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Temporal click dynamics of News on Twitter
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* News and information spread over social media can have big impact on
thoughts, beliefs, and opinions

* Important to understand the sharing dynamics on these forums ...

* Most studies trying to capture these dynamics rely only on Twitter’s
open APIls to measure how frequently articles are shared/retweeted

* They do not capture how many users actually read the articles
linked in these tweets ...

.. here, we instead focus on the clicks leading to linked articles ...

.. and measure + analyze these over time.
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Contributions at a glance

e Two main contributions
* A novel longitudinal measurement framework

* The first analysis of how the number of clicks changes over time
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e Two main contributions

A novel longitudinal measurement framework
The first analysis of how the number of clicks changes over time

* Example observations from temporal analysis

Noticeable differences in the relative number of clicks vs. retweets
occurring at different parts of the news cycle

Retweet data often underestimates biases towards clicking popular
links/articles

Si%nificant differences in the clicks-per-tweets ratio, including
(alarmingly) many links with more retweets than clicks

Significant age biases, including relatively high initial click rates for
articles younger than a week and much more stable click rates for
older and long-term popular articles

Insights into how age-dependent Bopularity skews and age-dependent
churn impact the clicks observed by different classes of links
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e Two main contributions

A novel longitudinal measurement framework
The first analysis of how the number of clicks changes over time

 Example observations from temporal analysis

Noticeable differences in the relative number of clicks vs. retweets
occurring at different parts of the news cycle

Retweet data often underestimates biases towards clicking popular
links/articles

Si%nific_ant differences in the clicks-per-tweets ratio, including
(alarmingly) many links with more retweets than clicks

Significant age biases, including relatively high initial click rates for
articles younger than a week and much more stable click rates for
older and long-term popular articles

Insights into how age-dependent Eopularity skews and age-dependent
churn impact the clicks observed by different classes of links

* We validate our findings (and identify invariants) using both data from
May 2017 and a per-website-based analysis
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* Collection of Bitly links to 7 pre-selected news website
* 20-minute blocks (with latest tweets) collected over 7 days
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e Collection of Bitly links to 7 pre-selected news website
e 20-minute blocks (with latest tweets) collected over 7 days

* Longitudinal click statistics
* Each block scheduled for collection every 2 hours for 5 days

» Careful sample frequency selection
* To stay within rate limits, not all links sampled each time
* Three sets per block: “top”, “random”, and “rest”
» Sets sampled at different frequencies

» Sets and their sizes designed to stay within rate limits (details/eqns. in paper)
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Collection of Bitly links to 7 pre-selected news website
e 20-minute blocks (with latest tweets) collected over 7 days

Longitudinal click statistics
* Each block scheduled for collection every 2 hours for 5 days

Careful sample frequency selection
* To stay within rate limits, not all links sampled each time
* Three sets per block: “top”, “random”, and “rest”
* Sets sampled at different frequencies

» Sets and their sizes designed to stay within rate limits (details/eqgns. in paper)
Complementing tweet statistics
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* 80% of all observed clicks occur within the first 24 hours
* Large variations across links
 Tail of less popular links sees a more even spread of clicks

e Suggests that studies focusing only on popular articles (or tweets)
may underestimate the duration of the news cycle and the time that
many news articles are read after they are first published
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* Correlations between retweets and clicks, but significant differences
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e Correlations between retweets and clicks, but significant differences

* Generally larger click volumes
* Expected: Only subset of readers retweet what they read ...
* We may also miss earlier tweets (resulting in clicks)
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(a) Scatter

e Correlations between retweets and clicks, but significant differences
* Generally larger click volumes
* Expected: Only subset of readers retweet what they read ...
* We may also miss earlier tweets (resulting in clicks)
 Significant set of tweets with more retweets than clicks
* Some people (or bots) retweet the links without actually clicking the link.

* This is clearly not good, as human sanity checking is an important tool to
reduce the spreading of fake news
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* Also some subtle difference (see paper) that indicates that retweet
data underestimate bias towards popular links/articles
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 Clicks typically progress somewhat faster (at start) than retweets

* Also some subtle difference (see paper) that indicates that retweet
data underestimate bias towards popular links/articles

* These links are often highly shared in the beginning, but also
accumulate reads/clicks (at a much slower rate) later ...
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Impact of age
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* “Older” articles accumulating clicks at a much more uniform rate over

the measurement duration



Impact of age

2612 24 48 72 96
Hours since first observed

(a) Average (over fractions)

;\?100 B
2 80 B
O

© 60 B
© 40 - Younger than week — |
5 Older than week [~

® 20 Unknown

C ¢ N . I I l

120

—_~

(&)

R

%

Fraction of clicks

100 B
80 B
60 B
40 - Younger thanweek = |

Older than week [
20 Unknown
O 171 1 [ I I

2612 24 48 72 96
Hours since first observed

(b) Average (over all clicks)

e “Older” articles accumulating clicks at a much more uniform rate over

the measurement duration

120



Impact of age

2100 - 3100 T+
% 80 i o |' kll_ % 80 i llfl II—
= 60 earlier peak [ = 60 atter [
IS 40 - Youngerthanweek —— | G 40 - Younger thanweek — |
5 Older than week [~ 5 Older than week [
g 20 Unknown - g 207 Unknown I
L 0T 1 I T TR | ! 1 I
2612 24 48 72 96 120 2612 24 48 72 96 120
Hours since first observed Hours since first observed
(a) Average (over fractions) (b) Average (over all clicks)

e “Older” articles accumulating clicks at a much more uniform rate over
the measurement duration

* For “older” articles, most of the clicks are associated with articles that
do not appear to fade (as quickly) in popularity

* The opposite is true for the “overall” set and for “younger” articles
* Again, the “older” set contains more long-term popular articles
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* For “older” articles, most of the clicks are associated with articles that
do not appear to fade (as quickly) in popularity

* The opposite is true for the “overall” set and for “younger” articles

* Again, the “older” set contains more long-term popular articles
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Validation year-old data (from 2017)
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* The early peaks, the skew towards a subset of highly popular links, and

the differences between links to articles of different age appear invariant



Validation year-old data (from 2017)

100
<
< g0
X

2 50 -
(@]

B | R
s 40
5

© 20 —
L

2017 (all clicks) ——
2018 (all clicks) ——
2017 (fractions) =~
2018 (fractions) ~ >~

o

[T 1 | |
2612 24 48

| |
72 96

Hours since first observed

Overall

120

* |dentify invariants

100 T—— g ——=T R0 —

80 gt r ge ]
60 3 60 Y i
40 Younger than week | k) 40 I _-~~"" Younger than week
Older than week g . Older than week
20 Unknown 8 20 - Unknown
0 — & ———————
2612 24 48 72 96 120 2612 24 48 72 96 120

Hours since first observed
(a) Average (over fractions)

Hours since first observed
(b) Average (over all clicks)

May 2018

%)

s 3
|
|
%)
=

/" Younger than week [ %
Older than week “****

8

/" " Younger than week -

| X Older than week ~=*~

‘ Unknown [ ® Unknown

TT T T T T + & T T T T

2612 24 48 72 96 120 2612 24 48 72
Hours since first observed

(a) Average (over fractions)

n B

Fraction of clicks (%)
o o o

% 120
Hours since first observgd
(b) Average (over all clicks)

May 2017

* The early peaks, the skew towards a subset of highly popular links, and
the differences between links to articles of different age appear invariant



Validation year-old data (from 2017)

Fraction of clicks (%)

| L —— go-———
100 T B A
i‘::g~ ,""".‘--YW"Qe"ha""'eeki , %:7 ,.-“"'Y-t;ﬁ.mgefthanweekf )
- § Older than week " s o Older than week “****
80 g2 Unknown - g Unknown
b0 e 4 % 120 R P 8 72 9% 120
Hours since first observed Hours since first observed
(a) Average (over fractions) (b) Average (over all clicks)
60
2017 (all clicks) —+— May 2018
40 2018 (all clicks) —— TR S PR
. -3 - 80 : g0 7 e
| 2017 (fractions) =~ | | ol [ $ul/ [
20 240< ¢ Younger than week —— | ij Younger than week — |
2018 (fractions) =~ jaf Tl 2t leom
0 T | | | | Y0 Rm @ 2 % i oo 4 m % 1
Hours since first observed Hours since first observed
2 6 1 2 24 48 72 96 1 20 (a) Avergge ((t;:'errs fractions) (b) Averagr; (overs all clicks)
Hours since first observed May 2017
Per-age group

* |dentify invariants

* The early peaks, the skew towards a subset of highly popular links, and
the differences between links to articles of different age appear invariant



Age and long-term churn
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* While some differences within the two age-based sub-classes, the
most substantial differences are between the categories themselves
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Age-dependent popularlty skew
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most substantial differences are between the categories themselves
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 While some differences within the two age-based sub-classes, the
most substantial differences are between the categories themselves

* For the two “oldest” classes, the CCDFs shows relatively straight-line
behavior, suggesting a power-law-like popularity skew
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* While some differences within the two age-based sub-classes, the
most substantial differences are between the categories themselves

* For the two “oldest” classes, the CCDFs shows relatively straight-line
behavior, suggesting a power-law-like popularity skew

* For the “younger” articles, there is relatively higher popularity churn



Age- dependent churn
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Increasing churn among both the “younger” and “older” articles

* In contrast, for YouTube videos, long-term popularity has been found to
reduce the churn over time [Borghol et al., 2011]
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* In contrast, for YouTube videos, long-term popularity has been found to
reduce the churn over time [Borghol et al., 2011]
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* |n contrast, for YouTube videos, long-term popularity has been found to
reduce the churn over time [Borghol et al., 2011]

e Ashortinitial interval have been found to be a good predictor of the
clicks over the remainder of the time period
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(b) Threshold CDFs

Even the clicks observed over a very short interval (e.g., 2 hrs) provides
better insight into the actual information reach over a longer time period
(e.g., 120 hrs) than the retweet do (even if using the same 120 hrs)
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Life-time clicks
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* “Younger” links gain on the lifetime clicks observed for the “older”
links, closing the gap
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* “Younger” links gain on the lifetime clicks observed for the “older”
links, closing the gap
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* “Younger” links gain on the lifetime clicks observed for the “older”

links, closing the gap
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* “Younger” links gain on the lifetime clicks observed for the “older”
links, closing the gap
* However, the gap is still substantial at the end of the 120 hour period

* This highlighting that the “older” category includes many links to long-
term popular articles



Per-site-based analysis



o

Fraction of clicks (%)

-

Fraction of clicks (%)

Invariants desplte significant differences

2100
80
60
40 / i Older than week (clicks) —+— [~
20 — o Less than week (fractions) ~-*- | _
f Older than week (fractions) ~~%" -
0 717 T T T
2612 24 48 72 96 120
Hours since first observed
(a) Guardian
00 —- L | I —
80
60
Less than week (clicks) —+—
40 Older than week (clicks) —+— [
20 Less than week (fractions) -~ *- -
Older than week (fractions) =~~~
0 711 T T T
2612 24 48 72 96 120
Hours since first observed
(c) CNN

Age-based invariants (across websites) despite
significant differences observed between the 5 S ;
different websites (e.g., age, speed clicks are I
obtains, and click distribution)

Our age-based conclusions are consistent for

each of the news websites individually, further
validating our previous claims

2100

A O ®
o O O

Fraction of clicks (%)

N
o O

—
N b O @ O
o O O O O

Fraction of clicks (%)

o

ess than week (fractions) ~—~* -
Older than week (fractions) =~~~

TT T T T T T
2612 24 48 72 96 120
Hours since first observed

(b) Breltbart

Less than week (clicks) —+—
Older than week (clicks) —F— [
Less than week (fractions) -~ *--
Older than week (fractions) ~~*--

Tl ) T T T T
2612 24 48 72 96 120
Hours since first observed
(d) Fox

_Clicks per link Age when fi orved
(a) CCDF clicks after discovery (b) CDF age at discovery
Fig. 13. Based on website (new only).

100 F100 T+

g e g 80

S 60 S 60

2 40 2 40

k-3 S

g 20 g 20

[ & o Iy :

2612 24 48 72 9% 120
f s since first observed
(a) Average (over fractions) (b) AVLIJL_L (over all clicks)

Fig. 14. Cumulative click over time for different news websites.



Invariants desplte significant differences

Fraction of clicks (%)

—

Fraction of clicks (%)

—
N A O ® O
O ©O O O O O

N A OO ® O
O ONONO RO

" Less than week (clicks)
Older than week (clicks)

Less than week (fractions) ~~* - |
f Older than week (fractions) =~ %~
L | | |
2612 24 48 72 96 120

Hours since first observed
(a) Guardian
I | |

Less than week (clicks) —+—

Older than week (clicks)
Less than week (fractions)
Older than week (fractions)

—_—
- )= -
- -

UL |
2612 24 48 T 96

Hours since first observed

(c) CNN

52100
80
60
40
20

Fraction of clicks (%)

-
o
(@]

80
60
40
20

Fraction of clicks (%)

——

ess than week (fractions) -~ * -

Older than week (fractions) ~~* -

| I
2612 24 48 72 96

Hours since first observed

(b) Breltbart

Less than week (clicks) —+—
Older than week (clicks) —— [~
Less than week (fractions) -~ *--
Older than week (fractions) ~~*- -

TT 1 |
2612 24 48 72 96

T T T
120
Hours since first observed

(d) Fox

Age-based invariants (across websites) despite
significant differences observed between the -
different websites (e.g., age, speed clicks are T g e e
obtains, and click distribution)

Our age-based conclusions are consistent for
each of the news websites individually, further
validating our previous claims

CCOE
© o 3

_Clicks per link
(a) CCDF clicks after discovery
Fig. 13. Based on we

Fraction of clicks (%)
Fraction of clicks (%

il
(a) Average (over fractions)
Fig. 14. Cumulative click over time for different news websites.

.....................
.....................

(b) (l)l age @ at h overy
bsite (new only).
F100 7 -
80 ‘
60 l //
40
20 V
o'
2612 24 4a 72 96
since first observed
(b) /\vudL_L (owr all clicks)




Invariants desplte significant differences

$100 {100 T
£ 80 £ 80 DN
=2 o
© 60 - . © 60 .
S 7 Less than week (clicks) —— S (clicks) —+F—
= 40 f Older than week (clicks) —+— [ = 40 an week (clicks) —+— |
2 20 — f Less than week (fractions) ~~*- | 8 20 — ess than week (fractions) ~— >~ |
§ Older than week (fractions) =~ %~ 8 Older than week (fractions) ~~* -
Ww 0 %717 T | | w 0 M1 | T |
2612 24 48 72 96 120 2612 24 48 72 96 120
Hours since first observed Hours since first observed
(a) Guardian (b) Breltbart
<100 T- : — e T F100 T——m
2 80 2 80 e e
2 . - [ I OO . o
*g -~ , Less than week (clicks) —+— ‘g 60 Less than week (clicks) —+—
c 40 Y Older than week (clicks) —+— [~ = 40 Older than week (clicks) —+— [~
-8 20 Less than week (fractions) ~~=*-- | 8 20 Less than week (fractions) -~ * -
8 Older than week (fractions) =~~~ § Older than week (fractions) == %~
W 0 M1 T T T W 0 %171 1 T T T
2612 24 48 72 96 120 2612 24 48 72 96 120
Hours since first observed Hours since first observed
(c) CNN (d) Fox
* Age-based invariants (across websites) despite [ —
significant differences observed between the £l ONCE
different websites (e.g., age, speed clicks are T e T
. . . . . (a) CCDF cllckl;:hcl,g dlsg;):zr):m o 5::_) (Si)w ::#lby)‘“ dlxcovcry
obtains, and click distribution)

8

o88888

Our age-based conclusions are consistent for {/"T}
each of the news websites individually, further [ Eol ey E
validating our previous claims e R

Fig. 14. Cumulative click over time for different news websites.

raction of clicks (%)
8888

Fraction of clicks (%)

Fi
o




Conclusions



Conclusions and summary

e Two main contributions

A novel longitudinal measurement framework

* The first analysis of how the number of clicks changes over time

* Example observations from temporal analysis

Noticeable differences in the relative number of clicks vs. retweets
occurring at different parts of the news cycle

Retweet data often underestimates biases towards clicking popular
links/articles

Si%nificant differences in the clicks-per-tweets ratio, including
(alarmingly) many links with more retweets than clicks

Significant age biases, including relatively high initial click rates for
articles younger than a week and much more stable click rates for
older and long-term popular articles

Insights into how aFe-dependent Bopularity skews and age-dependent
churn impact the clicks observed by different classes of links

* We validate our findings (and identify invariants) using both data from
May 2017 and a per-website-based analysis
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