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Abstract—With client-side encryption (CSE), a user’s data is
encrypted before being transferred to a cloud provider. This
ensures that only the intended user has access to the infor-
mation, but complicates effective file synchronization (between
different devices and the cloud). Motivated by prior findings
that empirically show that the largest performance differences
between popular CSE services (CSEs) and non-CSEs typically
are related to the implementation of delta encoding solutions
to reduce bandwidth usage, in this paper, we evaluate and
provide insights into the practical CSE-related delta encoding
overheads. First, we use targeted experiments to demonstrate
the delta encoding problem associated with CSE and to compare
the practical overhead differences associated with three example
services implementing delta encoding. Second, we develop an
analytic cost model and use it to show that a simple threshold-
based CSE policy can reduce the bandwidth and storage usage
seen by the best CSE considered here, that such a policy has
a provable worst-case overhead within a factor two of the best
non-CSE, and typically performs much better. The results are
highly encouraging, and show that it is possible to provide CSE
at limited additional overhead compared to non-CSE services.

Index Terms—Client-side encryption; Cloud storage systems;
Delta encoding; File synchronization; Bandwidth overheads

I. INTRODUCTION

Cloud storage applications such as Dropbox, Google Drive,

Microsoft OneDrive, and iCloud together have billions of

active users [1]. These services provide users with flexible

low-cost synchronization that enables easy access to files using

multiple devices, regardless of geographical location.

However, despite their popularity and an increasing need for

users being able to store information securely and confiden-

tially, most of these services do not provide any guarantees

regarding the confidentiality and integrity of the data stored.

Instead, most of the popular services have direct access to

the data itself and many of them are fairly blunt regarding

the rights they retain for this data. For example, Dropbox’s

end-user agreements give them, including their affiliates and

trusted third parties, the right to access, store and scan the

data [2]. Similarly, Google’s terms of service [3] gives Google

“a worldwide license to use, host, store, reproduce, modify,

[...], publicly display and distribute such content.” where “such

content” refers to the user’s stored content.

Clearly, such terms are not acceptable for some users

and content types. A solution to provide confidential cloud

storage is to use client-side encryption (CSE). With CSE,

the user’s data is encrypted before being transferred to the

cloud provider. This ensures that the content is transferred and

stored in an encrypted format and that only clients with the

appropriate decryption keys have access to the non-encrypted

information. The value of CSE is further highlighted by

surveillance backdoors [4] or software bugs [5].

While CSE improves content confidentiality for end users,

it complicates file synchronization techniques such as dedu-

plication and delta encoding, commonly used to reduce the

traffic associated with personal cloud storage systems. Such

bandwidth saving features are important since the bandwidth

costs associated with synchronization traffic can be substantial.

To assess the overheads with CSE services (CSEs), we

therefore recently set out to empirically measure and com-

pare the overhead observed with four popular CSEs (Mega,

Sync.com, SpiderOak, and Tresorit) and non-CSEs (Drop-

box, iCloud, Google Drive, Microsoft OneDrive). Our initial

findings were encouraging and showed that existing CSEs

are able to implement CSE together with bandwidth saving

features such as compression and deduplication with low

additional overhead compared to the non-CSEs [6]. The main

downside with CSE instead appears to be associated with the

use of delta encoding, a feature that has been shown to help

reduce Dropbox’s synchronization traffic substantially [7].

For example, among the eight tested services only one CSE

(SpiderOak) and two non-CSEs (Dropbox, iCloud) implement

some form of delta encoding, and (most importantly) the

overhead differences associated with these three encoding

implementations were substantial.

In this paper, we use targeted experiments of the above

services and a model-based analysis of CSE-based delta en-

coding overheads to demonstrate the delta encoding problem

associated with CSE, characterize the practical overheads

associated with the delta encodings used by these services,

and (most importantly) to determine the potential room for

further improvements. Our experiments show that much of

the bandwidth and storage overheads associated with CSEs

are due to CSE cloud providers not being able to decode delta

encoding messages, and highlight that there are significant

differences in the effectiveness in how delta encoding is

implemented and that there is much room for improvements.

A simple cost model is then developed that captures multi-

device scenarios. Our model based results include worst-case

bounds of the delta encoding penalty associated with CSEs,

as well as a characterization of the CSE overheads observed

under both synthetic workloads and example traces. Overall,

the results show that bandwidth and storage costs of CSEs
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can be worst-case bounded by a factor two of the best non-

CSEs, with average differences within a factor 1.5 across both

long-tailed (Pareto) and short-tailed (exponential, normal, and

deterministic) delta encoding size distributions and a broad

range of other workload parameters. These results demonstrate

that there are significant cost saving opportunities not yet

leveraged by current CSEs.

The remainder of the paper is organized as follows. Sec-

tion II presents some of our previous empirical findings, mo-

tivating this work. Section III then provides targeted empirical

example results, highlighting the delta-encoding problem as-

sociated with CSEs, before Section IV presents our model and

model-driven results. Finally, related work and conclusions are

presented in Sections V and VI, respectively.

II. BACKGROUND AND MOTIVATING FINDINGS

As noted in the introduction, we recently empirically mea-

sured and compared bandwidth saving features implemented

and the client-side overheads observed with four popular CSEs

(Mega, Sync.com, SpiderOak, and Tresorit) and non-CSEs

(Dropbox, iCloud, Google Drive, Microsoft OneDrive) [6]. At

a high level, the results showed larger differences within the

two categories of services (CSEs and non-CSEs) than between

the two categories themselves, and that the client-side resource

usage of CPU, disk, and memory often were correlated to the

set of bandwidth saving features (compression, deduplication,

and delta encoding) that the services implemented. In par-

ticular, the services with the highest overhead were typically

those that implemented all three bandwidth saving features

(only SpiderOak and Dropbox). However, for the purpose of

this paper, our results also highlighted that CSEs are able to

implement CSE together with compression and deduplication

at low (if any) additional overhead compared to the non-

CSEs [6], but that implementing delta encoding effectively

is much harder for CSEs. This is an important finding since

synchronization bandwidth costs can be substantial for these

services and delta encoding has been shown to substantially

reduce Dropbox’s bandwidth usage [7]. In this section, we

summarize the main findings regarding delta encoding when

evaluating four popular CSEs (Mega, Sync.com, SpiderOak,

Tresorit) against four popular non-CSEs (Dropbox, iCloud,

Google Drive, Microsoft OneDrive).

Few services implement delta encoding: Of the tested

services, one CSE service (SpiderOak) and two non-CSEs

(Dropbox, iCloud) implement delta encoding. To determine

whether or not each service used (at least) some form of delta

encoding, all eight client applications (four CSEs and four

non-CSEs) underwent three basic tests. In all tests, we started

with placing a 5 MB file into the application under test’s sync

folder, and then incrementally increased the size of this file in

steps of 5 MB until the size reached 25 MB. In each step, we

inserted 5 MB random bytes (i) at the end (append), (ii) at the

beginning (prepend), or (iii) into a random position (random

insert) of the file. For each test, we measured the number

of uploaded bytes by recording the network traffic (using

the Python modules netifaces, pcapy, and others) and
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Fig. 1. Bytes uploaded during random delta-encoding sprinkle tests.

analyzing the collected packet trace files. For these scenarios,

in the ideal case, the number of uploaded bytes (in each step)

by a client using delta encoding would be similar to the size

of the change; i.e., 5 MB. On the other hand, for clients

that did not take advantage of delta encoding the number of

uploaded bytes is expected to be close to the file size after

each modification; i.e., 5, 10, 15, 20, 25 MB.

Delta encoding overhead differences between services

are substantial: Comparing the bandwidth overheads asso-

ciated with similar upload patterns we observed significant

differences between the services. This was perhaps best illus-

trated by a worst-case scenario in which we randomly picked

n bytes to change and then measured the number of bytes

uploaded by the application. Figure 1 shows the results of

these tests, when applied on a 10 MB file. (The insert zooms

in on the low parameter range.)

These results show that (i) delta encodings work poorly

on random file changes (and would hence not be useful

on encrypted file data) and (ii) both Dropbox and iCloud

significantly outperform SpiderOak. For example, consider the

number of random bytes that can be changed before each

service have uploaded the equivalent of another 10 MB file.

For SpiderOak, on the order of 100 bytes are needed. In

contrast, with iCloud and Dropbox approximately 2,000 and

6,000 bytes need to change, respectively. While the large

differences partially may be due to implementation differences

for sparse use cases, the results show that the room for

improvements in SpiderOak’s solution is significant.

To summarize, we found that the CSEs that we studied had

been equally successful as the top-four non-CSEs to achieve

bandwidth savings using compression and deduplication, but

that it appears much harder for CSEs to implement effective

delta encoding. This is perhaps why only SpiderOak of the

tested CSEs implement delta encoding, and why both Dropbox

and iCloud (the two non-CSEs performing delta encoding)

significantly outperform SpiderOak.

The delta encoding problem with CSEs: Delta encoding

is made difficult for CSEs mainly by the cloud provider not

having access to the non-encrypted data and delta encoding

being extremely inefficient on encrypted file versions (as they

see close to randomly scattered file changes). Therefore, to

allow the provider to seamlessly share the file with other

devices of the client there are two main alternatives: (i)

the client always upload the full file whenever they make a

change, ensuring that the provider always has the latest copy

to deliver, or (ii) the client submit encrypted versions of delta



encodings that the provider can store and deliver together

with the original encrypted file.1 The first option comes at

significant upload overhead, since even a very small change

result in the full file (or block) being uploaded. In contrast,

the second option has low upload overhead, but much larger

storage and download bandwidth overhead, since the provider

must store and deliver the full change-log sequence needed by

the downloading device to recreate the most recent file copy.

Three-out-of-four CSEs can perform arbitrarily bad:

Remember that three out of the four studied CSEs (Mega,

Sync.com, Tresorit) do not use delta encoding, but instead

replace the full file when changes are made. Such an approach

can be arbitrarily bad. For example, consider a small file

change to a file of size N that requires a delta encoding of size

∆. In this case, a CSE replacing the full file would require an

upload bandwidth proportional to N , whereas one that uses

delta encoding would only need to upload ∆, resulting in a

relative penalty of cN−∆
∆ , where c captures the compression

factor, for example. This penalty is unbounded when N→∞
and also becomes very large when ∆ is small.

III. USE-CASE DRIVEN EXAMPLE ANALYSIS

SpiderOak’s bandwidth and server-side storage over-

head: Among the CSEs, only SpiderOak performs delta en-

coding. However, their implementation is proprietary, making

it non-trivial to analyze all details of their solution. Here, we

use targeted experiments to provide initial insights into their

delta encoding and the associate overheads.

First, and most importantly, it is easy to see that SpiderOak

indeed stores a sequence of delta encodings on the server side,

and that a second device downloads both the original file and

the change-log of delta encodings. For example, consider a

basic experiment in which we start with a file of size 10MB,

consisting of random bytes, and then modify bytes 0-0.5 MB,

bytes 1-1.5 MB, and so forth over 10 file changes. In this

scenario, the original upload was of size 10.049 MB, and the

10 delta encoding updates were (measured in MB): 0.531,

1.058, 1.058, 1.058, 1.058, 0.531, 0.794, 0.794, 0.794, 0.794.

In total, this resulted in 18.521 MB uploaded data; 3 MB more

than the theoretic bound of 15 MB (if uploading only the size

of the original file plus the changed data). When syncing with

a second client, we could also confirm that the SpiderOak

client indeed downloaded the full (18.5 MB) change log, and

then recreated the file as seen on the first client. Again, this

download size is expected since a provider should not be able

to take advantage of the delta encodings to save server storage

or download bandwidth for the second device.

The corresponding tests with Dropbox (non-CSE) looked

quite different. While the original upload was somewhat

larger (10.578 MB), the following 10 updates were smaller

(measured in MB): 0.662, 0.540, 0.535, 0.535, 0.537, 0.535,

0.535, 0.540, 0.537, 0.535. In total, this resulted in 16.070 MB

1While focus here is on files, it is possible to apply both the above
approaches also on a per-block basis. This case typically increases complexity
significantly, may reduce confidentiality, and requires the block structure to
be passed along with block changes.
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Fig. 2. Bytes uploaded by SpiderOak during worst-case and random tests.

uploaded data. This shows that Dropbox uses more efficient

delta encoding, only requiring 1 MB extra overhead. Further-

more, when syncing with a second device, we could confirm

that the second device only had to download 10.353 MB,

confirming that Dropbox efficiently applies delta encodings on

the servers. The above examples clearly demonstrate some of

the added overheads when applying delta encoding on CSEs.

Block-based delta encodings: Second, when investigating

the behavior of SpiderOak uploads, we found that SpiderOak

uses block-based delta encoding, with a block size of 218

bytes (or 256 kB). To confirm this, we monitor the size of

SpiderOak’s delta encoding uploads when changing two bytes

separated by x bytes. As long as x was less than 218, the

uploads were 256 kB (plus some small overhead). However,

as soon as x was 218 or larger, the uploads became twice as

big (512 kB). More generally, we have found that the size

of the delta encoding uploads typically match well with the

number of blocks affected by the file changes (plus some

overhead). Furthermore, it does not matter how many bytes

change within a block; only whether at least one byte changes

within the block. Having said that, we have found that some

changes appear to affect an extra block or add/use an extra

block, for example, compared to what one otherwise would

expect. For example, in the original example in this section,

one would expect uploads to be either the size of 2 or 3 blocks.

However, in practice, we also observed four 4-block uploads

(1.058 MB), in addition to two 2-block uploads (0.531 MB)

and four 3-block uploads (0.794 MB). As in the example,

these inflated uploads typically occurs towards the beginning,

possibly suggesting some form of block re-alignment.

Worst-case overhead: Based on our observations above, it

is easy to identify worst-case workload patterns. In particular,

if we focus only on the upload bandwidth associated with a

single file synchronization, the largest ratio between the bytes

uploaded and the bytes that actually are changed is 218. This

is the case whenever exactly one byte is changed per 256 kB

block with a byte change. We have validated this worst-case

behavior using simple experiments. The “worst-case” lines in

Figure 2 shows example results with a 10 MB file. With the file

consisting of 40 blocks, only 40 bytes need to be changed for

the delta encoding uploads to equal the file size (10 MB). We

also see that the experiments nicely match the theoretic bound

for the full range (0-40 bytes changed). For SpiderOak, we also

include points for “random” and a lower bound M(1 − (1 −
1
M )n) times the 256 kB block size, where M=40. To derive

this bound, note that the probability that an arbitrary block is



changed is equal to
∏n−1

i=0 (1−
K/M
K−i ), where K is the size of

the file. This expression is upper bounded by (1− 1
M )n. Taking

the complement (resulting in a lower bound), and summing

over all M blocks gives the result. The somewhat lose fit can

be further explained by SpiderOak uploading more data than

only the blocks (e.g., to specify changed blocks).

IV. BOUNDING CSES’ DELTA ENCODING COSTS

In the previous section, we observed that the investigated

CSEs either do not perform delta encoding (Mega, Sync.com,

Tresorit) or do it inefficiently (SpiderOak). In this section,

we use an analytic model to provide further insights into the

potential room for improvements.

A. System models: Multi-device use case

Let us consider the total synchronization cost associated

with a single file, including upload bandwidth, download

bandwidth, and cloud storage costs. Without loss of generality,

we measure all costs relative to the cost of uploading one unit

of data to the cloud. With these normalized units, the costs of

writing one unit of data is one, the costs of reading one unit

of data is cR, and the costs of storing one unit of data (in the

cloud) is cS per time unit.

For simplicity, we will first consider a basic cost model

in which the storage cost cS=0, and then extend our results

to the full cost model. To illustrate the cost model, consider

the initial SpiderOak example from Section III. Here, the first

device uploaded 18.52 MB and the second device downloads

the full 18.52 MB change-log, resulting in a total cost of

18.52+18.52cR, measured in units of MB. The corresponding

cost when using Dropbox is 16.07+10.35cR. For this example,

the cost ratio of the two techniques is between 1.15 (when

cR=0) and 1.79 (when cR→∞). Furthermore, since the storage

cost at any given time is proportional to the size of the

current change-log (equal to the cost of a read event) and

the SpiderOak change-log was monotonically increasing in

our example, also the ratio of storage costs is upper bounded

by 18.52/10.35≈1.79. Of course, the exact cost ratio depends

on the exact timing of all upload and download instances.

Finally, and most importantly, we note that there is nothing

stopping a CSE to implement as efficient delta encoding as

Dropbox. In this case, the CSE’s (bandwidth) costs would

be 16.07 + 16.07cR, providing a cost ratio between 1 and

1.55. Motivated by this observation, in the following, we

will assume that the delta encoding scheme is given (e.g.,

Dropbox’s) and instead focus on system policies that bound

and/or minimize the CSE’s cost ratio.

Regardless of cost model, in the following, we make the

following system assumptions. First, only one client at a time

has the write token for a file. Second, the cloud stores (i) a

complete base copy, and (ii) a sequence of delta encodings,

that combined can be used to reproduce the most recent file

copy. Third, when the client with the write token writes to the

cloud, a system policy determines whether the client should

upload a new base copy or update the sequence of stored delta

encodings. Fourth, clients reading the file from the cloud must

download the full change log, including both the base copy and

the stored delta encodings. Finally, at each such read instance,

the client recreates the latest file copy and the system policy

determines whether to upload it as a new base copy.

For our analysis, we consider an arbitrary event sequence

E , consisting of N = |R|+ |W| events, where R is the set of

reads and W is the set of writes. Let i (1 ≤ i ≤ N ) denote the

ith such event, and let ti be the inter-event time between events

i−1 and i, where 0 denote the start of the system. Furthermore,

let Sc
i denote the size of the file as seen on the client with

the write token, let Ss
i denote the size of the change-log seen

on the cloud servers, and let us separate file size changes δi
seen on the client and the delta encoding sizes ∆i uploaded

to the cloud servers, both capturing changes between copies

i−1 and i. For simplicity, we assume non-decreasing file sizes

(i.e., δi ≥ 0) and note that ∆i ≥ δi.

B. Baseline policies

Non-CSE: When CSE is not used, the server can maintain

a copy of the client copy (using information in the delta

encodings) and can therefore always serve requesting clients

the latest copy. Assuming that ∆i ≤ Sc
i (otherwise it is better

that the client uploads the file itself), we therefore always have

synchronization costs ∆i for all writes and cRS
c
i for all reads.

A lower bound can therefore easily be provided by:
∑

i∈W

∆i + cR
∑

i∈R

Sc
i . (1)

No delta encoding: In the case no delta encoding is used,

changes to the file always result in the full file being uploaded.

Therefore, all write events are associated with a cost Sc
i and

read events with a cost cRS
c
i ; resulting in the following cost:

∑

i∈W

Sc
i + cR

∑

i∈R

Sc
i . (2)

C. Binary system policies

We consider system policies that have two choices: (i)

upload a new base copy (containing the client’s most up-to-

date file) that replaces both the old base copy and the change

log, or (ii) append another delta encoding entry to the change

log, based on the changes since the most recent entry. (We

have also analyzed more complex policies in which the client

also has the choice to overwrite part of the change log. A

summary of these results can be found in Section IV-D.)

Consider first a write event i ∈ W . In this case, the first

choice (i.e., to replace the base file) has cost Si and the second

choice (i.e., to upload another delta change) has cost ∆i. For

read events (i ∈ R), assuming that a full copy of the file was

most recently uploaded at time j, the read cost is equal to:

cRS
s
i = cR(S

c
j +

∑i−1
k=j+1 ∆k) = cR(S

c
i−1 +

∑i−1
k=j+1 δk). In

addition, when a policy decides to synchronize at read events,

associate the event with an additional write cost Sc
i .

Optimal offline policy: Given a known event sequence E ,

the optimal offline policy can be derived by considering all

possible choices that the system may make and then picking

the one with the lowest total cost. To find the optimal sequence



of such choices we use dynamic programming. First, let us

define the sub problem DP (M,m) as the problem of finding

the minimum cost for the first M events given that we have not

saved a full copy for the last m events (m≤M≤N ). Second,

note that the base case DP (0, 0)=Sc
0. Third, we formulate the

following recurrences for the basic model:

• DP (M, 0) = Sc
M +min0≤k<M DP (M − 1, k), if M ∈ W ,

• DP (M,m) = ∆M +DP (M−1,m−1), if m > 0∩M ∈ W ,

• DP (M, 0) = Sc
M + min0≤k<M (cR(S

c
M−k +

∑M−1
j=M−k+1 ∆j) +DP (M − 1, k)), if M ∈ R,

• DP (M,m) = cR(S
c
M−m +

∑M−1
j=M−m+1 ∆j) + DP (M −

1,m− 1), if m > 0 ∩M ∈ R.

Finally, to solve the optimization problem, a two-level nested

for-loop (0≤M≤N and 0≤m≤M ) is used, starting from

the base case DP (0, 0) until all DPs up to DP (N,N)
have been calculated. The optimal value is then given by

min0≤m≤N DP (N,m), and the optimal solution is obtained

using parent pointers (at a complexity of O(N2)).
Threshold-based policy with worst-case guarantees:

Consider a simple policy that replaces the base file (i.e., option

one) at write event i whenever Ss
i−1 +∆i ≥ 2Sc

i . Intuitively,

this ensures that (i) the cumulative write cost to the server

remains below twice the file size, and (ii) the “read cost”

always is less than twice the cost of downloading the actual

client-side file. More formally, it can be shown that this policy

has a cost ratio relative to the non-CSE policy within a factor

2, and hence has a delivery cost that is guaranteed to be

within a factor 2 of optimal, regardless of the read-write event

sequence. This is formalized in Theorem 1.

Theorem 1. The above threshold-based policy has a cost ratio

relative to the non-CSE policy within a factor 2.

Proof. Consider an arbitrary event sequence E = R ∪ W .

We next bound the cost ratio based on worst-case sequences,

selected by an adversary. First, without loss of generality,

assume that the size of the file (both at the client and the

server) is S0 after the initial copy has been uploaded. At this

time, the ratio is one; clearly, satisfying the worst-case bound

of 2. We next use induction on the number of sync events

considered thus far, and consider the cumulative write and

read costs for all event up-to and including the next sync event

(if there is one). For this step, let us assume that the bound

holds up to a sync event A (including the initial upload), and

let event B be the next sync event, or the end of the event

sequence, whichever comes first.
Now, let CA and C∗

A be the cost of the CSE policy

and the (optimal) non-CSE cost, respectively, up-to the time

of event A. First, consider an arbitrary event b such that

A < b < B. For this case, we can bound C∗
b by inserting

(i) CA ≤ 2C∗
A and (ii) Ss

j < 2Sc
j (A < j < B) into the

expression for the policy cost at event b and relating this

to the corresponding non-CSE cost. More specifically, we

have: Cb = CA +
∑

k∈W|A<k≤b ∆k + cR
∑

k∈R|A<k≤b S
s
k ≤

2C∗
A + 2

∑
k∈W|A<k≤b ∆k + 2cR

∑
k∈R|A<k≤b S

c
k = 2C∗

b .

Second, consider the case cost at event B. For this case, we

also use that Sc
B ≤

∑
k∈W|A<k≤B ∆k. (To see this, note
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that 2Sc
B ≤ Ss

B−1 + ∆B = Sc
A +

∑
k∈W|A<k≤B ∆k ≤

Sc
B +

∑
k∈W|A<k≤B ∆k ≤ Sc

B , which after subtraction of Sc
B

on both sides gives us the results.) Insertion into the expression

for the cumulated policy cost at event b then gives us: CB =
CA+Sc

B+
∑

k∈W|A<k<B ∆k+cR
∑

k∈R|A<k<B Ss
k ≤ 2C∗

A+
2
∑

k∈W|A<k≤B ∆k + 2cR
∑

k∈R|A<k<B Sc
k = 2C∗

B .

Furthermore, the bound is tight. For example, consider the

case when the adversary gives an event sequence in which we

almost entirely change the file content (i.e., (∆1−δ1) = Sc
0−ǫ,

for some small ǫ), but do not increase the file size (i.e., δ1 = 0),

followed by a very large number of reads. In this case, the

read cost will dominate, and the ratio will approach
2Sc

0
−ǫ

Sc
0

,

which as ǫ → 0 approaches 2. It may be tempting to try to

use a different threshold than 2. However, this only leads to

looser worst-case bounds, showing that our policy provides an

optimized worst-case bound.

Full model: The above results extends naturally to the full

model, where we also must add up the cumulative storage

costs. For the non-CSE baseline, we simply add cS
∑

i tiS
c
i−1

to equation (1). For the optimal offline policy, additional

storage terms cSTiS
s
i−1 are added to each equation in the

DP formulation. Otherwise, the algorithm and solution method

remains the same. For the threshold-based policy, no changes

are needed. To see that the bound still holds when adding

storage costs, note that Ss
i≤2Sc

i at all times. Therefore, we can

easily add the corresponding terms (i.e.,
∑

k∈E|A<k≤B Ss
k−1tk

and 2
∑

k∈E|A<k≤B Sc
k−1tk) to the respective sides of the cost

inequalities in the proof, without otherwise affecting the proof.

Trace-based example comparison: Figure 3 shows the cost

ratio as a function of the relative read cost cR, in a trace-based

scenario in which we recorded the size of the delta encodings

made by our Dropbox client, as we made 1,800 file modifica-

tions, and emulated another 942 read events. For this scenario,

we started with a 1MB file, and then randomly selected one of

three types of file modifications: append, insert, or overwrite.

Each modification was of a random size, in the range 100 bytes

to 1MB, and the write location of insertions and overwrites

were selected uniformly at random. As desired, the threshold

policy caps the maximum cost penalty and for intermediate

read costs performs close to optimal. Naturally, when the read

cost is small the relative cost ratio of not using delta encoding

(and hence uploading the full file each time) is very large. On

the other, when the read cost (or storage cost) is large, the

no delta encoding policy can perform similar (as shown) or

better than the threshold policy. Depending on the workloads

and relative cost terms, different cloud providers may therefore



lean towards different policies. Interesting future work could

include the development of adaptive hybrid policies.

Impact of workloads: To provide some intuition for the

impact that the workloads have on the relative cost differ-

ences, we performed trace-based simulations for four different

distributions of the delta encoding sizes, ranging from short-

tailed distributions (deterministic, normal, and exponential) to

long-tailed distributions (Pareto). We also varied the number

of events N , the normalized read cost cR, the relative client-

side file increase δ
∆ , the average delta encoding size E[∆],

and the ratio of read-write events
|R|
|W| .

In general, we have found small differences between the

different distributions. This is shown in Figure 4, where we

show the normalized cost ratio as a function of N , for each

of the four distributions. Figure 5 shows the impact of the

different workload or cost parameters (using the deterministic

distribution). In each figure, we vary one parameter at a time,

while keeping the others fixed at their default values: N=100,

cR=1, δ
∆=0.1, E[∆]=0.2, and

|R|
|W|=1. Referring to Figure 4,

the initial zig-zag pattern for the no delta encoding baseline

are due to every second event being a read event (smallest

possible cost with this policy) and write event (high cost with

this policy). We also see that the penalty of this policy gets

worse with time (i.e., increasing N ), when the relative read

cost is low (i.e., cR is small), the relative delta overhead

decreases (i.e., δ
∆ increases), we have small delta changes

(i.e., ∆ is small), or there are many more writes than reads

(i.e.,
|R|
|W| is small). In contrast, the threshold policy typically

closes most of the gap to what is achievable with a non-CSE

policy (normalized lower bound of one), and in many case

performs close to the optimal offline policy. Finally, comparing

the optimal offline CSE policy with the lower bound when not

using CSE, we note that there is an inherent penalty to using

CSE in general, with the penalty peaking around 1.5.

D. Further policy flexibility and optimizations

In this section we briefly provide some insights into the

potential value added by also allowing the system policy to

overwrite part of the change log. More specifically, assuming

that a sequence of k delta encoding changes currently are

stored in the log, the client can now make one of the following

choices: (i) replace the base file, (ii) append a delta change

corresponding to the change k to k + 1, or (iii) replace delta

changes j to k + 1 with a single new entry that include the

delta encoding change between copy j − 1 and k + 1, where

1 ≤ j ≤ k and copy 0 corresponds to the base file.

Optimal offline policy: In contrast to with the binary

system policy, we have not found any computationally feasible

way to find the offline optimal when the number of events N is

large. The reason is that the best choice at each such event de-

pend on what choices have been made in the past. The dynamic

programming approach is therefore not applicable. Having said

that, dynamic programming can be used to effectively find the

exact number of candidate solutions that need to be considered

by a brute force method. To see this, note that the number of

candidate solutions is equal to the number of leafs in a tree
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Fig. 4. Impact of size distributions and number of events.
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Fig. 5. Policy comparison across parameters. Example results based on
deterministically sized delta encodings ∆.

with depth N , in which branch points corresponds to candidate

choices made by the client. Noting that a log with k delta

encoding entries (beyond the basefile) would have k+2 branch

choices, we can now write out a recurrence on the number of

leafs L(c, C) of a sub-tree in which we start with a log with

c branch choices (i.e., c = k+ 2) and at the last level have at

most C choices (in the case the log has grown by one in each

step): L(c, C) =
∑c+1

i=2 L(i, C + i− k − 1). Adding the base

case L(c, c) = c, it is now easy to calculate the total candidate

solutions by iteratively calculating L(2, N+1) using a double-

nested for-loop (2 ≤ C ≤ N+1;C+1 ≥ c ≥ 2). Furthermore,

leveraging the structure of the tree, it easy to prove that the

leafs in the tree grows faster than Ω(3N ), when N ≥ 5, and

numeric evaluation suggests that the number of leafs may be

upper bounded by O(4N ).2

Greedy policy: To decide when and how much the change

logs should be pruned, a simple greedy policy can be used

that weight the importance of (i) using small delta encoding

updates, and (ii) reducing the log size when given such

2Our upper-bound conjecture is based on studying the tree structure and
numeric evaluations of the ratio L(2, C)/L(2, C − 1) using two different
DP formulations. Using double precision, these two versions could solve the
problem for N up to 518 (i.e., C = 519), so based on pessimistic linear
extrapolation with log(log(log(C))) transform we can only state that the
upper bound appears sound up to C of 1,000. To put the complexity into
perspective, we also note that L(2, 519) = 1.4 · 10308.



opportunities. In particular, at each choice point j, the policy

uploads the delta change ∆i(j)∗,j that minimize the following

objective function:

arg min
i∈log

∆i,j + fcR(S
s
i +∆i,j), (3)

where Ss
i is the log size up-to-and-including entry i and f is a

policy parameter, whenever the corresponding objective value

is less than (1 + fcR)S
c
j , and otherwise updates the base file

itself. Here, i(j)∗ is the best choice i, given current j. When

f=0, all weight is given to minimize the upload bandwidth

usage (i.e., ∆i,j), and, when f→∞, to reduce the log size.
Threshold extension: Similar to the binary case, we can

ensure a worst-case ratio of 2 by augmenting the greedy policy

by always replacing the base file whenever i(j)∗ satisfies:

Ss
i(j)∗+∆i(j)∗,j≥2Sc

j .
Policy comparison: We have found that the greedy policy

is best when combined with the threshold policy, as the pure

greedy policy can build very large logs whenever the selected

read-weight factor f is too much smaller than the actual

read/write ratio (
|R|
|W| ). This is illustrated in Figure 6. Here,

we plot the normalized cost ratio as a function of f , for

our default scenario in which
|R|
|W|=1. To capture the multi-

step ∆i,j changes, we assume a combination of appends and

changes to random independent bytes. Under these assump-

tions, δi,j = δi,j−1 + δj−1,j and ∆i,j = ∆i,j−1 + δj−1,j +

Ss
j−1(1−

∆i,j−1

Ss
j−1

)
∆j−1,j−δj−1,j

Ss
j−1

, where δj−1,j and ∆j−1,j are

the one-step changes (following the same distributions as in

prior experiments), and the server-side log size Ss
j−1 easily

can be calculated given the current log content. Interestingly,

the added flexibility does not provide much improvement, and

only for a limited region of the parameter space. In fact, when

the read-weight factor f is too large (relative to the actual

read-write ratio), even the threshold-based greedy variation

can be outperformed by the (simpler) binary threshold policy.

The above observations are consistent when varying the other

workload parameters (results mostly omitted), including when

changing the ratio between appends (δ) and random byte

changes (∆−δ), as illustrated in Figure 6(b). Our results show

that a simple binary threshold policy indeed may be a good

candidate to use in practice.

V. RELATED WORK

Common techniques to reduce the cloud storage and band-

width costs include deduplication [8], [9], [10], [11], [12],

[13], [14], delta encoding [15], [16], device-to-device syn-

chronization [17], compression [18], and caching [19]. Mo-

tivated by high storage costs and significant redundancy in

the data stored (both by individual clients and across clients),

most of these works have focused on deduplication [8], [9],

[10]. This include effective and secure data deduplication

solutions that combine convergent encryption and clever key

management [11], [12], [13], [14]. It is therefore perhaps

not surprising that we have observed that three of the four

considered CSEs implement effective deduplication [6].
However, over the past few decades, storage costs have

dropped multiple orders of magnitude (e.g., $ per MB), and
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are today relatively cheaper compared to bandwidth costs than

in the past. Despite this evolution making a strong case for the

delta encoding problem becoming relatively more important,

less work has been done on delta encoding solutions, and

such solutions are relatively less frequently implemented by

the most popular services [6]. We note that the importance

of effective delta encoding solutions is further augmented

by much file data being modified many times and that data

often is accessed from multiple devices. These arguments are

confirmed by the workloads observed by researchers studying

the most beneficial user behaviors for effective file synchro-

nization [20] and the client behavior itself [21], [22], [18].

Similar to us, Drago et al. [7] find that Dropbox is able

to reduce the synchronization traffic significantly by using

delta encoding. Others have implemented middleware solu-

tions (e.g., that can be used in conjunction with Dropbox) to

improve the synchronization process [16], [23] or proposed

techniques that try to reduce the synchronization traffic by

aggregating multiple changes or in other ways optimize the

delta encodings traffic [15], [16]. For example, Lee et al. [15]

present an MDP-based solution that tries to optimize the

tradeoff between file consistency differences and bandwidth

savings. In contrast to these works, we consider the case of

CSE, and note that the bounds and threshold policy described

here are valid together with any such technique. For the

purpose of our empirical evaluation we use Dropbox traces,

allowing us to capture the performance of the current state-

of-the-art production algorithms.

There is very limited work characterizing public CSEs. As

described in Section II, where we summarize our prior charac-

terization work [6], we have previously empirically measured

and compared the featured implemented and the overhead

observed when using four popular CSEs and four popular

non-CSEs. In this work we substantially expand on these

initial findings and provide both new targeted experiments

(Section III) and a novel model-based analysis (Section IV),



each of which provide new system insights into the important

delta encoding problem associated with CSEs.

Mager et al. [24] studied the now discontinued CSE service

Wuala. In the context of CSEs, others have uncovered weak-

nesses when enabling data sharing [25] or proposed solutions

for sharing data in dynamic groups over an untrusted cloud

storage service [26], [27], [28]. Yet others have considered

many other interesting security/privacy related cloud aspects

than CSE [29], [30], [31], [32], [33], [34]. In contrast to the

above works, we analyze the delta encoding problem of CSEs.

VI. CONCLUSIONS

This paper focuses on the delta encoding overhead asso-

ciated with CSE. Using a combination of targeted empirical

experiments and a model-based analysis of these overheads,

we characterize the current state-of-the-art and provide in-

sights into further improvements. Our experiments with eight

services (four CSEs and four non-CSEs) show that the perfor-

mance overheads associated with implementing delta encoding

typically are substantially higher than other bandwidth saving

features such as compression and deduplication. Through tar-

geted experiments with the services implementing some form

of delta encoding (SpiderOak among the CSEs and Dropbox

+ iCloud among non-CSEs), we evaluate these differences and

provide insights and model the effects of the fixed-sized blocks

used by SpiderOak. We then develop an analytic cost model

that allows us to compare and contrast the best possible CSE

delta encoding policies, assuming the same delta encoding

algorithm is implemented as the best non-CSE (allowing fair

comparison). Finally, using the model, we show that a simple

threshold-based CSE policy has a worst-case cost within a

factor 2 of the corresponding non-CSE, with numeric results

showing that such a policy typically would perform much

better, has an average difference (compared to optimal) below

1.5 across a wide range of delta size distributions (Pareto,

exponential, normal, deterministic) and other parameters, and

that the policy improves on the SpiderOak results. The results

are encouraging as they show significant cost saving opportu-

nities for CSEs and demonstrate that CSEs can achieve most

of the cost savings that delta encoding provides.
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