1: Quantitative Comparison of our method with
MIA [5] and IAKA [6].

Method ID (w. Dlib) MS-SSIM Dist LPIPS

MIA [5] 1.04 ± 0.11 0.61 ± 0.22 0.698 ± 0.32
IAKA [6] 0.45 ± 0.32 0.32 ± 0.01 0.55 ± 0.15
Ours 0.30 ± 0.04 0.27 ± 0.019 0.28 ± 0.02

by the authors) can look really good while other results are in-
consistent and distorted. We expect this to be due to the difficult
task of training GANs. Yang et al. [6] present another white-box
attack using auxiliary information. A comparison with this work
is presented in Fig. 13c. Compared to our results, their results are
blurrier and often resembles an average face, while our approach
provides somewhat clearer representation of the individual faces.

Numerical comparison with open-source solutions: Table 1
presents a numerical comparison with the two related works that
provide open-source codes at the time of writing. Before discussing
these results a few important notes are needed. First, to represent
the work by Fredrikson et al. [5] we used their white-box setting
with DAE model. While this model could not be used in practice for
the complex task as facial recognition, it was the only model that
could provide reasonable results, as the other versions (e.g., using
soft-max regression and MPL) do not result in recognizable faces
(e.g., as seen in Fig. 13a). Second, we use the relaxed version for
the purpose of lower-bound evaluation. Yet, we outperform both
this white-box attack and the white-box attack by Yang et al. [6]
(Adversarial Neural Network Inversion via Auxiliary Knowledge
Alignment or IAKA for short) with regards to all three performance
metrics: ID distance (calculated using Dlib [9]), and a distance-based
version of MS-SSIM (i.e., one minus the similarity metric) [28], and
LPIPS [20]. Regardless of which distance metric is used, we achieve
the smallest distances. Most importantly, we achieve a identity
distance well below Dlib’s threshold of 0.6 (with margin as seen by
small standard deviation).
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(a) Comparison with the original MI attack [5]
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(b) Comparison with GMI [7] using classifier
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(c) Comparison with IAKA [6] in black-box
setting.

Figure 13: Comparison with related work using ArcFace model in black-box setting. We show ground truth (1st row), their
results (2nd row), and our results (3rd row).

Comparison of high-level properties: Finally, Table 2 summa-
rizes the main differences between our framework (i.e., IdDecoder
when used for MI attack) and the related works that perform MI
attacks. Three main differences are highlighted here: (1) the attack
settings, i.e., white-box vs. black-box, (2) whether the attack re-
quires auxiliary information such as a blurred/covered image of the
target victim, and (3) whether the attack is proposed to be applied
against state-of-the-art (mostly face embedding models) or only
classifier models. We note that our model is a black box attack,
does not require any auxiliary information, and can be applied on
state-of-the-art embedding models.

6 RELATEDWORK
Inverting face embeddings: Early works inverting face embed-
dings proposed the use of feed-forward networks or random searches
to invert features from the CNNs [34] and the embeddings [35, 36].
Although successful at some level, the results produced by most
of these early attacks lack details and, in most cases, result in un-
recognizable faces. The use of GANs [37, 38] have been shown to
improve the details of the reconstructed faces but these works still
result in some blurriness and are in some cases un-usable. Perhaps
the most comparable results to ours are the works by Vendrow et
al. [39] and Cole et al. [8]. However, the optimization searching
algorithm of Vendrow et al. [39] cannot capture the neutralization
features of face embedding and the method by Cole et al. [8] re-
quires access to the models where the embeddings are not used
directly but the features in earlier layers before the final output
are used (white-box attack). In contrast, our method reconstructs
realistic, normalized faces without any access or prior knowledge
about the underlying model.

Model Inversion Attack: First introduced by Fredrikson et al.
in 2014 [14], Model Inversion (MI) attacks were originally proposed
against a linear regression model to recover sensitive features of
genetic markers. The attack received more attention when it was
demonstrated against a FRS based on a shallow neural network [5].
The attack exploits confidence values revealed along with predic-
tions made by the attacked model. While the attack has higher
success rate than random guessing, the attack only works for a
multiple-class classifier model and the results in most cases are
barely recognizable as the original identity.

More recently, a new variant of the attack [7] based on GANs
were demonstrated to work against more complex facial recognition

Table 2: Comparison to the related works

Method Settings Auxiliary Attack SOTA

Our Black-box No Yes
MIA [5] Black/white-box No No
IAKA [6] White-box Yes No
GMI [7] White-box Yes No
Cole et al. [8] White-box No Yes

based on deep neural networks (DNNs). However, this attack is
performed in a white-box setting, in which the attacker requires
additional knowledge such as a blurred or masked copy of the
target image. This significantly reduces the practicality of the attack.
Another distinguishing difference compared to our attack is that
the FRS they consider is based on a multiple-classes classifier that
does not take advantage of the newly proposed facial cognition
system that extracts and use face embeddings.

Generative Adversarial Networks (GANs): We have recently
seen big breakthroughs in GANs [15]. After learning the original
distribution of a training dataset with a high degree of generativity,
these models can often be used to generate new realistic samples
that are almost indistinguishable from the real data. GANs have
been used for generating complex datasets, including text [40, 41]
and music [42, 43]. Perhaps the most impressive results of GANs
have been their ability to synthesize and generate realistic images
by StarGAN [44], PGGAN [45], and StyleGAN [16–18]. These mod-
els are capable of generate realistic images of complicated domain
such as cars, human faces, and animals. Besides a high-quality
image generator, StyleGAN brings another benefit: its highly disen-
tangled latent space. The latent space of StyleGAN can be seen as
a set of feature layers in the middle of its architecture. The highly
disentangled nature of this space has allowed researchers to make
small changes in the latent space that only effect a certain feature
of a face (e.g., the hair color, face expression, age, etc.) [46–48] or
anonymizing the facial identity without noticeably changing the
rest of the image [49].

7 CONCLUSIONS
In this paper, we first presented the IdDecoder framework, capable
of effectively synthesizing realistic, neutralized face images from
face embeddings. The framework incorporates both the use of a
mapper network that combines up-scaling and several mappers
responsible for different layers in the latent space as well as an
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optimizer that builds on some of the insights obtained from the
design of the mappers. Central to the success are also the use of
initialization vectors that help normalize the faces. These play a
similar role as the strict requirements often associated with passport
photos (e.g., with regards to pose, background, etc.). Second, using
IdDecoder, we presented a black-box model inversion attack that
allows the attacker to reconstruct a realistic face image that is both
visually and numerically (as determined by the FRS:s) recognized
as the same identity as the original face used to create a given face
embedding. Given that these systems typically do not conceal the
embeddings and some even provide APIs to obtain them in clear
text, this attack raises significant privacy concerns regarding the
protection of both the embeddings of the gallery set and the queries
made within systems using these FRS:s, for example. Third, using
a relaxed version of the loss function used to perform the model
inversion attack, we presented a false acceptance attack in which
we train IdDecoder to create the face of an alternative identity
that is visually different than the original identity but that has a
similar embedding, and that the FRS would recognize as being of
the same identity. This attack raises significant concerns as it can
be used to reduce the security and reputation of deployed FRS:s.
Overall, in addition to the privacy and security concerns raised
by our demonstrated attacks, the high efficiency achieved by the
attacks (e.g., compared to prior work) raises new questions about
when and how to best protect the embeddings and the integrity of
the FRS:s in general. Our code can be found here: https://github.
com/minha12/IdDecoder
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