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Motivation and problem
• Popular services: Some with 100s of millions of active users each month

• Cloud services have change how users store and access data
• E.g., often transparently across multiple devices (or users)

• Most services require that users fully trust the provider
• Services gets access to all data and information

• May not be acceptable for all
• Also attacks and surveillance 

backdoors (e.g., NSA)

Problem:  Individual content provider that wants to minimize its delivery 
costs under the assumptions that 

• the storage and bandwidth resources it requires are elastic, 

• the content provider only pays for the resources that it consumes, and 

• costs are proportional to the resource usage.
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However, CSE complicates some bandwidth saving features 
such as deduplication and delta encoding …



Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)
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Feature summary

● No clear difference between CSE vs non-CSEs
● Instead, large variations within each group
● Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
● All services implement at least some feature (but different)
● Furthermore: Delta encoding efficiency differ substantially …

E. Henziger and N. Carlsson, “The Overhead of Confidentiality 

and Client-side Encryption in Cloud Storage Systems”, 

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.



Feature 3: Delta encoding

Test method
• Make sequence of changes
• Measure size of updates (full vs part)

File modifications considered

● Append

● Prepend

● Insert

● N random byte changes
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Delta encoding efficiency ...

Large differences among service implementing (some) delta encoding
• SpiderOak (CSE) performs much worse than iCloud (non-CSE) and 

Dropbox (non-CSE) 

Important to understand these differences and how much the CSE 
performance can be improved …

E. Henziger and N. Carlsson, “The Overhead of Confidentiality 

and Client-side Encryption in Cloud Storage Systems”, 

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.
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Contributions (at a glance)
Targeted experiments and a model-based analysis to
1. demonstrate the delta encoding problem associated with CSE
2. characterize the practical overheads associated with delta encoding
3. determine the potential room for further improvements. 

Results demonstrate significant cost saving opportunities not yet used by current CSEs



Baseline methodology

1. Start cloud storage application
2. Capture network traffic
3. Measure CPU, memory, disk utilization
4. Place file in sync folder
5. Wait for synchronization to finish
6. Process capture files and measurements

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage 

Benchmarks and Comparison,” IEEE Transactions on Cloud 

Computing, vol. 5, no. 4, pp. 751–764, 2017.
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SpiderOak: Bytes uploaded

● Block-based encoding (size: 256kB)
● Worst-case overhead: change one byte in each 256kB block

● E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)

● Random byte changes: lower bounded by M(1(11/M)n)  256kB
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Cost model

● Normalized upload cost 1 (per unit data); rest relative to this 
● Arbitrary even sequence E, consisting of N = W + R events, where 

W and R are the set of writes and reads, respectively
● 𝑆𝑖

𝐶 − file size e. g., after compression seen on the client
● 𝑆𝑖

𝑆 − size of the change log as seen on the server
● 𝑖 − file size changes seen on the client
● 𝑖 − size of delta encoding submitted to server

Download cost = cR

(per unit data)

Upload cost = 1 

(per unit data)

Storage cost = cS

(per unit data and time)
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Baseline policies
● Non-CSE

● No delta coding 
● CPU volume seems more dependent on what other features are 

implemented

● Note: Not using delta coding can be arbitrary worse

cR  0 /S  0 



Trace-based comparison

• No delta coding can perform very poorly 

• On average threshold policy typically perform better (e.g., within 1.5 of 
offline optimal) 

• Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)



Binary system policies
At each stage either
● Upload new base copy at cost 𝑆𝑖

𝐶

● Append another delta coding 𝑖

Optimal offline policy (not achievable in practice!)
● Given a sequence E, consider all possible choices and pick one with lowest cost
● Solve using dynamic programing

Threshold-based policy
● Replace base file at cost 𝑆𝑖

𝐶 at write even whenever 2𝑆𝑖
𝐶 ≤ 𝑆𝑖−1

𝑆 + 𝑖
● Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE 

within a factor 2

Also, in paper: Results extended to general case (with cS  0)

𝑖 𝑆𝑖
𝐶

vs𝑆𝑖−1
𝑆
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Impact of size distributions

• Results consistent for both long-tailed (Pareto) and short-tailed
(exponential, normal, and deterministic) size distributions



Comparison across parameters

• Results consistent for broad range of workload parameters
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that minimizes  

• Greedy also have optional 
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Conclusions
Targeted experiments and a model-based analysis to
1. demonstrate the delta encoding problem associated with CSE
2. characterize the practical overheads associated with delta encoding
3. determine the potential room for further improvements. 

Our experiments demonstrate
• overheads due to CSEs not being able to decode delta encoding messages 
• significant differences in the effectiveness in how delta encoding is implemented
• much room for improvements

A simple cost model is then developed that captures multi-device scenarios 
• worst-case bounds of the delta encoding penalty associated with CSEs
• characterization of the CSE overheads observed

Overall, the results show that 
• costs of CSEs can be worst-case bounded by a factor 2 of the best non-CSEs
• with average differences significantly smaller for wide range of other workloads

Results demonstrate significant cost saving opportunities not yet used by current CSEs
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