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ABSTRACT
Homomorphic encryption (HE) allows computations on encrypted
data, leaking neither the input nor the computational output. While
the method has historically been infeasible to use in practice, due
to recent advancements, HE has started to be applied in real-world
applications. Motivated by the possibility of outsourcing heavy
computations to the cloud and still maintaining end-to-end secu-
rity, in this paper, we use HE to design a basic audio conferencing
application and demonstrate that our design approach (including
some advanced features) is both practical and scalable. First, by
homomorphically mixing encrypted audio in an untrusted, honest-
but-curious server, we demonstrate the practical use of HE in audio
communication. Second, by using multiplication operations, we go
beyond the purely additive audio mixing and implement advanced
example features capable of handling server-side mute and breakout
rooms without the cloud server being able to extract sensitive user-
specific metadata. Whereas the encryption and decryption times
are shown to be magnitudes slower than generic AES encryption
and roughly ten times slower than Signal’s AES implementation,
our solution approach is scalable and achieves end-to-end encryp-
tion while keeping performance well within the bounds of practical
use. Third, besides studying the performance aspects, we also objec-
tively evaluate the perceived audio quality, demonstrating that this
approach also achieves excellent audio quality. Finally, our compre-
hensive evaluation and empirical findings provide valuable insights
into the tradeoffs between HE schemes, their security configura-
tions, and audio parameters. Combined, our results demonstrate
that audio mixing using HE (including advanced features) now can
be made both practical and scalable.
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1 INTRODUCTION
Secure online communication is essential for many businesses
and people. To protect against potential eavesdroppers, the data
must therefore typically be carefully encrypted. However, different
encryption-based solutions and the encryptions they use come with
their own overheads and limitations.

Today, most multi-party audio systems use one of two encryption
approaches: (1) end-to-middle encryptionwith a server in themiddle
decrypting, mixing, and re-encrypting the mixed audio streams,
or (2) end-to-end encryption with clients performing audio mixing
after obtaining encrypted streams of each other participating client.
A major downside of the first approach is that it requires users to
trust the service provider (who would need to decrypt the data on
middle servers before mixing the audio). While this is not the case
with the second approach (since the server does not have access to
the decryption keys), a heavy load must be put on the end devices.
For example, in the case of a group conversation with 𝑛 users, each
user is required to maintain O(𝑛) end-to-end streams, where each
stream must be encrypted, decrypted, and mixed.

In contrast, we instead consider a third approach: Cloud-supported
audio mixing using homomorphic encryption (HE). Here, clients
encrypt recorded audio data and send their encrypted streams to a
middle server (e.g., in the cloud) that performs the audio mixing
on the encrypted streams before sending the modified-but-still-
encrypted streams to the participating clients. The use of HE en-
sures that the middle servers can apply the necessary numeric
calculations needed for proper audio mixing directly on the cipher-
texts, without them ever having access to any decryption keys or
the decrypted audio streams themselves. Similar to the first ap-
proach, this allows the solution to scale more easily, as the load
on the clients is independent of the number of clients, and similar
to the second approach, the solution ensures that servers cannot
observe the streams themselves.

While performance limitations [48] associated with HE long
have limited its practical use, recent advancements in the field have
come to change this. For example, fully HE is now implemented
and used in Microsoft’s Edge browser to compare users encrypted
login information to known leaks [16, 17, 37]. HE has also been
used in the contexts of face recognition [23], privacy-preserving
blockchains [68], medicine [7, 36, 65], and various machine learning
problems [12, 13, 15, 20, 22, 35, 65]. Supported by our performance
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results, we demonstrate and argue that now also is the time to start
applying HE to secure end-to-end group communication.

In this paper, we present the design and evaluation of a secure,
end-to-end, audio conferencing application implemented using HE,
with our comprehensive evaluation providing the first practical
demonstration that the audio mixing using HE is both practical
and scalable using current state-of-the-art HE. Instead of placing
the audio mixing and the mass encryption/decryption of streams
on the client side, we use HE to mix audio on an untrusted server
before forwarding the mixed audio to each user. We assume an
honest-but-curious threat model where the untrusted server ob-
serves all internal operations and attempts to learn all possible
information. Our approach maintains the end-to-end encryption
and is scalable, as each client must only encrypt and decrypt (as well
as send/receive) a single stream. Our results capture the various
tradeoffs between the HE schemes, their security configurations,
and the chosen audio parameters.

While we are not the first to suggest the use of HE in the audio
communication context (see Section 7), we provide the first com-
prehensive demonstration and evaluation of such a solution. Prior
works have theoretically reduced the circuit depth, ignored the
actual audio quality perceived by the end users, and have only con-
sidered additive features [56]. In contrast, we present practical im-
plementations that include new advanced features (e.g., server-side
mute and breakout rooms) that demonstrate the practicality of using
multiplicative HE (needed for some of the implemented features)
and the scalability achievable with such implementations. Our com-
prehensive experiments provide many insights into the best design
choices when implementing end-to-end encrypted group commu-
nication using HE.

By studying the different components of the communication
process both individually and in combination, we share insights
into individual performance bottlenecks, and, as reference points,
we compare the performance to the AES counterparts used in (1) a
generic cryptographic library and (2) the Signal application. Fur-
thermore, through the use of practical Quality of Experience (QoE)
metrics, we provide the first insights into how the perceived audio
quality that such solutions can offer is impacted as the system is
scaled and/or implemented in various ways. Our findings provide
valuable insights for service providers wanting to implement a
practical and scalable end-to-end encrypted audio conferencing
service. We also note that the approach may come to challenge the
constraints that many services today put on the maximum num-
ber of participants they can support [44, 59, 67, 69]. For example,
Microsoft Teams currently offers end-to-end encryption for only
one-on-one calls [44], while Signal recently increased their support
from 5 to 40 participants [59].

Summary of contributions: (1) The first comprehensive demon-
stration that audio mixing using HE is both practical and scalable,
with our results showing that now is the time to start using HE
to secure end-to-end communication. (2) New advanced features
implemented using HE that enable server-side mute and break-
out rooms without the server being able to extract sensitive user-
specific metadata. (3) Quantitatively supported insights into how
performance bottlenecks and audio quality is impacted by different
design and implementation choices.

Outline: Section 2 first presents the background of HE. Section 3
then presents our framework for audio mixing, the supported fea-
tures, and their parameter selection. The performance of the HE
schemes is presented in Section 4, and the end-to-end performance
in Section 5. Finally, we discuss QoE and perceived audio quality in
Section 6, related works in Section 7, and conclusions in Section 8.

2 HOMOMORPHIC ENCRYPTION
Homomorphic encryption (HE) allows a third party to perform com-
putation over encrypted data without learning the cleartext input
or output. The concept was introduced early by Rivest et al. [54]
in 1978 but became realized in 2009 when Gentry [26] presented
the first feasible fully homomorphic encryption scheme. Since then,
several schemes have been proposed, and rapid advancements in
efficiency have been made. During the last decade, the computation
time has been reduced from minutes to milliseconds [19, 24, 48].

There are currently three leading HE schemes: BFV [10, 25],
BGV [11], and CKKS [18]. BFV is similar to BGV in its design, and
they both support encryption and computation based on integers. In
contrast, CKKS is approximate and supports numerical calculations
on float numbers. The security of these schemes is based on the Ring
Learning with Errors (RLWE) problem [41], a continuation of the
Learning with Error (LWE) problem first formulated by Regev [52].

In 2012, Fan and Vercauteren [25] proposed an extension of
Brakerski’s [10] scheme, becoming the Brakerski/Fan-Vercauteren
scheme (BFV). Brakerski’s scheme builds on the LWE problem and
reduces the noise growth from quadratic to linear when perform-
ing multiplication. Fan and Vercauteren improved the scheme by
extending the problem to RLWE, making the relinearization key
smaller and the computations faster using modulus switching.

More recently, Cheon et al. [18] presented a HE scheme sup-
porting computations of float numbers, the Cheon-Kim-Kim-Song
scheme (CKKS). As opposed to previous schemes, the results ob-
tained after decryption are not exact but approximate due to a
rescaling procedure in the scheme.

The hardness of the RLWE problem is based on lattice-based
cryptography, currently considered quantum-safe, and cannot (as
long as this common conjecture holds) be solved by quantum com-
puters in polynomial time [41, 42]. A homomorphically encrypted
ciphertext consists of a vector 𝑣 + 𝑥 , where 𝑣 is in the ideal lattice,
and 𝑥 is the error/noise vector. In simplified terms, each ciphertext
can be seen as a polynomial of degree 𝑛 (ring dimension) with
added noise. In BFV, we consider the case where the ring dimension
corresponds to the number of available slots in the ciphertext and
the batch size is defined as the number of filled slots. For example,
using a ring dimension of 𝑛=212=2048 and a batch size of 𝑏=1280,
only 1280 out of the 2048 slots are filled. The remaining slots are
unused, but must be kept in the ciphertext to ensure the security
properties of the scheme. This means that the ciphertext size re-
mains constant as long as the batch size is less or equal to the ring
dimension. With CKKS, the largest batch size is 𝑛/2. In practice, the
unused ciphertext slots can be used for metadata or other types of
communication data (e.g., chat messages or screen sharing) without
the cost of additional bandwidth. In the audio communication con-
text, the overhead can also be used to add (adaptive) forward error
correction [8] and obtain error control in the audio transmission.
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Figure 1: Overview of three VoIP clients and audio mixing
on cloud-based middle server.

Furthermore, with the Single Instruction Multiple Data (SIMD)
paradigm [62], each slot in a ciphertext can be homomorphically
calculated at the cost of one instruction. For example, to add two
ciphertexts 𝑐 (1) and 𝑐 (2) , each with a degree of 𝑛, a single homo-
morphic instruction is used to calculate 𝑐 (3)

𝑖
= 𝑐

(1)
𝑖

+ 𝑐 (2)
𝑖

for all 𝑖
(0 ≤ 𝑖 < 𝑛) of the resulting ciphertext 𝑐 (3) , where 𝑐 (1)

𝑖
, 𝑐 (2)

𝑖
, and

𝑐
(3)
𝑖

represent the individual values of the three ciphertexts.
However, with HE, the noise grows with the number of cipher-

text operations, withmultiplications being several magnitudesmore
expensive than additions. To ensure correctness when decrypting
the ciphertext, the noise must be kept below a certain threshold. In
fully HE, the ciphertext can be refreshed using bootstrapping and a
relinearization process. This effectively reduces the ciphertext size
and noise but is considered very slow in practice [26].

3 AUDIO MIXING FRAMEWORK
Audio signals consist of waves that can be combined by adding
them together according to the superposition principle. This pro-
cess is usually referred to as audio mixing. When capturing ana-
log signal and converting to digital, pulse code modulation (PCM)
is usually preferred. Here, the continuous signal is sampled at a
predefined sampling rate and the sample value is converted into
a digital value using a predefined number of bits, called the bit
depth. The resolution of the discretized signal increase with the
bit depth and sampling rate. Common standard sampling rates in
teleconferencing include narrowband (8 kHz), wideband (16 kHz),
super-wideband (32 kHz), and fullband (48 kHz).

3.1 High-level framework overview
To evaluate HE in the audio context, we design and implement a
client-server VoIP application. Figure 1 shows a conceptual overview
of our framework with three participating clients and an untrusted
cloud server. Here, each client uses one upstream and one down-
stream to send and receive audio, respectively. As the audio streams
are mixed at the server, each downstream contains the mixed audio
of the other participants. However, to avoid delayed playback of
a client’s audio, each client’s audio is subtracted from the mixed
audio before being sent to the client. Therefore, in a call with𝑚
participants, the mixed audio sent over the network from the server
to a client contains the audio of𝑚 − 1 clients.

In VoIP, continuous audio needs to be sampled and batched
together before being sent over the network. Using a sample rate

Δ
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Figure 2: Example iteration of continuous servermixing with
three clients and batch time Δ.

 Receive 
vi


Buffer / playback
Decrypt using
secret key KS

Record b samples
every t ms

Encrypt using
secret key KS

Send

pi

(a) Example client 𝑖

 Receive 
p1


 Receive 
p2

 Receive 
pm

Send

p2

Audio mix

using KP

Audio sub 

using KP

Audio sub 

using KP

Audio sub 

using KP

Send

pm

Send

p1

(b) Server

Figure 3: Overview of the execution flow for a batch iteration
with𝑚 clients.

of 𝑟 , each client records their audio and creates groups of batch
time Δ. We define this as one iteration, resulting in an audio batch
size 𝑏 = Δ × 𝑟 . Given a ring dimension of 𝑛, the maximum batch
size 𝑏 is 𝑛 for BFV, and 𝑛/2 for CKKS. The maximum batch time
is bounded by Δ ≤ 𝑛/𝑟 for BFV, and Δ ≤ (𝑛/2)/𝑟 for CKKS. In a
call configured to use Δ=40 ms and super-wideband (𝑟=32 kHz),
a client encrypts and sends 𝑏=1280 audio samples every 40 ms to
the server for mixing. Simultaneously, each client receives 1280
mixed audio samples every 40 ms from the server to be decrypted
and played. The underlying BFV and CKKS implementation use
64 bits to internally represent encrypted values. Therefore, once
decrypted, we can perform audio normalization on the client side
to avoid audio clipping (which can occur when the digital samples
bounded by their bit depth have been summed).

At the server, the audio is continuously mixed as it arrives. At
every iteration of Δ, the audio of each user is subtracted from the
mixed audio before being sent to the user. Figure 2 shows an exam-
ple of a server mixing with three clients. Here, the server receives
packet 𝑝𝑖 from client 𝑖 , and the audio samples are continuously
mixed as arrived (except for the first packet in that iteration). At
the end of the iteration, the server calculates 𝑣𝑖 by subtracting the
resulting mixed audio with 𝑝𝑖 and sends 𝑣𝑖 to client 𝑖 . In the ex-
ample, all packets are received within one iteration. However, due
to jitter and bandwidth variations, packets may be received in a
different time batch. If a server receives several packets in the same
iteration from the same user, only the first packet is mixed, and the
remaining packets are buffered for mixing in the next iteration. In
case no audio is received from a client within a time iteration, no
audio is subtracted, and the full mixed audio is sent to that client.

Figure 3 summarizes the execution flow for every iteration for
a client and a server. On the client side (Figure 3(a)), the audio is
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captured and received simultaneously. The sending process cap-
tures the audio using PCM and then encrypts using the secret key
𝐾𝑆 , while the receiving process handles the decryption and audio
playback. For scalability at the server (Figure 3(b)), packets are
received in parallel before being merged for mixing. Given that
the two audio samples have been recorded using the same sample
rate, the audio mix is accomplished by combining their respective
digital samples. When played back, the resulting audio wave con-
tains the other two audio waves, resulting in an audio mix. After
the mixing, the client’s audio is subtracted and sent individually to
each client. Furthermore, each audio sample sent over the network
includes a timestamp to measure the end-to-end delay, and discard
packets delayed by more than 150 ms. Clients and servers operate
asynchronously and can join and leave the call continuously.

In our proof-of-concept implementation, all clients share a pre-
distributed secret key 𝐾𝑆 for encryption and decryption. We con-
sider the pre-distribution of these keys out of scope for this paper.
With this scheme, the server does not have access to the secret key,
but instead uses the public key 𝐾𝑃 to perform ciphertext calcula-
tions. This ensures that an honest-but-curious middle server would
not be able to decrypt and extract sensitive information.

3.2 Implemented example features
In our framework, we implement three example features and use
the smallest ring dimension required to support each feature given a
security level. The basic feature models the requirements for a min-
imal, scalable audio conference application. The server-side mute
(SSM) and breakout-room privacy (BRP) features then build upon
this basic feature by adding additional functionalities. These two
advanced features (SSM and BRP) are implemented using homomor-
phic multiplications. In addition to the features implemented and
demonstrated here, we note that additional advanced server-side
features can easily be implemented to improve the service further.
We next present our three features in more detail.

Basic:We have designed the basic feature to support conference
calls of at least 1000 participants and at least 8 participants speaking
simultaneously. Unless all speakers are close to screaming, this limit
is usually much higher. Our implementation allows users to contin-
uously join and leave the call, speak and listen simultaneously, and
the received audio does not contain any (delayed) playback of the
user’s own voice (as we remove this after the mixing). Here, each
user sends an audio sample every batch time Δ to the server for mix-
ing, regardless of speaking or being silent. This provides speaker
anonymity, where the server cannot distinguish between a speaker
and a silent user. While this comes at the cost of some additional
bandwidth, for some services, this may be a small price to pay for
additional privacy protection. Furthermore, we note that the band-
width needed per client is upper bounded by one upstream and one
downstream, and that the server’s bandwidth scales linearly with
the number of participants. Finally, we consider the communication
service to be practical if the end-to-end latency is less than 150 ms,
a threshold considered acceptable in VoIP communication [47]. The
basic feature requires no ciphertext multiplication.

Server-side mute (SSM): As each client continuously sends
audio packets to the server to preserve speaker anonymity, the
basic feature does not allow a conference administrator to control

the contents or selection of audio packets to mix. To allow an
administrator to mute each participant individually without the
server knowing which participants are muted, our implementation
of the SSM feature therefore uses a preconfigured homomorphically
encrypted ciphertext of dimension𝑛 for each user. These ciphertexts
contain either the value 1 or 0 in all its slots, and can be continuously
updated by an administrator throughout the call. Upon receiving
an encrypted audio sample from a user, the sample is multiplied
with the preconfigured ciphertext, resulting in a new ciphertext
of either silence (only values 0) or the original encrypted audio
sample. The result of the ciphertext–ciphertext multiplication is
then mixed with the results from other users before the user’s audio
is subtracted from the mixed ciphertext and sent to the user. The
SSM feature requires each ciphertext to be multiplied once.

Breakout-room privacy (BRP): A common feature in many
conferencing applications is the breakout room, where users are
divided into groups, and each group can communicate in parallel.
However, the information of whom the user is communicating with
can be privacy sensitive and should be preserved if possible. With
the BRP feature, users can communicate separately in groups with-
out the server knowing the room to which each user belongs. This
further improves user privacy and reduces the metadata leakage
and the trust needed to be placed on the server. The BRP feature is
achieved using the following steps.

In a call with 𝑚 breakout rooms, each participant has a pre-
configured vector 𝑅 containing𝑚 different ciphertexts, with each
ciphertext having a degree of 𝑛. One of the ciphertexts, say 𝑅 𝑗 ,
where 0 ≤ 𝑗 < 𝑚, contains the value 1 in each of its ciphertext slots,
while the other𝑚−1 ciphertexts all contain values 0. Internally, the
vector 𝑅 can be viewed as an encrypted matrix with𝑚 rows and 𝑛
columns, with one of the rows containing values 1 while other rows
values 0. Here, rows represent different ciphertexts and columns
different slots within the ciphertexts. This preconfigured vector 𝑅
can, for example, be configured by an administrator or encrypted
and sent by the user when joining the call. By modifying 𝑅, a user
can also be switched between breakout rooms.

Upon receiving an encrypted audio sample at the server, the
sample is multiplied with each of the ciphertexts in 𝑅. Similar to the
SSM feature, multiplication corresponds to muting a participant in
every other channel except the one in which the user participates.
This produces a new vector that now contains the encrypted audio
samples on one of its ciphertexts, while other ciphertexts contain
values 0. Next, each vector is added with other vectors produced
by other users, creating an audio mix for each breakout room. At
this point, we have a vector of𝑚 ciphertexts, with each ciphertext
containing the mixed audio for a corresponding breakout room.
The server has now homomorphically mixed the audio without
knowing in which breakout room a user is a member.

Next, we perform another ciphertext multiplication to filter the
audio and only send the audio of the room where the user par-
ticipates. Again, we multiply with each of the ciphertexts in the
preconfigured vector𝑅 for the user, resulting in𝑚 ciphertexts where
𝑚 − 1 of those contain no audio. This ensures that the user only
receives the audio from the breakout room in which the user is a
member. The server then sums the𝑚 ciphertexts together, subtracts
the user’s incoming audio to avoid delayed playback, and sends the
resulting audio to the user.
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Table 1: Example implementations, their configuration, en-
crypted sizes, and supported features.

HE
scheme

Security
level

Ring
dimension

Encrypted
(compressed) size

Mult.
depth

Example features
Basic SSM BRP

BFV

128
211 33 (31) KB 0 ✓ ✗ ✗

212 131 (88) KB 1 ✓ ✓ ✗

213 524 (432) KB 2 ✓ ✓ ✓

256
212 66 (64) KB 0 ✓ ✗ ✗

213 262 (195) KB 1 ✓ ✓ ✗

214 1.05 (0.89) MB 2 ✓ ✓ ✓

CKKS

128
212 66 (66) KB 0 ✓ ✗ ✗

213 262 (205) KB 1 ✓ ✓ ✗

213 393 (277) KB 2 ✓ ✓ ✓

256
213 131 (131) KB 0 ✓ ✗ ✗

214 524 (408) KB 1 ✓ ✓ ✗

214 787 (556) KB 2 ✓ ✓ ✓

Naturally, using a polynomial degree of 𝑛, the application sup-
ports up to 𝑛 rooms (𝑚 ≤ 𝑛), with each ciphertext slot holding and
mixing the audio per breakout room. As the server cannot distin-
guish between active breakout rooms with participants, one can
also use additional breakout rooms to avoid revealing the number
of active rooms, although this comes with significant performance
overheads. In total, the BRP feature is achieved using 2×𝑚 multipli-
cations, but each ciphertext is only multiplied twice, resulting in a
multiplication depth of 2 (by writing the computation in a tree-like
structure, one can multiply 𝑘 ciphertexts with log(𝑘) depth). In prac-
tice, several variations of the BRP feature can be implemented; e.g.,
by multiplying with all 1, we can broadcast a user’s audio in every
breakout room. The BRP feature also supports the SSM feature, as
the first multiplication can be used to mute a participant by setting
all the ciphertext values to 0.

3.3 Parameter selection and supported features
Choosing the appropriate cryptographic parameters in HE is a
non-trivial task. If not done carefully, the encryption scheme can
become too weak or unnecessarily slow. Therefore, we model and
evaluate various HE settings in the context of audio conferencing
and present parameters for practical use. Table 1 shows the con-
figuration parameters used in our framework, the encrypted and
compressed ciphertext sizes, and the features supported by our ex-
ample implementation. We focus on the two classes of HE schemes
(BFV and CKKS) and study the use of 128- and 256-bit security.

Standard ring dimension sizes (polynomial degree) of current HE
schemes are𝑛𝑘 , where𝑘 is an integer 10 ≤ 𝑘 ≤ 15 [3]. Using a larger
dimension allows for more computation but significantly increases
the computation time of encryption, decryption, and ciphertext
operations. The chosen HE parameters must be such that the noise
is kept below a certain threshold to ensure correct decryption. For
example, to support the basic feature, the noise threshold must
allow 1000 ciphertext additions. We find the smallest possible ring
dimension to be 𝑛 = 211 for BFV and 𝑛 = 212 for CKKS.

Using the same ring dimension, a higher security level results
in a smaller noise budget (i.e., fewer allowed HE operations) and
(counter-intuitively) smaller ciphertext size. This is because the se-
curity level is dependent on the relative size of the noise compared
to the ciphertext size, where a smaller ciphertext makes the noise
relatively larger. However, since a smaller noise budget results in
fewer allowed ciphertext operations that can be performed, wemust
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Figure 4: Audio example
from the PESQ/POLQA
framework.
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compensate by increasing the ring dimension, which increases the
ciphertext size. Increasing the ring dimension also provides higher
security as the complexity and dimensionality of the underlying
scheme increase. Therefore, the security level is affected by the com-
bination of the chosen ring dimension and the number of allowed
ciphertext operations (often measured using a multiplicative depth,
i.e., the maximum number of consecutive multiplication operations
allowed on a single ciphertext).

Due to the tradeoffs between security level, ring dimension,
ciphertext size, and multiplicative depth, the scheme parameters
must be carefully chosen. In general, it is desired to minimize the
parameters such that the application features are still supported. In
our framework, we use a multiplicative depth of 0, 1, or 2, and the
smallest ring dimension required to support the Basic, SSM, and
BRP features, respectively. Furthermore, in the underlying scheme
for BFV, we select the plaintext modulus to 20 bits. For CKKS, we
use a scaling factor of 230, a first and last prime size of 60 bits, and
intermediate prime sizes in the modulus chain of 30 bits.

4 EVALUATION OF HOMOMORPHIC
ENCRYPTION SCHEMES

For our evaluation, we run performance tests on a single worksta-
tion using Ubuntu 22.04 with an AMD Ryzen 7 PRO 5850U 1.9 GHz
CPU and 32 GB RAM. Our implementation uses the Pyfhel [31]
and SEAL library [43] for homomorphic encryption, conforming to
the homomorphic encryption standard [3]. We also use standard-
ized audio files from the PESQ/POLQA framework [6, 55]. Figure 4
shows the amplitude plot of one such example file sampled using
super-wideband (32 kHz). Here, the audio is 6 seconds long and
contains two spoken phrases with silence between the phrases. The
2-second silence aims to test the system’s performance and the
quality of its output with silent sound input.

4.1 Performance over time
To test the performance of HE operations over time, we first divide
the audio file into time batches of 40 ms. Then, using ten different
generated keypairs, we perform the homomorphic operation inde-
pendently 100 times for each pair. For an audio file of 6 seconds, this
gives us 150,000 measurements. For a comparison baseline, Figure 5
first shows the performance of AES encryption and decryption
over time. The measurements clearly show that the encryption and
decryption time is independent of the audio contents. During the
silence period, the measured time is indistinguishable from other
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Figure 6: Homomorphic performance over time.

periods with actual sound. This is an important property of audio
communication and should not be taken for granted. For example,
previous works [4, 9, 27, 28, 66] have shown that various contents
can be extracted, despite the traffic being encrypted. By ensuring
that the operations and encrypted sizes are constant regardless of
the audio contents, many of these attacks may be prevented.

Figure 6 shows the corresponding homomorphic encryption and
decryption time for the various configurations. Here, BFV-128-Basic
denotes the HE scheme BFV using 128-bit security, supporting
the basic feature (and thus a multiplicative depth of 0). In general,
we see that the encryption and decryption times are in order of
milliseconds. The chosen security level highly influences the perfor-
mance of the different configurations and features supported. Using
BFV with the basic feature (BFV-128-Basic and BFV-256-Basic), the
encryption time is consistently below 1 ms. The encryption and
decryption times increase with a higher security level and a larger
multiplicative depth (more features). We also observe CKKS being
slower than BFV, except for the decryption of the configuration sup-
porting the BRP feature (CKKS-128-BRP and CKKS-256-BRP). This
is because, for these two configurations, CKKS achieves a smaller
encrypted ciphertext size than the BFV counterparts.

Compared to AES, we observe 2-to-3 orders of magnitude longer
encryption times but with small standard deviation (omitted from
the figures as the standard deviations are well within 0.1 ms). For
example, when comparing AES encryption to BFV using 128-bit
security, BFV is roughly 38, 124, and 357 times slower for the three
feature variants, respectively. For CKKS, we observe slightly higher
numbers: 85, 342, and 424 times slower for the three features. For
decryption, both the homomorphic implementations and AES are
faster than their encryption counterparts, with the homomorphic
operations being of similar magnitudes slower than AES as for the
corresponding encryption cases.

For encryption (Figure 6(a)), the large gap between CKKS-128-
BRP and CKKS-256-SSM can be explained by the underlying ring
dimension. The three configurations with encryption times of 5 ms
or above (CKKS-256-SSM, BFV-256-BRP, andCKKS-256-BRP) all use a
dimension of 214, while the other configurations use a dimension of
213 or less. This again highlights that a larger ring dimension comes
with a significant performance penalty, but allows more ciphertext
operations and the possibility for more advanced features.

Finally, we observe similar trends for the HE ciphertext opera-
tions, with the performance being independent of the audio con-
tents. Figures for homomorphic addition, subtraction, and multipli-
cation are included in Appendix A.
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Figure 7: Homomorphic performance per batch size.

0 500 1000 1500 2000
Batch size

0
1
2
3
4
5
6
7
8
9

10

En
cr

./D
ec

r. 
tim

e 
(μ

s)

AES 256 encr.
AES 128 encr.

AES 256 decr.
AES 128 decr.

(a) Generic AES

0 500 1000 1500 2000
Batch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

En
cr

./D
ec

r. 
tim

e 
(m

s)

Signal encrypt
Signal decrypt

(b) Signal’s AES 128 implementation

Figure 8: AES performance per batch size.

4.2 Effects of batch time and sample rate
To measure the impact of the selected audio sample rate 𝑟 and batch
timeΔ, we run experiments using batch timesΔ ∈ {10, 20, 30, 40}ms
together with the sample rates 𝑟 ∈ {8, 16, 32, 48} kHz. Figure 7
shows a scatter plot for encryption and decryption time based on
the batch size. As the batch size is defined as the number of audio
samples in a ciphertext (i.e., a combination of both Δ and 𝑟 ), we
include 16 measurements for each configuration. We note that sev-
eral combinations of Δ and 𝑟 can result in the same batch size (e.g.,
Δ=40 ms, 𝑟=16 kHz, and Δ=20 ms, 𝑟=32 kHz both result in a batch
size of 640 samples). The high overlap (barely visible in Figure 7)
of configurations with the same batch size again highlights that
the encryption and decryption times are independent of the audio
contents. The performance of the homomorphic encryption and
decryption over various batch sizes (Figure 7) are consistent with
the performance over time (Figure 6). Here, we again observe the
general trend that operation times increase with higher security
levels and the number of features supported.

The straight horizontal line for each configuration shows that the
performance is independent of the selected batch size. To maximize
the performance, it is therefore desired to select the largest batch
time Δ and sample rate 𝑟 possible, conditioned on the constraint
that the resulting batch size must be less than the ring dimension
for BFV, or less than half of the ring dimension for CKKS (i.e., the
maximum number of slots per ciphertext for the two schemes).

The above behavior differs from that observed for AES. Figure 8
shows the performance of AES encryption and decryption for (a)
a generic AES library in C++ [21] and (b) AES 128 as used in the
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Figure 9: Client-side CDFs for homomorphic operations and AES.
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Figure 10: Server-side CDFs for HE ciphertext operations.

Signal Calling Service [60] for end-to-end group calls [59]. Here,
we see that the encryption and decryption times of these AES
implementations scale linearly with the batch size, with a larger
batch size resulting in relatively larger processing times. This is
because, for AES, more data results in an increased number of blocks
that have to be encrypted and decrypted. In contrast, a single block
is used for HE schemes, andwe get the same performance regardless
of how many slots are filled in the ciphertext (i.e., batch size).

In contrast to the generic AES library (Figure 8(a)), for which
the decryption operations are slightly faster than the encryption
counterparts, for the Signal application (Figure 8(b)), we observe
similar performance for encryption and decryption. We also note
significant differences in the relative encryption and description
speeds of the implementations, with Signal being much slower
than the generic library (due to implementation differences) but
substantially faster than the homomorphic encryption and decryp-
tion (Figure 7). Yet, and perhaps most importantly, all these times
(including with our out-of-the-box, non-optimized HE implementa-
tion) are smaller than both the typical end-to-end round-trip time
between communicating parties and the batch granularity itself.

Finally, for HE ciphertext operations, we observe similar trends
where the performance is independent of the batch size. The scatter
plots for addition, subtraction, and multiplication per batch size are
shown in Appendix B.

4.3 Tail performance analysis
In real-time communication systems, performance outliers can
cause the system to lag behind. In audio conferencing, packets may
instead be skipped if delayed for too long. To illustrate the fraction
of packets that belong to this tail, Figure 9 shows the cumulative
distribution functions (CDFs) for operations on the client-side (i.e.,

encryption and decryption), and Figure 10 shows the CDFs for
server-side HE ciphertext operations.

Encryption and decryption: For homomorphic encryption
and decryption (Figures 9(a) and 9(b)), in addition to observing
performance ordered based on security level and supported features,
and decryption (again) being faster than encryption, we clearly see a
highly concentrated distribution. Here, the performance variations
are low and the tail of higher-delay packets (if any) is minimal with
no packet delayed bymore than 1ms. Compared to AES (Figure 9(c)),
we again observe (1) low performance variations, (2) sessions with
higher security levels resulting in longer processing times, and (3)
homomorphic encryption and decryption being roughly 30-400
times slower than their AES counterparts.

Mixing and subtraction: For audio mixing and subtraction
(Figures 10(a) and 10(b)), we observe a similar trend where a higher
security level and more features lead to longer processing times,
and that these ciphertext operations typically take less than 0.3 ms.
Here, the configurations have very similar performance (e.g., BFV-
256-SSM and CKKS-128-SSM, or BFV-128-BRP and CKKS-256-SSM),
despite being based on two fundamentally different HE schemes.
This is due to the underlying ring dimension and the requirements
to support these configurations resulting in similar ciphertext sizes.
This suggests that at those speeds (< 0.3 ms), homomorphic addi-
tion and subtraction of ciphertext are more dependent on ciphertext
sizes and the system capability, rather than the security level or HE
scheme. Furthermore, for CKKS-256-BRP, there is a clear plateau
where some packets take longer to process. These are due to per-
formance hiccups and saturations, causing every other packet (or
every fifth packet, as in the case of subtraction) to take roughly
double the time to process. The fluctuation of processing is fur-
ther illustrated in the performance over time plots in Appendix A,
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Figure 11: Parallel audio mixing time when delegated to 𝑛 extra processes.
Mixing times shown on both logarithmic (solid) and linear (dashed) scale.
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Figure 12: End-to-end performancewith dif-
ferent configs.

where it is shown that the fluctuations occur regardless of the audio
contents. Finally, we note that removing part of an audio from the
mixed audio, as in the case of subtraction, is slightly faster than
mixing that audio for the first time. While the differences are mini-
mal (typically less than 0.05 ms), it can be explained by the memory
management and the fact that processing the same encrypted audio
for the second time is slightly faster due to it being cached.

Multiplication: The general trend thus far for encryption, mix-
ing, subtraction, and decryption has shown the CKKS scheme to be
slower than the BFV scheme. However, this is not the case when
looking at the ciphertext multiplication time (Figure 10(c)). For
CKKS, while the multiplication times are still larger than addition
and subtraction, they clearly outperform the BFV counterparts
with processing times of typically less than 1 ms. Again, for both
CKKS and BFV, we observe longer processing times when using
implementations with a higher security level and more supported
features (and thus also the ciphertext size), with processing times
of BFV ranging from nearly 2.5 ms to roughly 20 ms.

Parallelization: Even though two ciphertexts can be processed
in parallel, this typically comes with large overheads. Figure 11
shows the mixing times with different number of parallel server
processes for the BFV-128-Basic and CKKS-128-Basic configurations,
respectively. Due to the low mixing time (< 0.1 ms) and relatively
large ciphertext sizes (33-66 KB), it is clear that the interprocess
communication results in significant overhead and that it may be
more beneficial to perform operations in a single process instead of
delegating to several parallel processes. For BFV (Figure 11(a)), we
see that parallel mixing only benefits a call with more than 1300
participants. For CKKS (Figure 11(b)), this number is slightly lower
due to the larger ciphertext mixing time. Therefore, to best scale
audio conferencing, it is important to find a good tradeoff between
the number of participants and parallel processes.

5 END-TO-END PERFORMANCE
5.1 Effects of batch time, sample rate, and

number of participants
We next study the end-to-end performance using a client-server
architecture. To minimize the effects of network variability, we
run tests on a local network with low latency (< 3 ms). We also
deploy and evaluate our framework on a research-based cloud
service (WARA-Ops) using different machines for each client and

server, and perform clock synchronization using NTP [45] to get
accurate end-to-end delay measurements. While we note higher
fluctuations due to shared resources in the cloud environment, we
observe similar results as running our tests locally. To allow for
reproducibility and ease of comparison, we report the local tests
with low latency and performance variations. Using the BFV-128-
Basic configuration, we measure the end-to-end delay in a call
with three participants. Two participants are actively speaking by
looping the PESQ/POLQA standardized files audio [6, 55], while the
third is listening and measuring the total delay using timestamps in
packet metadata. As clients operate asynchronously, we consider
the delay to be the earliest time of either all the mixed ciphertexts,
or the beginning of the mix iteration at the server.

Figure 12 shows the CDF of the end-to-end delay for various
batch times and sample rates narrowband (NB), wideband (WB),
super-wideband (SWB), and fullband (FB). In contrast to before,
where neither the batch time nor the sample rate affected the en-
cryption and decryption times, here the end-to-end delay reduces
with smaller batch times, while the sample rate does not have any
impact. However, it should also be noted that choosing a smaller
batch time comes at the cost of more processing and bandwidth
usage at both the server and the clients. For example, a batch time
of 20 ms results in twice as much processing and bandwidth com-
pared to with a batch time of 40 ms, as clients encrypt, sends, and
decrypt audio batches every batch time. To reduce the computa-
tional processing and the bandwidth consumed, it may therefore
be desired to use a larger batch time in the homomorphic context
than the otherwise typically used batch times of 20 ms [57]. We
also note that the bandwidth consumed per user is independent of
the number of call participants, and while larger ciphertexts come
with big overheads, the bandwidths they consume are still well
within the bounds of realistic modern networks. Furthermore, we
see that the end-to-end delay is consistently slightly larger than
the chosen batch time. This can be explained by the server mixing
process, where the server waits up to batch time to mix packets.
As previously shown, the processing times of encryption, mixing,
and decryption are relatively low (less than 1 ms together for this
configuration). Therefore, in this case, the major contribution to
the end-to-end delay is the waiting time for mixing at the server.

Using the basic configuration, we also measure the performance
as the system scales. Figure 13 shows the end-to-end time with
different number of participants using the BFV and CKKS schemes.
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Figure 13: End-to-end performance with different number
of call participants. Note the horizontal axis start value.

Here, we observe a clear trend with increasing end-to-end delay as
the number of participants increases. This is expected as the server
processing increases with the number of participants. As the audio
subtraction occurs after the batch iteration (as previously shown in
Figure 2), the time consumed by this process is directly added to
the end-to-end delay. For 1024 and 2048 participants, we clearly see
some packets being delayed to roughly 60 ms and outliers being
delayed up to roughly 80ms (double the batch time). This occurs
when many packets arrive to the server near the end of the batch
iteration, resulting in some packets not being processed in time in
the current iteration, and instead are delayed to the next batch.

We note that while only a small subset of all participants are
actively speaking, the server still continuously receives audio from
all participants. For example, in a call with 2048 participants, the
servermixes 2048 audio batches every iteration of batch time. This is
to preserve speaker anonymity, i.e., the server cannot identify active
speakers. In practice, a variation can be done, where only a subset
of the participants continuously send audio, providing speaker
anonymity among a subset of users. This substantially reduces the
computational performance required at the server, allowing the
server to support many more participants with minimal additional
computational overhead.

5.2 Effects of configurations and features
To capture the end-to-end impact of the different processing re-
quirements associated with different configurations, we next study
the performance using different configurations and batch times.
Figures 14 and 15 show the end-to-end delay under various config-
urations when using BFV and CKKS, respectively, in a call with 128
participants. For the basic feature, the end-to-end delay is slightly
larger than the selected batch time. Furthermore, due to increased
processing requirements, 256-bit security generally results in a
slightly larger end-to-end delay than 128-bit security. However, the
delay remains well within the acceptable threshold of 150 ms [47].

For the SSM feature, the use of BFV-128, BFV-256, and CKKS-128
results in an increased delay of 10-20 ms due to the extra processing
required for ciphertext multiplications. For CKKS-256, we see that
the selection of a too low batch time can make the system unstable.
When using a batch time of 10 ms, the processing queue grows
faster than the server can handle. The system is stable for batch
times of 20 ms and larger, although we observe a higher increase
in end-to-end delay compared to BFV or CKKS-128.

For the BRP feature, we again see instability and big variations
in the end-to-end delays. Due to the many multiplications required
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Figure 14: BFV performance using different configs.

BRP, 10
SSM, 10
Basic, 10

BRP, 20
SSM, 20
Basic, 20

BRP, 30
SSM, 30
Basic, 30

BRP, 40
SSM, 40
Basic, 40

0 50 100 150 200
End-to-end time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) CKKS 128-bit security

0 50 100 150 200
End-to-end time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CKKS 256-bit security

Figure 15: CKKS performance with different configs.
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Figure 16: BFV performance with BRP feature using different
batch times.

to implement the feature, BFV with the BRP feature completely
overwhelms the server with a batch time of 40 ms or less. For
CKKS-128, this is observed only for a batch time of 10 ms, while
for CKKS-256, the unstableness occurs with a batch time of 30 ms
or less. Therefore, the lowest usable batch time with CKKS and
the BRP feature is 20 ms for 128-bit security, and 40 ms for 256-bit
security. With CKKS, using a larger batch time than 40 ms only
results in a larger end-to-end delay.

To find the lowest batch time that supports the BFV scheme with
the BRP feature, we repeat the experiments using batch times up
to 150 ms. Figure 16 shows the results from these experiments. For
128-bit security (Figure 16(a)), we observe the overall lowest end-
to-end delay using a batch time of 80 ms, i.e., below the acceptable
threshold of 150 ms. For 256-bit security (Figure 16(b)), while a
130 ms batch time achieves the lowest end-to-end delay, the delay
is above 200 ms. Therefore, we consider BFV with 256-bit security
unsuitable for practical use with the BRP feature. Instead, the BRP
feature with 256-bit security is restricted to the CKKS scheme.

6 AUDIO QUALITY
VoIP performance is often evaluated using Quality of Service (QoS)
[64] and Quality of Experience (QoE) [33] metrics. Having studied
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Table 2: MOS rating* based on HE scheme, sample rate, and simultaneously active speakers.
Sample rate 8 kHz 16 kHz 32 kHz 48 kHz
Speakers 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

BFV 4.00 4.10 3.90 3.90 3.80 4.54 4.54 4.49 4.49 4.54
PESQ CKKS 4.00 4.10 3.90 3.90 3.80 4.54 4.54 4.49 4.49 4.54 N/A

BFV 4.20 4.03 3.95 3.87 3.85 4.32 4.30 4.35 4.38 4.41
POLQA CKKS 4.20 4.32 4.01 3.85 3.85 4.31 4.29 4.35 4.38 4.41 4.75

*Poor: 1 - 2, Fair: 2 - 3, Good: 3 - 4, Excellent: 4 - 5

the QoS by measuring the end-to-end delay, we next study the QoE
impact. For this analysis, we qualitatively sanity checked the audio
quality ourselves and then rely on well-established QoE metrics to
provide quantitative comparisons of the relative perceived audio
quality of the mixed audio when using different implementations.

To quantitatively and objectively study the QoE, we use the
two objective algorithms PESQ [55] and POLQA [6], recommended
by the International Telecommunication Union (ITU) and widely
used in research [5, 14, 30, 58]. PESQ is standardized as ITU-T Rec.
P.862, and POLQA is a newer version standardized as ITU-T Rec.
P.863. They are both developed to, as closely as possible, resemble
the Mean Opinion Score (MOS) from subjective testing, giving a
MOS value between 1 and 5. PESQ supports the evaluation of audio
sampled using narrowband and wideband, while POLQA extends
this and, in addition, supports super-wideband and fullband. The
main difference between the PESQ and POLQA algorithms is that
POLQA supports additional sample rates and recognizes “time-
warpings" in modern codecs (which PESQ would evaluate as errors).
In general, POLQA performs better than PESQ in audio quality
measurements due to its new alignment methods in combination
with its new advanced perceptual model [6]. Both PESQ and POLQA
use intrusive quality assessment with a reference signal to assess the
sound quality [61]. The output of the quality assessment is a MOS
value between 1 and 5, where 5 represents excellent quality.We note
that a reference signal compared to itself will not always produce a
perfect score of 5 as the scoring process assumes the reference signal
has a balanced timbre without noise or reverberation, and judges
any deviations from this as a degradation [32]. This is to better
approximate the results when compared to subjective testing.

Table 2 shows the MOS values using PESQ and POLQA for differ-
ent HE schemes, sample rates, and the number of simultaneously
active speakers in a call. Here, we report the MOS values for up
to 6 active speakers, as more simultaneous speakers often make
the audio unintelligible. (The number of listeners does not directly
impact the mixed audio quality as their ciphertexts only include
zeros.) Even though CKKS gives an approximate value when de-
crypted, we observe little-to-no quality difference between the two
schemes. For PESQ, a sample rate of 8 kHz and 16 kHz results in an
average score of 3.94 and 4.52, respectively. Comparing with the
reference signal itself (which had a highest MOS value of 4.5 and
4.64), this corresponds to a quality degradation of 12.4% and 2.6%,
respectively. For POLQA, we observe an average score of 4.01 and
4.35 for a sample rate of 8 kHz and 16 kHz, resulting in a quality
degradation of 15.7% and 8.4%, respectively. For 32 kHz and 48 kHz,
regardless of the scheme or number of simultaneously active speak-
ers, we can achieve a score of 4.75. In this case, the maximum score
is 4.75, i.e., we receive no quality degradation. This shows that as
the sample rate increases, we see a clear increase in audio quality.

Furthermore, we note that the number of simultaneously active
speakers primarily impacts the lower sample rates, where we ob-
serve a clear quality degradation with more speakers only when
using a sample rate of 8 kHz. This is because of the limited number
of samples in narrowband audio, causing a more significant dis-
turbance in the audio when mixing. In contrast, audio with higher
sample rates has more samples, which results in the disturbance
being distributed more among multiple samples. Therefore, the
quality remains relatively stable for other sample rates with an
increasing number of simultaneously active speakers. Overall, the
audio quality results show that if sampling with 16 kHz or greater,
homomorphic encryption can be used in an audio conferencing
context with excellent quality.

7 RELATEDWORK
Audio privacy: Previous works have considered audio communi-
cation using additive HE. Rohloff et al. [56] modified the voice chat
application Mumble [46] and its audio server to include end-to-end
HE. Using additive HE, they reduce the circuit depth of the mixing
operations, demonstrating the first practical use of HE in an audio
context. Kamal et al. [34] study the use of HE from a hardware per-
spective to mix encrypted audio. Using hardware-assisted FPGA,
they boost the performance of homomorphic operations. In con-
trast to our work, these works take a more theoretical approach
and study only the use of additive HE. In this paper, we instead take
a more experimental approach and compare HE schemes to iden-
tify various bottlenecks. Using multiplication operations, we also
present advanced features and study the perceived audio quality.

Other works have focused on the metadata leakage of audio com-
munication [1, 38–40]. For example, Ahmad et al. [1] present Addra,
a scalable system for hiding audio metadata over fully untrusted
networks. While these works also improve the privacy of online
communication, they focus on the metadata leakage and do not use
HE to protect the audio contents.

Audio quality and mixing: Hu and Loizou [30] evaluate differ-
ent objective quality measurement methods for forecasting noisy
speech enhanced by noise suppression algorithms, finding PESQ
to yield the most accurate results compared to subjective tests.
Beerends et al. [5] study the performance of POLQA and compare
the MOS values to the corresponding subjective data, finding that
POLQA can predict the score with high accuracy, highlighting its
benefits for assessing speech quality. Other works have focused
more on the aspects of audio mixing and the resulting perceived
quality. Chandra et al. [14] study different audio mixing algorithms
for multi-party conferencing and propose an algorithm based on the
IIR filter. They present objective methods for evaluating algorithm
performance and measure the audio quality using PESQ, distortion
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and power loss measures, and the output signal-to-noise ratio (SNR).
Sethi et al. [58] propose an audio mixing algorithm for VoIP con-
ferencing applications using voice enhancement features such as
noise reduction, level control, and voice activation detection. They
evaluate the new algorithm using PESQ and perceived audio level
(PLL), showing quality benefits compared to previous algorithms.
The proposed algorithms by Chandra et al. [14] and Sethi et al. [58]
are relatively complex in a homomorphic context. Therefore, in this
work, we present and use a simpler mixing approach to reduce the
homomorphic complexity.

VoIP performance: Ngamwongwattana [49] study the effects
of packetization in VoIP and show that while small packets are
generally more desirable to minimize the end-to-end-delay, they
increase the network load and can cause queueing delays in case
of congestion. On the other hand, as larger packets increase the
wait time needed to capture the audio, the author concludes that
the best strategy to minimize end-to-end delay is to use adaptive
packetization and change packet sizes depending on the network
load. In this paper, while the goal is to minimize the end-to-end de-
lay, the packet sizes cannot be easily adapted due to the ciphertext
sizes being dependent on the homomorphic parameters and their
underlying security properties. Ngamwongwattana and Thomp-
son [50] present Sync & Sense, a tool used for measuring VoIP
end-to-end delay. They show that high accuracy can be achieved
without clock synchronization. While such a tool can be useful in
our work, clients and servers instead operate asynchronously to
avoid additional overhead. When synchronization is needed to mea-
sure the end-to-end delay, we use the more traditional approach
with NTP servers [45]. Tsetse et al. [63] study the performance
of VoIP in 802.11ac networks under different network conditions
and security configurations, observing an increase in latency and
decrease in MOS values when adding security. While our study is
similar to theirs, in this work, we focus on the performance aspects
and MOS values when using homomorphic encryption.

HE performance:Others focus on the performance of HE [2, 29,
53]. Al Badawi et al. [2] study the performance of Residue Number
System (RNS) in the BFV scheme, focusing on the Halevi-Polyakov-
Shoup (HPS) variant in SEAL [43] and Bajard-Eynard-Hasan-Zucca
(BEHZ) in Palisade [51]. They show significant improvements in
homomorphic multiplication time compared to previous works, and
thatmulti-threaded CPU only provides small performance increases,
which corresponds well to the insights provided in this paper (e.g.,
as previously shown in Figure 11). Reis et al. [53] study the use of
near-memory processing (NMP) and computing-in-memory (CiM)
paradigms to improve the HE performance in the BFV scheme.
They show performance improvements up to 9.1 times compared
to regular CPU implementations. While related, these works focus
on the HE performance of other aspects. In this work, we instead
focus on the VoIP and audio communication context.

8 CONCLUSIONS
In this paper, we have presented the design of a secure, scalable
audio conferencing application using end-to-end homomorphic en-
cryption. Using an untrusted honest-but-curious server, we demon-
strate the practical use of mixing encrypted audio and the feasibil-
ity of offloading heavy computations from resource-constrained

end devices to more powerful cloud servers. Our results show the
tradeoffs between homomorphic encryption schemes, their security
configurations, and the chosen audio parameters. For example, we
show that while the audio contents, sample rate, and batch time do
not affect the homomorphic operations, a lower batch time results
in a lower end-to-end delay at the cost of additional overhead. As
the ciphertext sizes are fixed based on the encryption scheme pa-
rameters, the best strategy is shown to be selecting a batch size as
large as possible, and using the remaining slots for other data, like
forward error correction.

Using homomorphic multiplications, we have demonstrated the
use of the server-side-mute and breakout rooms features, where
the middle server cannot extract sensitive user-specific metadata,
further increasing users’ privacy. While using the BFV scheme is
most beneficial for encryption, decryption, and additive mixing,
we show the performance benefits of using the CKKS scheme with
ciphertext multiplications. By demonstrating the tradeoffs, we show
how different schemes and configurations may be used to achieve
the lowest possible end-to-end delay while supporting the desired
application and features.

Finally, while homomorphic encryption results in longer en-
cryption/decryption times compared to regular encryption, we
show that the performance is well within the bounds considered
acceptable in voice applications, and that it comes with privacy
and scalability benefits. Besides studying QoS and performance as-
pects, we have also objectively evaluated the QoE by analyzing the
perceived audio quality using PESQ and POLQA, showing that ex-
cellent audio quality can be achieved using a sample rate of 16 kHz
or greater. While production implementations would include more
features and functionalities than our basic implementation, our
results clearly demonstrate that the approach is both practical and
scalable. The insights we provide also help service providers design
future communication applications and better understand the trade-
offs of selecting homomorphic encryption schemes and parameters,
ultimately achieving the goal of practical and scalable end-to-end
encrypted audio conferencing.
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Figure 17: Homomorphic performance of ciphertext operations over time.
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Figure 18: Homomorphic performance of ciphertext operations per batch size.

A PERFORMANCE OF CIPHERTEXT
OPERATIONS OVER TIME

Figure 17 shows the performance of homomorphic ciphertext op-
erations over time for (a) addition, (b) subtraction, and (c) multi-
plication, respectively. We note that the basic configuration only
performs additions and subtractions, no multiplications, and its re-
sults are therefore omitted from Figure 17(c). We also note that the

periodic behavior of CKKS-256-BRP seen in Figures 17(a) and 17(b)
are due to machine specific memory management.

B PERFORMANCE OF CIPHERTEXT
OPERATIONS PER BATCH SIZE

Figure 18 shows the performance of homomorphic ciphertext op-
erations per batch size for (a) addition, (b) subtraction, and (c)
multiplication, respectively.
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