#### Delta Encoding Overhead Analysis of Cloud Storage Systems using Client-side Encryption

Eric Henziger, *Linköping University* **Niklas Carlsson,** *Linköping University* 





Proc. IEEE CloudCom, Sydney, Australia, Dec. 2019

• Popular services: Some with 100s of millions of active users each month



- Popular services: Some with 100s of millions of active users each month
- Cloud services have changed how users store and access data



- Popular services: Some with 100s of millions of active users each month
- Cloud services have changed how users store and access data
  - E.g., often transparently across multiple devices



- Popular services: Some with 100s of millions of active users each month
- Cloud services have changed how users store and access data
  - E.g., often transparently across multiple devices or users



- Popular services: Some with 100s of millions of active users each month
- Cloud services have changed how users store and access data
  - E.g., often transparently across multiple devices or users
- Most services require that users fully trust the provider
  - Services gets access to all data and information



- Popular services: Some with 100s of millions of active users each month
- Cloud services have changed how users store and access data
  - E.g., often transparently across multiple devices or users
- Most services require that users fully trust the provider
  - Services gets access to all data and information

![](_page_6_Figure_6.jpeg)

- Popular services: Some with 100s of millions of active users each month
- Cloud services have changed how users store and access data
  - E.g., often transparently across multiple devices or users
- Most services require that users fully trust the provider
  - Services gets access to all data and information
- May not be acceptable for all • Also attacks and surveillance backdoors (e.g., NSA)

![](_page_8_Figure_1.jpeg)

• Confidential: Private, secret

![](_page_9_Figure_2.jpeg)

• Who can see the originals? Client

![](_page_10_Figure_1.jpeg)

• Who can see the originals? Client

![](_page_11_Figure_1.jpeg)

However, CSE complicates some bandwidth saving features such as deduplication and delta encoding ...

![](_page_12_Picture_2.jpeg)

|                     |        |              | Fe          | Feature/capability |            |  |
|---------------------|--------|--------------|-------------|--------------------|------------|--|
|                     |        | Services     | Compression | Deduplication      | Delta Sync |  |
|                     | ЗE     | Dropbox      | Yes         | Yes                | Yes        |  |
| Dropbox OneDrive    | son-CS | iCloud       | No          | Yes                | Yes        |  |
| Google Drive iCloud |        | Google Drive | Conditional | No                 | No         |  |
|                     |        | OneDrive     | No          | Sometimes          | No         |  |
| stuffed tresorit    | SE     | Mega         | No          | Yes                | No         |  |
|                     |        | Sync.com     | No          | Yes                | No         |  |
| sync.com            | O      | SpiderOak    | Yes         | Yes                | Yes        |  |
|                     |        | Tresorit     | Yes         | No                 | No         |  |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group

|                     |         |              | Feature/capability |               |            |
|---------------------|---------|--------------|--------------------|---------------|------------|
|                     |         | Services     | Compression        | Deduplication | Delta Sync |
|                     | non-CSE | Dropbox      | Yes                | Yes           | Yes        |
| Dropbox OneDrive    |         | iCloud       | No                 | Yes           | Yes        |
| Google Drive iCloud |         | Google Drive | Conditional        | No            | No         |
|                     |         | OneDrive     | No                 | Sometimes     | No         |
|                     | CSE     | Mega         | No                 | Yes           | No         |
| SPIDER DAL tresorit |         | Sync.com     | No                 | Yes           | No         |
| sync.com            |         | SpiderOak    | Yes                | Yes           | Yes        |
| MEGA                |         | Tresorit     | Yes                | No            | No         |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group

|                     |        |              | Feature/capability |               |            |
|---------------------|--------|--------------|--------------------|---------------|------------|
|                     |        | Services     | Compression        | Deduplication | Delta Sync |
|                     | ЗE     | Dropbox      | Yes                | Yes           | Yes        |
| Dropbox OneDrive    | so-non | iCloud       | No                 | Yes           | Yes        |
| Google Drive iCloud |        | Google Drive | Conditional        | No            | No         |
|                     |        | OneDrive     | No                 | Sometimes     | No         |
| Tresorit            | CSE    | Mega         | No                 | Yes           | No         |
|                     |        | Sync.com     | No                 | Yes           | No         |
| sync.com            |        | SpiderOak    | Yes                | Yes           | Yes        |
|                     |        | Tresorit     | Yes                | No            | No         |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group

|                  |        |              | Feature/capability |               |            |
|------------------|--------|--------------|--------------------|---------------|------------|
|                  |        | Services     | Compression        | Deduplication | Delta Sync |
|                  | ЗE     | Dropbox      | Yes                | Yes           | Yes        |
| Dropbox OneDrive | son-CS | iCloud       | No                 | Yes           | Yes        |
| Google Drive     |        | Google Drive | Conditional        | No            | No         |
|                  |        | OneDrive     | No                 | Sometimes     | No         |
|                  | CSE    | Mega         | No                 | Yes           | No         |
| SPIDER LITESORIE |        | Sync.com     | No                 | Yes           | No         |
| sync.com         |        | SpiderOak    | Yes                | Yes           | Yes        |
| MEGA             |        | Tresorit     | Yes                | No            | No         |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group

|                     |         |              | Feature/capability |               |            |
|---------------------|---------|--------------|--------------------|---------------|------------|
|                     |         | Services     | Compression        | Deduplication | Delta Sync |
|                     | non-CSE | Dropbox      | Yes                | Yes           | Yes        |
| Dropbox OneDrive    |         | iCloud       | No                 | Yes           | Yes        |
| Google Drive iCloud |         | Google Drive | Conditional        | No            | No         |
|                     |         | OneDrive     | No                 | Sometimes     | No         |
| severe loss         | CSE     | Mega         | No                 | Yes           | No         |
|                     |         | Sync.com     | No                 | Yes           | No         |
| sync.com            |         | SpiderOak    | Yes                | Yes           | Yes        |
|                     |         | Tresorit     | Yes                | No            | No         |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group
- Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features

|                       |         |              | Feature/capability |               |            |
|-----------------------|---------|--------------|--------------------|---------------|------------|
|                       |         | Services     | Compression        | Deduplication | Delta Sync |
|                       | non-CSE | Dropbox      | Yes                | Yes           | Yes        |
| Dropbox OneDrive      |         | iCloud       | No                 | Yes           | Yes        |
| Google Drive iCloud   |         | Google Drive | Conditional        | No            | No         |
|                       |         | OneDrive     | No                 | Sometimes     | No         |
| SPIDEROAL Contraction | CSE     | Mega         | No                 | Yes           | No         |
|                       |         | Sync.com     | No                 | Yes           | No         |
| sync.com              |         | SpiderOak    | Yes                | Yes           | Yes        |
|                       |         | Tresorit     | Yes                | No            | No         |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group
- Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
- All services implement at least some feature (but different)

|                     |        |              | Feature/capability |               |            |
|---------------------|--------|--------------|--------------------|---------------|------------|
|                     |        | Services     | Compression        | Deduplication | Delta Sync |
|                     | ЗE     | Dropbox      | Yes                | Yes           | Yes        |
| Dropbox OneDrive    | so-non | iCloud       | No                 | Yes           | Yes        |
| Google Drive iCloud |        | Google Drive | Conditional        | No            | No         |
|                     |        | OneDrive     | No                 | Sometimes     | No         |
| stresorit           |        | Mega         | No                 | Yes           | No         |
|                     | SE     | Sync.com     | No                 | Yes           | No         |
| sync.com            | С      | SpiderOak    | Yes                | Yes           | Yes        |
|                     |        | Tresorit     | Yes                | No            | No         |

- No clear difference between CSE vs non-CSEs
- Instead, large variations within each group
- Only Dropbox (non-CSE) and SpiderOak (CSE) has all three features
- All services implement at least some feature (but different)
- Furthermore: Delta encoding efficiency differ substantially ...

## Feature 3: Delta encoding

Test method

- Make sequence of changes
- Measure size of updates (full vs part)

File modifications considered

- Append
- Prepend
- Insert
- N random byte changes

![](_page_20_Figure_10.jpeg)

## Feature 3: Delta encoding

Test method

- Make sequence of changes
- Measure size of updates (full vs part)

![](_page_21_Figure_5.jpeg)

## Delta encoding efficiency ...

![](_page_22_Figure_2.jpeg)

Large differences among service implementing (some) delta encoding

 SpiderOak (CSE) performs much worse than iCloud (non-CSE) and Dropbox (non-CSE)

Important to understand these differences and how much the CSE performance can be improved ...

### Contributions (at a glance)

Targeted experiments and a model-based analysis to

- 1. demonstrate the delta encoding problem associated with CSE
- 2. characterize the practical overheads associated with delta encoding
- 3. determine the potential room for further improvements.

Results demonstrate significant cost saving opportunities not yet used by current CSEs

![](_page_24_Picture_0.jpeg)

E. Bocchi, I. Drago, and M. Mellia, "Personal Cloud Storage Benchmarks and Comparison," IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 751–764, 2017.

![](_page_25_Picture_0.jpeg)

E. Bocchi, I. Drago, and M. Mellia, "Personal Cloud Storage Benchmarks and Comparison," IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 751–764, 2017.

![](_page_26_Figure_0.jpeg)

### Baseline methodology

![](_page_27_Figure_1.jpeg)

- **₽** python<sup>™</sup>
  - netifaces
  - pcapy
  - psutil
  - numpy
  - scipy

- 1. Start cloud storage application
- 2. Capture network traffic
- 3. Measure CPU, memory, disk utilization
- 4. Place file in sync folder
- 5. Wait for synchronization to finish
- 6. Process capture files and measurements

*E.* Bocchi, I. Drago, and M. Mellia, "Personal Cloud Storage Benchmarks and Comparison," IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 751–764, 2017.

![](_page_28_Figure_1.jpeg)

• Block-based encoding (size: 256kB)

![](_page_29_Figure_1.jpeg)

- Block-based encoding (size: 256kB)
- Worst-case overhead: change one byte in each 256kB block

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

- Block-based encoding (size: 256kB)
- Worst-case overhead: change one byte in each 256kB block

![](_page_31_Figure_1.jpeg)

- Block-based encoding (size: 256kB)
- Worst-case overhead: change one byte in each 256kB block
  - E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_2.jpeg)

- Block-based encoding (size: 256kB)
- Worst-case overhead: change one byte in each 256kB block
  - E.g., need to change 40 bytes for delta encoding to be 10MB (i.e., the file size)
- Random byte changes: lower bounded by  $M(1-(1-1/M)^n) \times 256$ kB

### Cost model

![](_page_33_Figure_1.jpeg)

• Normalized upload cost 1 (per unit data); rest relative to this

### Cost model

![](_page_34_Figure_1.jpeg)

- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{L}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively

### Cost model: Example

![](_page_35_Figure_1.jpeg)

- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{L}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively


- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{L}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{L}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{L}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively

## Cost model: Example



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_i^C$  file size (e.g., after compression) seen on the client

## Cost model: Example



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_i^C$  file size (e.g., after compression) seen on the client



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{L}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_{i_{\perp}}^{C}$  file size (e.g., after compression) seen on the client
  - $S_i^{S}$  size of the change log as seen on the server



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_{i_{\perp}}^{C}$  file size (e.g., after compression) seen on the client
  - $S_i^S$  size of the change log as seen on the server



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_{i_{a}}^{C}$  file size (e.g., after compression) seen on the client
  - $S_i^{S}$  size of the change log as seen on the server
  - $\delta_i$  file size changes seen on the client

Assume  $0 \le \delta_i$ 



- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_{i_{a}}^{C}$  file size (e.g., after compression) seen on the client
  - $S_i^{S}$  size of the change log as seen on the server
  - $\delta_i$  file size changes seen on the client
  - $\Delta_i$  size of delta encoding submitted to server





- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_{i_{a}}^{C}$  file size (e.g., after compression) seen on the client
  - $S_i^{S}$  size of the change log as seen on the server
  - $\delta_i$  file size changes seen on the client
  - $\Delta_i$  size of delta encoding submitted to server





- Normalized upload cost 1 (per unit data); rest relative to this
- Arbitrary event sequence  $\mathcal{I}$ , consisting of  $N = |\mathcal{W}| + |\mathcal{R}|$  events, where  $\mathcal{W}$  and  $\mathcal{R}$  are the set of writes and reads, respectively
  - $S_{i_{a}}^{C}$  file size (e.g., after compression) seen on the client
  - $S_i^S$  size of the change log as seen on the server
  - $\delta_i$  file size changes seen on the client
  - $\Delta_i$  size of delta encoding submitted to server



## **Baseline policies**

• Non-CSE

$$\sum_{i \in \mathcal{W}} \Delta_i + c_R \sum_{i \in \mathcal{R}} S_i^c.$$

• No delta coding

$$\sum_{i \in \mathcal{W}} S_i^c + c_R \sum_{i \in \mathcal{R}} S_i^c.$$

• Note: Not using delta coding can be arbitrary worse



• No delta coding can perform very poorly

At each stage either

- Upload new base copy at cost  $S_i^C$
- Append another delta coding  $\Delta_i$



At each stage either

- Upload new base copy at cost  $S_i^C$
- Append another delta coding  $\Delta_i$



Optimal offline policy (not achievable in practice!)

- Given a sequence  $\mathcal{F}$ , consider all possible choices and pick one with lowest cost
- Solve using dynamic programing

At each stage either

- Upload new base copy at cost  $S_i^C$
- Append another delta coding  $\Delta_i$



Optimal offline policy (not achievable in practice!)

- Given a sequence  $\mathcal{F}$ , consider all possible choices and pick one with lowest cost
- Solve using dynamic programing

#### Threshold-based policy

- Replace base file at cost  $S_i^C$  at write event whenever  $2S_i^C \leq S_{i-1}^S + \Delta_i$
- Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE within a factor 2

At each stage either

- Upload new base copy at cost  $S_i^C$
- Append another delta coding  $\Delta_i$

Optimal offline policy (not achievable in practice!)

- Given a sequence  $\mathcal{F}$ , consider all possible choices and pick one with lowest cost
- Solve using dynamic programing

Threshold-based policy

- Replace base file at cost  $S_i^C$  at write event whenever  $2S_i^C \leq S_{i-1}^S + \Delta_i$
- Theorem + Proof (in paper): The above policy has a cost ratio to the non-CSE within a factor 2

#### Also, in paper: Results extended to general case (with $c_s > 0$ )



- No delta coding can perform very poorly
- On average threshold policy typically perform better (e.g., within 1.5 of offline optimal)



- No delta coding can perform very poorly
- On average threshold policy typically perform better (e.g., within 1.5 of offline optimal)



- No delta coding can perform very poorly
- On average threshold policy typically perform better (e.g., within 1.5 of offline optimal)
- Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)



- No delta coding can perform very poorly
- On average threshold policy typically perform better (e.g., within 1.5 of offline optimal)
- Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)



- No delta coding can perform very poorly
- On average threshold policy typically perform better (e.g., within 1.5 of offline optimal)
- Inherent penalty to using CSE (e.g., upwards 1.5 difference with optimal)

### Impact of size distributions



 Results consistent for both long-tailed (Pareto) and short-tailed (exponential, normal, and deterministic) size distributions

#### **Comparison across parameters**



Results consistent for broad range of workload parameters



$$S_4^S = \begin{cases} S_3^S + \Delta_{3,4} \\ S_2^S + \Delta_{2,4} \\ S_1^S + \Delta_{1,4} \\ S_4^C \end{cases}$$

- Offline optimal not feasible to calculate
  - Complexity lower bounded by Ω(3<sup>N</sup>)
  - [conjecture] Complexity can be upper bounded by  $O(4^N)$
- Greedy policy
  - Upload delta change  $\Delta_{i(j)*,j}$  that minimizes

 $\arg\min_{i\in\log}\Delta_{i,j} + fc_R(S_i^s + \Delta_{i,j}),$ 

 Greedy also have optional "threshold extension"

 $S_{i(j)^*}^s + \Delta_{i(j)^*,j} \ge 2S_j^c.$ 



$$S_4^S = \begin{cases} S_3^S + \Delta_{3,4} \\ S_2^S + \Delta_{2,4} \\ S_1^S + \Delta_{1,4} \\ S_4^C \end{cases}$$

- Offline optimal not feasible to calculate
  - Complexity lower bounded by  $\Omega(3^N)$
  - [conjecture] Complexity can be upper bounded by  $O(4^N)$
- Greedy policy
  - Upload delta change  $\Delta_{i(j)*,j}$  that minimizes

 $\arg\min_{i\in\log}\Delta_{i,j} + fc_R(S_i^s + \Delta_{i,j}),$ 

 Greedy also have optional "threshold extension"

 $S_{i(j)^*}^s + \Delta_{i(j)^*,j} \ge 2S_j^c.$ 



 Simple binary threshold policy still does well



 Simple binary threshold policy still does well



- Simple binary threshold policy still does well
- Greedy can do slightly better in a few cases, but also worse



Conclusions

# Conclusions

Targeted experiments and a model-based analysis to

- 1. demonstrate the delta encoding problem associated with CSE
- 2. characterize the practical overheads associated with delta encoding
- 3. determine the potential room for further improvements.

Our experiments demonstrate

- overheads due to CSEs not being able to decode delta encoding messages
- significant differences in the effectiveness in how delta encoding is implemented
- much room for improvements

A simple cost model is then developed that captures multi-device scenarios

- worst-case bounds of the delta encoding penalty associated with CSEs
- characterization of the CSE overheads observed

Overall, the results show that

- costs of CSEs can be worst-case bounded by a factor 2 of the best non-CSEs
- with average differences significantly smaller for wide range of other workloads

Results demonstrate significant cost saving opportunities not yet used by current CSEs
## Thanks for listening!



## Delta Encoding Overhead Analysis of Cloud Storage Systems using Client-side Encryption

Eric Henziger and Niklas Carlsson



Niklas Carlsson (niklas.carlsson@liu.se)