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Motivation and problem

* Popular services: Some with 100s of millions of active users each month
* Cloud services have changed how users store and access data

* E.g., often transparently across multiple devices or users
* Most services require that users fully trust the provider

* Services gets access to all data and information

* May not be acceptable for all B '
o —‘f;.d— = == ss;g:e
e Also attacks and surveillance F; ' &
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Client-side encryption (CSE)

* Confidential: Private, secret
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Client-side encryption (CSE)

However, CSE complicates some bandwidth saving features
such as deduplication and delta encoding ...
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E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o Dropbox Yes Yes Yes
o OneDrive [ O iCloud No Yes Yes
&L '3 § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

o No clear difference between CSE vs non-CSEs

o Instead, large variations within each group
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E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o Dropbox Yes Yes Yes
o OneDrive [ O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

o Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features




E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o Dropbox Yes Yes Yes
o OneDrive [ O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

o All services implement at least some feature (but different)




E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o ]?ropbox Yes Yes Yes
o OneDrive [ O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

Furthermore: Delta encoding efficiency differ substantially ...




E. Henziger and N. Carlsson, “The Overhead of Confidentiality
and Client-side Encryption in Cloud Storage Systems”,
Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature 3: Delta encoding

Test method
* Make sequence of changes
* Measure size of updates (full vs part)

File modifications considered
e Append
(TTTTITIT]
« Prepend
HEEEE

10

10

e Insert
0 10

e« N random byte changes
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E. Henziger and N. Carlsson, “The Overhead of Confidentiality
and Client-side Encryption in Cloud Storage Systems”,
Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature 3: Delta encoding

Test method
* Make sequence of changes

* Measure size of updates (full vs part)
File modifications considered Yes No
’ Appeund 10 LL
. Prepend 0 S N N (ea
[ 1] Z Cloud OneDrive
e Insert . é&psync.com
| LLI
e N rarjdom byte changes ©
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E. Henziger and N. Carlsson, “The Overhead of Confidentiality
and Client-side Encryption in Cloud Storage Systems”,
Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Delta encoding efficiency ...
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Individual bytes changed

Large differences among service implementing (some) delta encoding

e SpiderOak (CSE) performs much worse than iCloud (non-CSE) and
Dropbox (non-CSE)

Important to understand these differences and how much the CSE
performance can be improved ...



Contributions (at a glance)

Targeted experiments and a model-based analysis to
1. demonstrate the delta encoding problem associated with CSE

2. characterize the practical overheads associated with delta encoding
3. determine the potential room for further improvements.

Results demonstrate significant cost saving opportunities not yet used by current CSEs

24



Baseline methodology
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E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.



Baseline methodology
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Dropbox OneDnve "M-E:ﬂ R_., L j}x.;
Google Drive lClOUdj

macOS

campus LAN

1. Start cloud storage application

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.



Baseline methodology

VS

C python’ L 2

_—

netifaces

pcapy
psutil

numpy
scipy

Capture network traffic
Measure CPU, memory, disk utilization

J

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.



Baseline methodology

VS

4,
5.
6.

Place file in sync folder
Wait for synchronization to finish
Process capture files and measurements

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.
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« Block-based encoding (size: 256kB)
o Worst-case overhead: change one byte in each 256kB block




SpiderOak: Bytes uploaded
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SpiderOak: Bytes uploaded
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Worst-case overhead: change one byte in each 256kB block
e E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)



SpiderOak: Bytes uploaded

| | | | |
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« Block-based encoding (size: 256kB)

« Worst-case overhead: change one byte in each 256kB block
e E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)

« Random byte changes: lower bounded by M(1—(1-1/M)") x 256kB



Cost model

Storage cost = Cq

G (per unit data and time)
Upload cost =1 Download cost = cy
(per unit data) (per unit data)

¥ -

o Normalized upload cost 1 (per unit data); rest relative to this
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Cost model: Example
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o Normalized upload cost 1 (per unit data); rest relative to this

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively
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Cost model: Example
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o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
‘W and R are the set of writes and reads, respectively
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o Normalized upload cost 1 (per unit data); rest relative to this
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‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client
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o S — size of the change log as seen on the server
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o Normalized upload cost 1 (per unit data); rest relative to this
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o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client

S$= 51 +0,

o S — size of the change log as seen on the server
o O; — file size changes seen on the client | Assume 0 < 9;
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A; — size of delta encoding submitted to server




Baseline policies

« Non-CSE
> Aitcr)y S
iceWw 1eER

o No delta coding

) Siter) S

iew iER

o Note: Not using delta coding can be arbitrary worse

) SitcrY S yos

iEW i€eR . ieWw .

cg—>0 " ANIS—0 "~

Y Ai+er)d S > A,

ieW ieER ieWw

o0



Trace-based comparison
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Normalized read cost (CR)

Normalized cost ratio

No delta coding can perform very poorly



Binary system policies

At each stage either

« Upload new base copy at cost Sl-C SiS_l'
« Append another delta coding A;




Binary system policies

A; S¢

Optimal offline policy (not achievable in practice!)
e Given a sequence E, consider all possible choices and pick one with lowest cost
e Solve using dynamic programing
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At each stage either
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Optimal offline policy (not achievable in practice!)

e Given a sequence Z, consider all possible choices and pick one with lowest cost
e Solve using dynamic programing

Threshold-based policy

e Replace base file at cost S© at write event whenever 2S¢ <SP ,+ A;

e Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE
within a factor 2



Binary system policies

At each stage either

o Upload new base copy at cost Sl-C
« Append another delta coding A;

Optimal offline policy (not achievable in practice!)
e Given a sequence Z, consider all possible choices and pick one with lowest cost
e Solve using dynamic programing

Threshold-based policy

o Replace base file at cost S¢ at write event whenever 257 < S [+ A;
e Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE
within a factor 2

Also, in paper: Results extended to general case (with c> 0)
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Impact of size distributions
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* Results consistent for both long-tailed (Pareto) and short-tailed
(exponential, normal, and deterministic) size distributions



Compa rison across pa I'd meters
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» Results consistent for broad range of workload parameters



More advanced multi-step policies

New options
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More advanced multi-step policies

e Offline optimal not feasible
to calculate

* Complexity lower bounded
by Q(3Y)

* [conjecture] Complexity can
be upper bounded by 0(4")

Apy Aig  SE

* Greedy policy

* Upload delta change A;(j).;
that minimizes

(¢S
arg _lélliﬂ A+ fer(S; + Aij ), | 53 1Az 4
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More advanced multi-step policies

e Simple binary threshold
policy still does well
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More advanced multi-step policies

* Greedy can do slightly
better in a few cases, but
also worse
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Conclusions

Targeted experiments and a model-based analysis to

1. demonstrate the delta encoding problem associated with CSE

2. characterize the practical overheads associated with delta encoding
3. determine the potential room for further improvements.

Our experiments demonstrate

» overheads due to CSEs not being able to decode delta encoding messages
 significant differences in the effectiveness in how delta encoding is implemented
* much room for improvements

A simple cost model is then developed that captures multi-device scenarios
* worst-case bounds of the delta encoding penalty associated with CSEs
e characterization of the CSE overheads observed

Overall, the results show that
» costs of CSEs can be worst-case bounded by a factor 2 of the best non-CSEs
» with average differences significantly smaller for wide range of other workloads

Results demonstrate significant cost saving opportunities not yet used by current CSEs
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