-~
¥ 2)
S5 tresorit . J

LINKOPING — S
Ilo“ UNIVERSITY ‘«"

iCloud

Google Drive

Motivation and problem

* Popular services: Some with 100s of millions of active users each month

Motivation and problem

* Popular services: Some with 100s of millions of active users each month
* Cloud services have changed how users store and access data

Motivation and problem

* Popular services: Some with 100s of millions of active users each month

* Cloud services have changed how users store and access data
* E.g., often transparently across multiple devices

.
-f-— '

/ |\

Motivation and problem

* Popular services: Some with 100s of millions of active users each month

* Cloud services have changed how users store and access data
* E.g., often transparently across multiple devices or users

Motivation and problem

* Popular services: Some with 100s of millions of active users each month
* Cloud services have changed how users store and access data

* E.g., often transparently across multiple devices or users
* Most services require that users fully trust the provider

* Services gets access to all data and information

**la

|

This igea”
oy
et

&ssage

Motivation and problem

* Popular services: Some with 100s of millions of active users each month
* Cloud services have changed how users store and access data

* E.g., often transparently across multiple devices or users
* Most services require that users fully trust the provider

* Services gets access to all data and information

ssage

This igea”
oy
et

&ssage

Motivation and problem

* Popular services: Some with 100s of millions of active users each month
* Cloud services have changed how users store and access data

* E.g., often transparently across multiple devices or users
* Most services require that users fully trust the provider

* Services gets access to all data and information

* May not be acceptable for all B '
o —‘f;.d— = == ss;g:e
e Also attacks and surveillance F; ' &
b

backdoors (e.g., NSA) b

This Isea”

et
éﬁéssage

Client-side encryption (CSE)

* Confidential: Private, secret

&
@:3.:3.:—': e
% e

N

Encryption
(AES-256) N
asdflkhlgwem
}?+ a) qwehjkl
sdfkihj

2341klh]

Client-side encryption (CSE)

e Confidential: Private, secret _
Encryption

(AES-256)

asdflkhlgwem
— + —> qwehjkl
sdfklh]
2341Klh]

. Server
* Who can see the originals? '
__‘_,.; e

Client

Client-side encryption (CSE)

Server

 Who can see the originals?
\ ____I{.»-"""'nf .
\ J_"-f : "_‘_q—\
\ £)

Client

Client-side encryption (CSE)

- Server
* Who can see the originals?
\ 1B
\ Jf ! - H\H\
\ il)
\\ k:'h_t\“_' o —
S e ey
\
0 \ $ a
tresorit \\ Drophox OneDnve
&psync.com “ l D
\
. iCloud

MEGA -
0 G Cllent Google Drive

Client-side encryption (CSE)

However, CSE complicates some bandwidth saving features
such as deduplication and delta encoding ...

- Server
 Who can see the originals? G

| >
W © \ s a
ig§<£:/ tresorit \\ Dropbox OneDrlve
&psync.com . '
\
@ MEGA |Cloud

Client Songl=ry

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o Dropbox Yes Yes Yes
o OneDrive [O iCloud No Yes Yes
&L '3 § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

o No clear difference between CSE vs non-CSEs

o Instead, large variations within each group

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & - propbox Yes Yes Yes
o OneDrive | © iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

No clear difference between CSE vs non-CSEs

Instead, large variations within each group

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o]?ropbox Yes Yes Yes
o OneDrive [O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
/= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

No clear difference between CSE vs non-CSEs

Instead, large variations within each group

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o]?ropbox Yes Yes Yes
o OneDrive [O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

No clear difference between CSE vs non-CSEs

Instead, large variations within each group

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o Dropbox Yes Yes Yes
o OneDrive [O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

o Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o Dropbox Yes Yes Yes
o OneDrive [O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

o All services implement at least some feature (but different)

E. Henziger and N. Carlsson, “The Overhead of Confidentiality

and Client-side Encryption in Cloud Storage Systems”,

Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature summary

Feature/capability

Services Compression | Deduplication | Delta Sync
s & o]?ropbox Yes Yes Yes
o OneDrive [O iCloud No Yes Yes
&L § Google Drive | Conditional | No No
caogiore 1IOUA OneDrive No Sometimes No
Mega No Yes No
= | Sync.com No Yes No
© | SpiderOak Yes Yes Yes
Tresorit Yes No No

Furthermore: Delta encoding efficiency differ substantially ...

E. Henziger and N. Carlsson, “The Overhead of Confidentiality
and Client-side Encryption in Cloud Storage Systems”,
Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature 3: Delta encoding

Test method
* Make sequence of changes
* Measure size of updates (full vs part)

File modifications considered
e Append
(TTTTITIT]
« Prepend
HEEEE

10

10

e Insert
0 10

e« N random byte changes

o

AEEMERRELE

E. Henziger and N. Carlsson, “The Overhead of Confidentiality
and Client-side Encryption in Cloud Storage Systems”,
Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Feature 3: Delta encoding

Test method
* Make sequence of changes

* Measure size of updates (full vs part)
File modifications considered Yes No
’ Appeund 10 LL
. Prepend 0 S N N (ea
[1] Z Cloud OneDrive
e Insert . é&psync.com
| LLI
e N rarjdom byte changes ©
L

E. Henziger and N. Carlsson, “The Overhead of Confidentiality
and Client-side Encryption in Cloud Storage Systems”,
Proc. IEEE/ACM UCC, Auckland, New Zealand, Dec. 2019.

Delta encoding efficiency ...

R —t TP IRTB L o | =
= Lt iderOak —=— -
o] o iCloud -+- |
S8 o Dropoox - E
10 |

- i
|-

4 5 -
E N S
8 2 0 T B I £
© . 0 50 100 150 200

I | | |]

4000 6000 8000 10000
Individual bytes changed

Large differences among service implementing (some) delta encoding

e SpiderOak (CSE) performs much worse than iCloud (non-CSE) and
Dropbox (non-CSE)

Important to understand these differences and how much the CSE
performance can be improved ...

Contributions (at a glance)

Targeted experiments and a model-based analysis to
1. demonstrate the delta encoding problem associated with CSE

2. characterize the practical overheads associated with delta encoding
3. determine the potential room for further improvements.

Results demonstrate significant cost saving opportunities not yet used by current CSEs

24

Baseline methodology

¥ e M

macOS
campus LAN

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.

Baseline methodology

L &

Dropbox OneDnve "M-E:ﬂ R_., L j}x.;
Google Drive lClOUdj

macOS

campus LAN

1. Start cloud storage application

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.

Baseline methodology

VS

C python’ L 2

_—

netifaces

pcapy
psutil

numpy
scipy

Capture network traffic
Measure CPU, memory, disk utilization

J

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.

Baseline methodology

VS

4,
5.
6.

Place file in sync folder
Wait for synchronization to finish
Process capture files and measurements

E. Bocchi, I. Drago, and M. Mellia, “Personal Cloud Storage
Benchmarks and Comparison,” IEEE Transactions on Cloud
Computing, vol. 5, no. 4, pp. 751-764, 2017.

SpiderOak: Bytes uploaded

« Block-based encoding (size: 256kB)

SpiderOak: Bytes uploaded

« Block-based encoding (size: 256kB)
o Worst-case overhead: change one byte in each 256kB block

SpiderOak: Bytes uploaded

gm — o
o 8 _
ol
=
o B[i
=
T 4 Worst case (measured) + -
E Worst case (theoretic) —
@ 2 Random (measured) © -
o Random (bound) —
D T] | | |
0 210 40 &0 a0 100
Indiwvidual bytes changed

Worst-case overhead: change one byte in each 256kB block

SpiderOak: Bytes uploaded

| | | | |
nE'J‘ID o | |
N 8 5 g
ol
=
o B]
s
T 4 Worst case (measured) +
E Worst case (theoretic) — =
@ 2 Random (measured) © - . =
o Random (bound) —
D :]]]
0 20 40 B0 a0 100
Indiwvidual bytes changed

Worst-case overhead: change one byte in each 256kB block
e E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)

SpiderOak: Bytes uploaded

| | | | |
m 10 + _
=
o 8 _
ol
@
o B[i
s
2 4 Worst case (measured) +
E Worst case (theoretic) —
w 2 Random (measured) © - _
8 , Handom (bound) —
N < | ! ! !
0 20 40 60 a0 100
Indiwvidual bytes changed

« Block-based encoding (size: 256kB)

« Worst-case overhead: change one byte in each 256kB block
e E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)

« Random byte changes: lower bounded by M(1—(1-1/M)") x 256kB

Cost model

Storage cost = Cq

G (per unit data and time)
Upload cost =1 Download cost = cy
(per unit data) (per unit data)

¥ -

o Normalized upload cost 1 (per unit data); rest relative to this

Cost model

1 3 33

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

Cost model: Example

P
S5 &5 5

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

e, I
:G \.I
@S y 4>
i Yy,
- J,:.’_ ___/'I

Cost model: Example

5 &~ & =

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

Cost model: Example

A

5 &~ & =

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

Cost model: Example

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

Cost model: Example

.Sf o A A
& & & &

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

Cost model: Example

.Sf o A A
& & & &

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

Cost model: Example

. St M A A
o Normalized upload cost 1 (per unit data); rest relative to this

. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
W and R are the set of writes and reads, respectively

|
*

Cost model: Example

x | i
ﬂ

. St A, B A CrS3

5 &5 &

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence E, consisting of N = | W] + | R| events, where
‘W and R are the set of writes and reads, respectively

—>

Cost model: Example

BTN

\

q\
W\

ti=

R
|)
U A A ﬂ;

5

St

B

=
&

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client

Cost model: Example

\\ \TW\
‘|
|

/

f"‘\

lsl

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client

Cost model: Example

S_ ¢C
,:54\—\ 51
S) >

.;1_6 oo 7N A

Sy

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client
o S — size of the change log as seen on the server

Cost model: Example

S_ cC
,§4\: 51
(NS) >

f
e (t- ty) cs ST 1 i

Sy

Sy

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client
o S — size of the change log as seen on the server

Cost model: Example

]
h

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client

S$= 51 +0,

o S — size of the change log as seen on the server
o O; — file size changes seen on the client | Assume 0 < 9;

Cost model: Example

51

(tz tl) Cs 51

A

A\

51 +5,

9

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client

S; — size of the change log as seen on the server
0; — file size changes seen on the client
A; — size of delta encoding submitted to server

| Assume 0 <9; < A;

Cost model: Example

, SP= 51 S>= SP +A,

(tz tl) Cs 51

A

51 +5,

st SE=

A\

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where

‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client

S; — size of the change log as seen on the server
0; — file size changes seen on the client
A; — size of delta encoding submitted to server

| Assume 0 <9; < A;

Cost model: Example

_54?5 ST S5= 5§ +A, S3=S7+A; Si= Sé’“
'{\’.\h}__ \J A\
A () e ST (tr) csS2 (4 t3) ¢S5
. Sy M A B A CpS3
St S$= SE+3, S$= S5 +8;

o Normalized upload cost 1 (per unit data); rest relative to this
. Arbitrary event sequence Z, consisting of N = | W] + | R]| events, where
‘W and R are the set of writes and reads, respectively
o Sf —filesize (e.g., after compression) seen on the client
S; — size of the change log as seen on the server

0; — file size changes seen on the client | Assume 0 <9; < A;
A; — size of delta encoding submitted to server

Baseline policies

« Non-CSE
> Aitcr)y S
iceWw 1eER

o No delta coding

) Siter) S

iew iER

o Note: Not using delta coding can be arbitrary worse

) SitcrY S yos

iEW i€eR . ieWw .

cg—>0 " ANIS—0 "~

Y Ai+er)d S > A,

ieW ieER ieWw

o0

Trace-based comparison

22 T T T .| T T T T
5 No delta encoding —
1.8 -
1.6 — |
1.4 - —
1.2 - —
1 N e e 2 e e e e —

Normalized non-CSE = 1
08 |
102 1071 10° 10! 102 103
Normalized read cost (CR)

Normalized cost ratio

No delta coding can perform very poorly

Binary system policies

At each stage either

« Upload new base copy at cost Sl-C SiS_l'
« Append another delta coding A;

Binary system policies

A; S¢

Optimal offline policy (not achievable in practice!)
e Given a sequence E, consider all possible choices and pick one with lowest cost
e Solve using dynamic programing

Binary system policies

At each stage either
o Upload new base copy at cost Sl-C Sl-S_l'

« Append another delta coding A;

SC

A i
Optimal offline policy (not achievable in practice!)

e Given a sequence Z, consider all possible choices and pick one with lowest cost
e Solve using dynamic programing

Threshold-based policy

e Replace base file at cost S© at write event whenever 2S¢ <SP ,+ A;

e Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE
within a factor 2

Binary system policies

At each stage either

o Upload new base copy at cost Sl-C
« Append another delta coding A;

Optimal offline policy (not achievable in practice!)
e Given a sequence Z, consider all possible choices and pick one with lowest cost
e Solve using dynamic programing

Threshold-based policy

o Replace base file at cost S¢ at write event whenever 257 < S [+ A;
e Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE
within a factor 2

Also, in paper: Results extended to general case (with c> 0)

Trace-based comparison

2_2 | [| [[| | .I [[| [| |
No delta encoding —
S 2 Threshold ---
o Offline optimal -~
- 1.8 —__
a3 Ik T
© 1.6 TSsall
o ST —
N 14- -
o
= 1 e e s e e TP
Normalized non-CSE = 1
08 Lo | | Ll | | L | L | Ll | 1

102 107 109 107 102 103
Normalized read cost (CR)

On average threshold policy typically perform better (e.g., within 1.5 of
offline optimal)

Trace-based comparison

2.2

2
1.8
1.6
1.4
1.2

' T Normalized non-GSE = 1
0.8

| | | | | | | | | | | | | | | | | | |
102 107 109 107 102 103
Normalized read cost (CR)

I I | I I I | I I I |
No delta encoding —

Threshold ---
Offline optimal -

Normalized cost ratio

* No delta coding can perform very poorly

* On average threshold policy typically perform better (e.g., within 1.5 of
offline optimal)

Trace-based comparison

2_2 I I | I I I | I I I |
No delta encoding —

2 Threshold ---
18 Offline optimal -

1.6
1.4
1.2

1

Normalized cost ratio

Normalized non-CSE = 1

0.8 Lol L Lo L Lo L a L L L 1

1072 1071 100 101 102 10°
Normalized read cost (CR)

* No delta coding can perform very poorly

* On average threshold policy typically perform better (e.g., within 1.5 of
offline optimal)

* Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)

Trace-based comparison

2.2

2
1.8
1.6
1.4
1.2

1

Normalized cost ratio

Normalized non-CSE = 1
08 Lol L Lo L Lo L a L L L 1
1072 1071 100 101 102 10°
Normalized read cost (CR)

* No delta coding can perform very poorly

* On average threshold policy typically perform better (e.g., within 1.5 of
offline optimal)

* Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)

Trace-based comparison

2_2 I I | I I I | .I I I |
No delta encoding —
2 2y Threshold
o Offline optimal -~
— 18 F
&
S 1.6 -
-D '.ﬁ"-'---.-‘.lt‘*."v.*.
RN 14+ -
C_U o’..." ...""v.
g 1.2 = |
O ""a-..__ LT
= 1 e e s e e TP
Normalized non-CSE = 1
08 1 | | | | 1 | | | | | | | | | 1 | |]

102 107 109 107 102 103
Normalized read cost (CR)

* No delta coding can perform very poorly

* On average threshold policy typically perform better (e.g., within 1.5 of
offline optimal)

* Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)

Impact of size distributions

Q 2.2 "'Nodemaencodiig — o 22 " 'No'defta encoding — |
= o Threshold Eblnary C3 — = o Threshold ibmary CS S
o Offline optimal (binary CSE ,fa:f_ & Offline optimal (binary CSE ,_-f"’f_
W 1.8 7] w18 -~]
2] 6 /\lf\v'l'\'ﬂ"ﬁ""'.'!ﬂ“—-# 3 s \/\ /\N ﬁW i
o . \;‘ v Pk - - - = _S - / L ——— -—— - -
H14r S 1 oZar FL I — |
Siol e A Eqap e
S 4= T
= Normalized non-GSE = 1 | = Normalized non-CSE = 1 |
10° 10! 10° 108 10* 10° 10 10° 10° 104
Number of events (N) Mumber of evems (N)
(a) Deterministic (b) Normal, with E[&] ——=0.1
a 2.2 " "No delta enmdu‘l L a 22 ' 'I'\'I:J"dena encodlﬂ —
= ok Threshold Ebma - I = N _Threshold (bina o o~
d Offline optimal (bina CSE --:;_,,«f o Offline optimal (binal GSE m/
w18 b w18 7
Q Q et L
Sisf ”\va“'*'wf 1 Sasf v]
@ / b5 j FR -
o114 \ o, 7 Zt4r e 7
E 12 _,’ o T T E 12 H_ e N T
El] _,.*" —— ‘6] = e
= Normajized non-CSE = 1 | = Normalized non-CSE = 1 |
G_B 1 11111 1 11 1 1111l 11 0.8 1 111111l 1 11111l 1 11 11l 11
10° 10! 10° 10° 104 10° 10! 10° 103 10*
Number of events (N) Number of events (N)
(c) Exponential (d) Pareto, with a=2

* Results consistent for both long-tailed (Pareto) and short-tailed
(exponential, normal, and deterministic) size distributions

Compa rison across pa I'd meters

o 2.2 T T T T T T 1 2.2 IR T
= o | Mo delta encodin _ o B c-derta enmdln
= “Threshol ® 2 Threshold I:l|r1r:|ryr GSE?
B 18 Offline optimal ~ -] = B Offline optimal |:||r1‘=.|r5|r GSE_//
9 - | B 1.8
S 16 — S eF
S1ar TS 1 B
= 12 e _ N14F e]
E ‘1 . E 1.2 ‘M:
= I NPr”'lalliEEq I-I.W_IGSIE I 1| Ll o Ll L E 1 k
0.8 = Normalized non-GSE = 1 |
10—3 10—2 1[}—1 10D .1[}1 1{]2 103 0.8 L1 Lo L1 I ERET]
Normalized read cost (cg) 104 103 1072 107 100
Relative client-side file increase (5/4)
(a) Normalized read cost (b) Relative client-side file increase
2.2 T AL I 2.2 g
o Mo delia encodln o Mo delta encoding ——
= 22— Threshold —~— . o 2 Threshold ———
= Offline opnmal = Offline optimal
w 1.8 [T w 1.8 [
8 L 1 8.:L
E1.IES R T 31'6 :
N147 R T N 140 T -
[L e 7 = L -
etz - £ 1.2 o
S g == S 4=
= Normql?_ed non-CSE =1 = Nonnallzed n{fn-CSE =1
US 1 11 11111 1 111111l 1 IIIIIIII 1 111 1111 _8 1 L1 1111 1 1 IIIIIII 1 1 11 1111
1073 107 107 10° 10’ 102 107" 10° 10'
Average delta encoding size {E[ﬂ]} Ratio of number read-write events (|R}/[W])
(c) Average delta encoding size (d) Ratio of read-write events

» Results consistent for broad range of workload parameters

More advanced multi-step policies

New options
)
I [\
Az 4 AVY Aq 4 Si
I(S$4+Az.,

Szf: { 55+A2’4
| ST +A1 4
. Sk

More advanced multi-step policies

e Offline optimal not feasible
to calculate

* Complexity lower bounded
by Q(3Y)

* [conjecture] Complexity can
be upper bounded by 0(4")

Apy Aig SE

* Greedy policy

* Upload delta change A;(j).;
that minimizes

(¢S
arg _lélliﬂ A+ fer(S; + Aij), | 53 1Az 4
1€log
S__ S
* Greedy also have optional 54 — 4 Sz +A2,4
o H ” S
threshold_exterlsmn Sl +A1,4

-S _C |
Sig)- TBiG). 2255 . Sk

More advanced multi- step policies

2.2 1 T T
\ ‘G (CSE
. . . k] 2 . Threshold [ﬁﬁ Q{CSEi _'_:__'__'_]
* Offline optimal not feasible £ ;4L \,_ Greedy+threshold (GSE) ™ |
to calculate 8 16 No deftaencoding =1.757 S
E 14l e o]
« Complexity lower bounded g |, | Offiine optimal = 1.335 -
by Q(BN) = P
NOHTIFIlIZEd nI-::-n-«CSEI =1 | | |
. . 0.8
[conjecture] Complexity ca]\r; e a4 12 1 o 4 g8 18
be upper bounded by 0(4) Greedy read-weight factor (f)
(a) Greedy read-weight factor
* Greedy policy D —
o 2F Thresh(onah ‘EEEi -
o res mary '__
* Upload delta change Ayj).; € ,, %Em ancoding
that minimizes g el ‘“ﬂ‘k i
L \ A tettets Loonnsomoooooamn T \
argmin A; j + fep(S; +4i;), = 14F n
~i€log JeRl ! "/ g 4 o |- Offline optimal N
E 1
: 2 T
Greedy also have optional 1 ‘Normajized non-CSE = 1 |
threshold exten5|on 0.8 SR —
,(103 102 101 100 101 102
—”Ay’ >‘ 2 L’ Append-to-change ratio (&6/(A-0))

? [J
”j (b) Append-to-change ratio

More advanced multi-step policies

e Simple binary threshold
policy still does well

Mormalized cost ratio

MNormalized cost ratio

2.2 1 T |
Greedy (CSE) "~
2 . Threshold {binag,f CSE) = 7]
1.8 £ Greedy +threshold (CSE) |
’ ‘ 6 No delta enco&in_g =1.757 ,f’! |
] - ‘-:'.},1_: —————————— ;;.""': """""
1.4 el .
1.2 | Offline optimal = 1.335 _
1 _.':l._____._T___;E_____._Eé_._:_.;.___._________________________ R
08 ormalized non- EI = | | |
1/8 1/4 1/2 1 2 4 8 16
Greedy read-weight factor (f)
(a) Greedy read-weight factor
2.2 T I T T T I T T T I T T T I
Greedy (CSE)
2 GThresh blnarr]y EEE T]
reedy+thres
1.8 dy+ (f‘\ Mo delta encoding —
/
8 :::.::_:;‘:: ettt \ |
14 F - N\ _
12 Offline optimal |
1 _._.._.._.._.._-.._.._.._.._.._.._.._.._.._.._.._.._.._.._.._ —_— —_—
Nﬂrmqllzed non—QSE =1 | |
DLB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
103 102 1071 100 10! 102

Append-to-change ratio (&6/(A-0))
(b) Append-to-change ratio

More advanced multi-step policies

e Simple binary threshold
policy still does well

Mormalized cost ratio

MNormalized cost ratio

2.2 1 T |
Greedy (CSE)
2 . Threshold {binag,f CSE
1.8 £ ' Greedy +threshold (CSE) |
’ ‘ 6 No delta enco&in_g =1.757 ,.f’! |
‘ e ——
1.4 e - .
1.2 | Offline optimal = 1.335 _
1 _.':l._____._?_;E_____._Eé_._:_.;._.._._.._._____.__ e
08 ormalized non- EI = | | |
1/8 1/4 1/2 1 2 4 8 16
Greedy read-weight factor (f)
(a) Greedy read-weight factor
2.2 T I T T T I T T T I T T T I
Greedy (CSE)
2 [Thresh (binary CSE]
Greedy+thresh (CSE)

1.8
1.6

No delta encoding —

12 Offline optimal |
"[Nomgizednon-cSE-1

08 —_— B L L —
103 102 101 100 101 104

Append-to-change ratio (&6/(A-0))
(b) Append-to-change ratio

More advanced multi-step policies

* Greedy can do slightly
better in a few cases, but
also worse

Mormalized cost ratio

MNormalized cost ratio

2.2 | |
Greedy (CSE) "~

2 Threshold {binag,f CSE
Greedy +threshold (CSE)

1.8
1.6

1.4
1.2 | Offline optimal = 1.335 _

§ T

Normiali?_ed nlon—CSE| =1

0.8
1/8 14 1/2 1 2 4 8 16
Greedy read-weight factor (f)
(a) Greedy read-weight factor
2.2 T T T I T I T T T I

T T T I T T
Greedy (CSE)
2 [Thresh (binary CSE
Greedy+thresh (CSE

No delta encoding —

Offline optimal

1 S S popoger-y

Normqlized non—QSE =1

103 102 1071 100 101 104
Append-to-change ratio (&6/(A-0))
(b) Append-to-change ratio

Conclusions

Conclusions

Targeted experiments and a model-based analysis to

1. demonstrate the delta encoding problem associated with CSE

2. characterize the practical overheads associated with delta encoding
3. determine the potential room for further improvements.

Our experiments demonstrate

» overheads due to CSEs not being able to decode delta encoding messages
 significant differences in the effectiveness in how delta encoding is implemented
* much room for improvements

A simple cost model is then developed that captures multi-device scenarios
* worst-case bounds of the delta encoding penalty associated with CSEs
e characterization of the CSE overheads observed

Overall, the results show that
» costs of CSEs can be worst-case bounded by a factor 2 of the best non-CSEs
» with average differences significantly smaller for wide range of other workloads

Results demonstrate significant cost saving opportunities not yet used by current CSEs

Thanks for listening!

*
>)
bropox ONEDIIVE

5
L iCloud

Google Drive

Delta Encoding Overhead Analysis of Cloud Storage
Systems using Client-side Encryption

Eric Henziger and Niklas Carlsson

LINKOPING .
UNIVERSITY Niklas Carlsson (niklas.carlsson@liu.se)

