
Non-Euclidian Geographic Routing in Wireless Networks* 

                                                           

To appear in Ad Hoc Networks.  This work was partially supported by the Natural Sciences and Engineering Research Council of Canada.  

 

 
Niklas Carlsson     Derek L. Eager 

Department of Computer Science 
University of Saskatchewan 

Saskatoon, SK S7N 5C9, Canada 
carlsson@cs.usask.ca, eager@cs.usask.ca 

 
 
Abstract 
Greedy geographic routing is attractive for large multi-hop wireless networks because of its simple and 
distributed operation. However, it may easily result in dead ends or hotspots when routing in a network with 
obstacles (regions without sufficient connectivity to forward messages).  In this paper we propose a distributed 
routing algorithm that combines greedy geographic routing with two non-Euclidean distance metrics, chosen so 
as to provide load balanced routing around obstacles and hotspots.  The first metric, Local Shortest Path, is used 
to achieve high probability of progress, while the second metric, Weighted Distance Gain, is used to select a 
desirable node among those that provide progress.  The proposed Load Balanced Local Shortest Path (LBLSP) 
routing algorithm provides loop freedom, guarantees delivery when a path exists, is able to efficiently route 
around obstacles, and provides good load balancing. 
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1. Introduction 
This paper considers routing in large multi-hop wireless ad hoc networks with non-mobile nodes, such as sensor 
networks or rooftop networks.  Sensor networks are networks that utilize small sensing devices to capture 
physical phenomenon by distributing a large number of sensing units across some terrain.  While each of these 
units has limited resources, they are generally equipped with enough resources to perform sensing, process 
information, and communicate among each other.  Rooftop networks are metropolitan area networks with 
comparatively well-resourced nodes used to share resources among a group of people. 

In a multi-hop wireless ad hoc network the nodes cooperate and relay each other’s packets toward their final 
destinations.  There have been many routing protocols proposed for such networks [6, 21, 14].  Unfortunately, the 
same characteristics that make these networks attractive also complicate routing.  In particular, individual nodes 
are not reliable, and the network topology may therefore change frequently. 

A promising routing approach for large-scale networks is geographic routing, in which packets are forwarded 
based on location information available to each node [28, 10, 5, 16].  More advanced schemes may take energy 
consumption, load at individual nodes, and other additional node characteristics into consideration.  In the 
geographic routing scheme proposed in this paper, routing may also use estimates or assumptions about the 
connectivity, traffic load, and other network characteristics in the various regions of the network. 

The simplest form of geographic routing is greedy routing [10], where at each hop packets are forwarded to the 
neighbor closest to the destination.  Greedy geographic routing is attractive for large networks with frequent 
topology changes because of its simple and distributed operation.  However, when routing in a network with 
obstacles (areas through which packets cannot be forwarded, owing to no nodes being present for packet 
forwarding, for example), pure greedy routing may fail. 



Fig. 1 illustrates routing in a network with an obstacle, as denoted by the darker area in the centre of the figure.  
Consider a packet with source S1 and destination D1.  Using pure greedy routing, this packet would be forwarded 
up to point A, at which further progress would not be possible.  At this point the packet would have reached a 
dead end, or a local minimum with respect to the distance to the destination.  An alternative routing mechanism, 
such as perimeter routing [16, 5] or limited flooding [10, 27], is required when reaching a local minimum.  
Perimeter routing routes packets along the faces defined by regions bounded by the edges in a planar graph 
network topology.  This approach may, however, result in many routes following the boundary of an obstacle, 
creating congestion.  Limited flooding may also result in network congestion. 

The routing approach proposed in this paper attempts to retain much of the simplicity of greedy routing while 
providing load balancing and avoiding dead ends.  This is achieved by replacing the Euclidian distance metric, 
generally used by greedy routing, with non-Euclidian distance metrics that make use of knowledge of the 
locations of obstacles.  The proposed Load Balanced Local Shortest Path (LBLSP) routing algorithm combines 
two such metrics, one of which (Local Shortest Path) is used to achieve high probability of progress, and the 
other (Weighted Distance Gain) is used to select among those nodes providing progress.  A basic version of 
LBLSP designed to perform load balancing around a single obstacle is presented first, followed by an extension 
of LBLSP and its distance metrics that is able to relieve congestion in hotspot regions and route among multiple 
obstacles. 

The remainder of the paper is organized as follows.  Section 2 reviews related work.  Section 3 describes our 
network model, a generalization of the Greedy Perimeter Stateless Routing (GPSR) [16] protocol on which our 
new protocol is based, how information about obstacles can be obtained and distributed, and the properties of a 
desirable distance metric.  The following three sections motivate and describe the distance metrics proposed in 
this paper, and how they can be used within the routing algorithm to achieve our objectives.  Section 4 discusses 
routing around a single obstacle.  Sections 5 and 6 extend the distance metrics and LBLSP to handle hotspot 
avoidance and routing among multiple obstacles, respectively.  Section 7 concludes the paper with a summary of 
our findings and a discussion of future directions. 

2. Related Work 
Most geographic routing algorithms require each node to know its location, its neighbors’ locations and the 
destination’s location.  Assuming that each node has some way of determining its own location (e.g., using a GPS 
device), the locations of a node’s neighbors can easily be determined in a scalable manner.  The location of the 
destination can in some rooftop networks be obtained using an offline channel, and in some sensor networks the 
destination is by default a location; however, many networks require additional mechanisms to obtain this 
information.  Geographic Location Service (GLS) [20], Reactive Location Service (RLS) [19], and the location 
part of Distance Routing Effect Algorithm for Mobility (DREAM) [2] are examples of systems or techniques that 
can be used to distribute this information.  Das et al. [7] provides a performance comparison of such services. 

Many of the early proposals in geographic routing are based on some notion of progress and use this to greedily 
forward packets.  Takagi and Kleinrock [28] originally proposed Most Forward within Radius (MFR), which 
forwards packets to the node within radio range that makes the most progress toward the destination, when 
projecting the progress onto a line between the sender and the destination.  Finn [10] later proposed forwarding 
messages to the node within transmission range that is closest to the destination.  Naturally, there are many other 
measures of progress that can be used [14]. 

Greedy geographic routing has been proven effective in sensing-covered networks, in which every point of a 
region is covered (i.e., within sensing range of at least one sensor node).  In particular, in convex sensing-covered 
networks without obstacles a transmission range of at least twice the sensing range of the participating sensor 
nodes is sufficient to guarantee that Euclidian routing always provides progress [29].  In contrast, we assume that 
some areas of the network may contain larger obstacles and can therefore not ensure Euclidian progress.  For 
example, the entire network may be sensing-covered, with the exception of an enclosed lake or mountain.  
Assuming that nodes can communicate when within transmission range, it can be shown that a transmission range 



of at least twice the sensing range is sufficient to guarantee that a path exists between any source destination pair, 
as long as the nodes cover a (single) connected area [11]. 

To avoid routing loops, techniques have been proposed that drop packets when reaching points at which no 
progress towards the destination is possible (a “local minimum”) or when a packet revisits a previously visited 
node [27].  Other techniques use limited flooding to circumvent local minimums [10, 27].  To avoid flooding the 
entire network, while guaranteeing delivery, Stojmenovic and Lin [27] propose a type of limited flooding in 
which a packet at a local minimum is flooded to all neighbors.  The node performing the flooding then rejects any 
incoming copies of the packet.  All receiving nodes forward the packet as usual, with the exception that they must 
retransmit the packet to the best neighbor that has yet not rejected the packet, until there is a neighbor that 
accepts the packet.  Bose et al. [5] propose a more scalable technique that does not require flooding.  Their 
algorithm, FACE-2, called perimeter routing here, first planarizes the neighbor graph, by removing edges.  
Packets are then forwarded around the faces of this planar graph.  As new faces are entered, the packet is updated 
with information about the progress that has been made along the line between the original sender and the 
destination.  This technique assumes that all nodes within some threshold distance are within communication 
range of each other; however, efficient techniques that guarantee delivery have been proposed for environments 
where transmission ranges are somewhat irregular [1, 18]. 

Bose et al. [5] propose combining greedy routing and perimeter routing, this algorithm has later been referred to 
as Greedy Perimeter Stateless Routing (GPSR) [16].  The LBLSP algorithm presented in this paper generalizes 
GPSR.  Many orthogonal improvements have been made to GPSR that LBLSP could benefit from.  For example, 
better algorithms to planarize a graph have been proposed [13], and perimeter routing has been modified to 
perform better on average [17].  More sophisticated techniques can also be imagined, which use alternative 
techniques as the packet approaches the destination.  For example, localized routing tables can be used for the 
last few hops [4].  When reaching less severe local minimums, not corresponding to an obstacle, information 
about nodes on the periphery of these smaller “holes” can be used to provide progress [9]. 

To handle obstacles, dead areas, or holes, a packet can first be routed towards an intermediate location, at which 
point the packet’s target is changed to the location of the actual destination [8].  While this strategy may be 
efficient when routing around some obstacles it does not solve the problem of more general obstacles, especially 
not the case of multiple obstacles.  Blazevic et al. [4] create a path of anchor nodes which packets can be routed 
along.  For each anchor point reached, the packet’s destination is reset to the next anchor point, until the final 
destination is reached.  While not designed for this, Nath and Niculescu’s [22] notion of routing along a curve 
can be used to create a sender-defined routing path among obstacles.  This approach may not, however, guarantee 
delivery since progress is not well defined for all points in the network.  Also, such an approach would not scale 
to networks with many obstacles since it requires complete network knowledge.  Instead, this paper proposes 
embedding the distance function into the network. 

He et al. [15] do not consider obstacles, but instead address the issue of routing around congested areas.  While 
their routing protocol, SPEED, combines congestion avoidance together with backpressure to route around 
congested areas, SPEED does not allow forwarding to nodes that do not provide Euclidian progress.  Instead 
packets are dropped when reaching local minimums. 

More closely related to our work is work by Rao et al. [24].  They present an elegant and distributed algorithm to 
create an alternative coordinate space that helps avoid some of the problems with reaching local minimums when 
routing among obstacles.  However, they do not perform additional load balancing, and are not able to guarantee 
delivery using these coordinates.  Rather than creating a new (and in some cases additional) coordinate space we 
assume that the locations of the nodes are known, or can be closely approximated [25, 26].  We then use this 
natural coordinate space and knowledge of obstacles to develop alternative distance metrics that achieve all the 
desirable properties outlined in Section 3.3, including load balancing. 



3. Problem Description 
Throughout this paper the network is modeled as a unit graph, in which any two nodes can communicate if and 
only if the distance between them is less than some fixed distance.  In this environment, assuming sufficient 
connectivity, delivery can be guaranteed when routing using only the locations of the destination, and each 
forwarding node and its neighbors [16, 5].  As previously discussed, extensions are possible to handle more 
flexible radio ranges [1, 18]. 

We restrict attention to networks in which nodes are stationary, and know their location.  Nodes are considered 
unreliable; however, we expect the lifetime of a node to be longer than the time required to route around an 
obstacle.  We envision obstacles to be more stable than individual nodes.  For example, nodes surrounding a lake 
in an area covered by a sensor network may be unreliable (as nodes run out of energy, for example) while the 
lake will remain. 

Section 3.1 describes a generalization of the GPSR protocol on which our LBLSP protocol is based.  Section 3.2 
discusses how the geometry of obstacles can be obtained, and distributed to some appropriate subset of nodes.  
Section 3.3 discusses and outlines the desired properties of the new distance metrics that will be developed.  
Section 3.4 discusses some of the problems with using Euclidian distances in environments with obstacles.  
Section 3.5 describes some natural candidate geographic routing approaches applicable to networks with one or 
more obstacles, and their shortcomings. 

3.1 Greedy Routing with Guaranteed Delivery 
In Greedy Perimeter Stateless Routing (GPSR) [16], packets can be either in greedy mode or in recovery mode.  
When a new packet is generated, the packet is initially in greedy mode.  Each packet is forwarded until the 
destination, or the node closest to the destination location, is reached, if possible.  When receiving a packet each 
node determines if it is the final destination; if not, it determines if the packet is in greedy or recovery mode.  The 
algorithm presented here uses the same basic structure as GPSR. 

If the packet is in greedy mode the forwarding node uses some distance metric (termed here “progress” metric) to 
calculate the distance to the destination for itself and all its neighbors.  Provided with a “global” distance metric, 
such that all nodes agree on their distance to the final destination, progress is achieved, if possible, by always 
forwarding packets to a node closer to the final destination.  Note that it is not necessary to choose the neighbor 
closest to the destination at each hop.  Instead, some alternative selection metric (termed the “neighbor selection” 
metric) can be used to select from among those neighbors closer to the destination. 

If there is no neighbor closer to the destination (using the progress metric) the packet is marked in recovery 
mode.  The packet is also marked with the location of the current node as well as that node’s distance to the 
destination.  This information can be used to perform perimeter routing, or some alternative routing mechanism 

Fig. 1: Three routing examples that consider routing 
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for recovery from local minimums.  While one of the design goals of our distance metrics is to minimize the 
number of occurrences of and the time spent in recovery mode, it cannot be avoided entirely. 

In perimeter routing, packets are forwarded around the faces defined by regions bounded by the edges in the 
planar graph, formed by removing edges as needed from the neighbor graph.  Specifically, at each hop a packet is 
forwarded to the clockwise (or counter clockwise) closest neighbor for which the transition does not cross the 
line between the location where perimeter routing was initiated and the destination, among all neighbors in this 
planar graph.  As new faces are entered, the packet is updated with information about the progress that has been 
made along the line between the initiating node and the destination.  The packet returns to greedy routing as soon 
as it is closer to the final destination than it was when first entering recovery mode. 

The algorithm presented here modifies the greedy portion of GPSR by replacing its distance metric (Euclidian) 
with two arbitrary distance metrics, one measuring progress and the other used for neighbor selection.  The 
progress metric is further used to determine when to enter (and when to exit) perimeter routing.  This algorithm 
reduces to GPSR if the Euclidian distance metric is used as both the progress and neighbor selection metric. 

3.2 Obtaining Obstacle Geometries 
Our proposed distance metrics use information about obstacles in the network, where an obstacle is defined as an 
area through which packets cannot be forwarded.  In general, this information could be obtained through some 
offline method, or could be obtained dynamically using an online algorithm. 

While we expect offline approaches to be sufficient in many environments, these methods may not always be 
sufficiently reactive in environments in which obstacle location and size evolve dynamically.  In such 
environments it is important to be able to dynamically detect obstacles, obtain their geometry, and distribute this 
information to those nodes that must acquire it.  Fang et al. [9] proposed a distributed algorithm to detect “holes” 
(i.e., obstacles).  Their approach relies on each node determining if greedy forwarding will reach a local 
minimum at the node for some region of possible final destinations.  If that is the case, the node is at the 
boundary of a hole and can then determine the rest of the boundary by using a clockwise routing rule and an edge 
intersection rule.1  For example, the location of all nodes currently on the boundary of the obstacle can be 
recorded as the packet traverses the boundary of the obstacle.  Using this information, the shape and size of the 
obstacle can be determined, before being distributed to all nodes within some region of the network.  We expect 
that the boundary can be approximated using some simple geometry (e.g., a circle), or some piecewise linear 
curve, defined by a relatively small number of points.  This allows for relatively low storage, processing, and 
communication requirements. 

In this paper we assume that information regarding obstacles has been distributed throughout the network, 
without modeling a particular mechanism for accomplishing this distribution.  The virtual obstacle concept 
introduced later in this paper allows obstacle boundaries to be approximated, as this allows nodes to be inside 
obstacles.  Section 5.3 shows that the performance of the routing algorithm proposed here is fairly insensitive to 
the accuracy with which the shapes and sizes of obstacles are approximated (allowing simpler geometries to be 
used in environments where storage or processing capacity is limited). 

3.3 A Desirable Distance Metric 
Greedy routing, based on Euclidian distances, may suffer from load balancing problems and the phenomenon of 
local minimums.  Our goal is to find alternative, non-Euclidian distance metrics that maintain the desirable 
properties of greedy routing.  Such metrics should therefore be: 

Distributed:  Each routing choice should be done using only locally available information. 

Stateless:  Each routing choice should be independent of previous routing choices, and the previous path 
taken by the packet. 

                                                           
1 This technique can be used to discover and capture the boundary of holes of any size.  While small holes may not necessarily be treated as 

obstacles, nodes on the boundary of such holes also benefit from this knowledge when in recovery mode. 



These distance metrics are also expected to provide: 

Globally Agreeable Distances:  Neighboring nodes should agree on their distances to the destination, hence 
ensuring that progress is measured in a unique way throughout the network.  If a path exists between the 
sender and the destination and the network is sufficiently static this condition allows the generalized routing 
protocol, presented in Section 3.1, to (i) avoid persistent routing loops, and (ii) guarantee packet delivery. 

High Progress Probability:  The probability of reaching a local minimum where no neighbor is closer to the 
destination should be small.  This allows the recovery mode, of our generalized routing algorithm, to become 
an exceptional condition caused by low node density. 

Load Balancing:  Routing using the distance metric should avoid creating hotspots. 

Conformity to Euclidian Distances:  The metric should conform to Euclidian distances when having passed 
or when far away from an obstacle, or hotspot.  This is to avoid taking unnecessarily long paths, which may 
affect routing delays. 

Finally, geographic routing using these distance metrics is expected to apply for environments with: 

“Real” Obstacles:  Regions that are not possible to route through, due to physical barriers or because of 
insufficient connectivity. 

“Virtual” Obstacles:   Hotspots or other regions through which routing should be avoided. 

Multiple Obstacles:  More than one real or virtual obstacle, intervening between source and destination. 

Furthermore, changes to the basic greedy routing algorithm should be minimized to allow for simple 
implementation.  When designing our metrics we focus on the case of networks with high connectivity, although, 
as will be shown in the experiments, the proposed metrics are beneficial in less dense networks as well. 

3.4 The Euclidian Distance Metric 
Before considering alternative approaches, it is important to understand the disadvantages of Euclidian distance 
as a distance metric in an environment with obstacles.  Consider routing from S to D in Fig. 2.  Here, regular 
greedy routing reaches a local minimum at point P.  At this point, even with an infinite node density no progress 
is possible (i.e., the probability of progress is zero).  From here recovery techniques such as perimeter routing are 
required.  Perimeter routing results in the traffic being routed along the boundary of the obstacle.  Because all 
other source destination pairs, for which the obstacle interferes, will also result in paths along the boundary of the 
obstacle, traffic hotspots along this boundary may be created.  For example, any traffic destined for D that is 
generated by a node in the area between the “Euclidian” lines (in the figure) will be routed over point A or B, 
resulting in high traffic concentration at these points. 

As perimeter routing (and other recovery techniques using planarized graphs) requires longer path length in 
networks with higher node density this problem becomes worse with increasing node densities [12].  Perimeter 
routing may also take unnecessarily long paths when traversing faces in the “wrong” direction.  To reduce this 
cost, Kuhn et al. [17] propose using techniques that limit the number of nodes in a face that should be traversed, 
before attempting to traverse the face in the opposite direction.  While this may avoid extremely long paths, these 
techniques still result in a high load along the boundary of an obstacle.   

3.5 Some Candidate Metrics 
To improve on the Euclidian distance metric and avoid creating hotspots some traffic should be pushed or routed 
further from the obstacle, rather than along its boundary.  There are many alternative distance metrics that 
perform this redistribution of load, many of which we have explored.  Some of the more intuitively promising of 
these metrics are discussed here. 

One natural approach might be to associate each position with a height, and to route in the resulting 3-
dimensional space using 3-dimensional Euclidian distance.  Each obstacle, or hotspot region, can be surrounded 
with a hill to force some traffic not destined for locations on the hill to avoid routing closer to the obstacle, and in 
that way perform load balancing.  Unfortunately, this idea does not completely eliminate the problem of local 



minimums.  For example, consider the symmetric topology in Fig. 1.  The two points S2 and D2 must have the 
same height and hence, every path connecting the two points must have at least one point that is further from D2 
than S2.  S2 is then within a region with a local minimum with respect to routing to D2.  So as to avoid such local 
minimums, a desirable distance metric should have smoothly decreasing distances around the obstacle, when 
proceeding from source to destination. 

Inspired by the notion of a third dimension, a more general approach is to associate a cost with routing through 
each point in the space, and to use shortest weighted path routing.  While ideally these weights are dynamically 
adjusted, finding these weights and the distances in this continuous space seems costly. 

A third approach is to measure the distance along some equidistance line around the obstacle, as well as how far 
away from the obstacle that the node is located.  For example, the distance between S3 and D3, in Fig. 1, could be 

calculated as 22 dtdc + , where dc is the distance between the two equidistance lines that the two points are 
located at, and dt is the distance along some equidistance line.  While most such metrics can eliminate local 
minimums when routing around a single obstacle, such approaches do not appear to result in good load balancing 
or efficient routing (i.e., short paths may become lengthy). 

Rather than exploring further any of the above candidate metrics the next section focuses on finding simple 
metrics that avoid local minimums and perform load balancing and combining them in a way that ensures all of 
the properties outlined in Section 3.3. 

4. Routing Around a Single Obstacle 
Section 4.1 and 4.2 describe the two distance metrics used in this paper.  The first metric, Local Shortest Path 
(LSP), is a global distance metric that provides most of the desired properties, including loop freedom and low 
probability of reaching local minimums.  The second distance metric, Weighted Distance Gain (WDG), does not 
ensure loop freedom, but provides good load balancing.  Section 4.3 describes the proposed routing technique, 
Load Balanced Local Shortest Path (LBLSP), which combines these two metrics and exploits their respective 
advantages.  In Section 4.4 LBLSP is evaluated against GPSR, using simulations.  Throughout this section it is 
assumed that there is just a single obstacle whose exact shape and size is known.  We further assume that no 
nodes are located within the obstacle boundary and refer to such obstacles as “real”.  Section 5 relaxes the 
requirement of exact knowledge of shape and size, while Section 6 considers the case of multiple obstacles. 

4.1 Local Shortest Path Metric 
Focusing on the single obstacle case the shortest path (taking into account the obstacle location) is probably the 
simplest and most natural metric that does not result in local minimums, provided sufficient connectivity.  It is 
straightforward to calculate the shortest path around a single obstacle, particularly a convex obstacle.  However, 
calculating the shortest path among multiple obstacles is complicated and computationally expensive.  We 
propose a metric called Local Shortest Path (LSP) that takes into account at most a single obstacle, even in a 
network with multiple obstacles. 

LSP can be calculated as follows.  Given two locations, S and D, and an obstacle, a standard computational 
geometry algorithm can be used to determine if the two nodes are in line of sight.  If that is the case, the LSP is 
simply the Euclidian distance.  Otherwise, the LSP can be calculated as the sum of three distances, each 
represented by a separate part of the shortest path around the obstacle.  The first part is a straight line from S to a 
point on the boundary of the obstacle, SB, the second part is a straight line from a point on the obstacle, DB, to D, 
and the third part is a peripheral path along the boundary of the obstacle that connects the two boundary points, 
SB and DB.  The distances along the straight lines are simply calculated using Euclidian distances and the 
peripheral distance may be found using a table lookup, storing cumulative distances between points on the 
periphery of the obstacle, or using some geometric algorithm. 

Given an obstacle and a destination, LSP is a global metric, in the sense that all nodes could compute the same 
distance to the destination from any desired point in the network.  The metric is easy to calculate and routing 
loops cannot occur, assuming a packet is never forwarded to a node with higher distance value.  This metric 



ensures that there always exists a relatively large region that provides progress towards the destination.  For 
example, referring to point P in Fig. 2 (where Euclidian routing reaches a local minimum), any node within the 
quarter-circle, centered at B, provides progress towards D.  This characteristic allows LSP to maintain a high 
probability of progress, and greedy routing using LSP to guarantee packet delivery when routing around a single 
obstacle in a sufficiently dense network.  In sparser networks a packet may reach a local minimum during routing.  
At this point an alternative routing technique is required, such as perimeter routing [16, 5].  However, as the 
density becomes greater and local minimums are less likely to occur it is reasonable to assume that heuristics 
simpler than perimeter routing can be used to deal with local minimums.  For example, a node might forward the 
message toward a random rerouting point, from which point greedy routing toward the final destination can 
resume [8].  Note that greedy routing using LSP still creates significant hotspots along the boundary of the 
obstacle and does not handle the case of multiple obstacles.  Again, consider Fig. 2.  While S would route its 
traffic directly towards B (rather than towards P), the region of sources that expect their traffic generated for D, 
to be routed over A or B, are only reduced to the area between the “LSP” lines shown in the figure. 

4.2 Weighted Distance Gain Metric 
Load balancing around an obstacle is important for two reasons.  First, load balancing can help to avoid the 
creation of hotspots around the obstacle.  Secondly, load balancing can be used to push traffic away from the 
boundary of the obstacle where local minimums are more likely to exist.  Therefore, load balancing around 
obstacles may also decrease the number of occurrences of reaching local minimums where alternative routing 
mechanisms are required. 

To perform load balancing, this paper uses a heuristic distance metric termed Weighted Distance Gain (WDG), 
based on the intuition of weighting the importance of using the straight-line route and an obstacle-avoidance 
route.  These routes are represented by routing using an Euclidian distance metric and a perimeter distance metric 
(defined below), respectively.  Since the magnitude of these two metrics may be different, the weighted metric 
combines distance gains (i.e., the amounts by which the distance to the destination decreases, under each metric) 
rather than absolute distances. 

The perimeter distance between an arbitrary node N and the destination D is defined as the distance along the 
path from the forwarding node S towards the destination that (i) maintains a constant distance from the obstacle 
boundary, (ii) starts  where the line between the node N and its closest point on the obstacle boundary intersects 
with the path, (iii) ends where the line between the destination and its closest point on the obstacle boundary 
intersects with the path, and (iv) is measured in the same direction around the obstacle as the shortest path (i.e., 
the LSP) around the obstacle.  Note that the path is defined based on the position of the forwarding node, not 
only when calculating the perimeter distance from itself to the destination, but also that from its neighbors.  Fig. 3 
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illustrates the perimeter distance gain obtained if a forwarding node S forwards a packet with destination D to 
neighbor N.  The perimeter distance between N and D is the distance from point N’ to D’, along the connecting 
contour between S and D’, and the perimeter distance gain is the distance from S to N’, along the same contour. 

To weight the two distance gains (Euclidian and perimeter) the intuition of a view field is applied.  The view 
field is defined as the segment of a circle, with its center at the forwarding node S and radius equal to the 
Euclidian distance to the destination D, that is covered by a view angle, αmax, centered on the straight line from S 
to D, see Fig. 4.  The weight given to perimeter distance routing is computed as a function of the proportion of 
the view field that is covered by the obstacle, as given by the quotient α/αmax.  This approach is motivated by the 
intuition that Euclidian distance routing should be used when the obstacle is not in the forwarding node’s view 
field (i.e., the quotient is 0), and that all weight should be given to perimeter distance gain, or obstacle avoidance 
routing, when the obstacle blocks the forwarding node’s view field (i.e., the quotient is 1).  In general, this 
quotient is expected to be larger the more the obstacle is affecting the path between the sender and the 
destination.  The weighting factor is then defined as, β

maxα α =WDGf , (1) 

where the exponent, β, allows tuning of the method.  Our simulation results suggest that β = 0.5 consistently 
yields good performance.  Using this weighting factor, the Weighted Distance Gain (WDG) for forwarding a 
packet from a node S to a neighboring node can be defined as, 

( ) dEfdPfWDG WDGWDG ⋅−+⋅= 1 , (2) 

where dP is the perimeter distance gain achieved with forwarding to the neighboring node, and dE is the 
Euclidian distance gain. 

The perimeter distance is relatively easy to calculate for convex obstacles since the forwarding node only needs 
to know the two boundary points (of the obstacle) closest to the points between which the distance is measured 
and the distance along the boundary between these two boundary points.  To easily obtain this information the 
boundary of the obstacle can be stored as a function or a set of boundary points on which table lookups and 
binary searches can be performed.  Having obtained the perimeter distance for itself and its neighbors, the 
perimeter distance gain, dP, can be calculated for each neighbor.  Weighting these distance gains against the 
Euclidian distance gains, dE, the WDG for sending the packet to each neighbor can be obtained. 

In Fig. 2, we note that WDG allows S to route to D without ever routing along the boundary of the obstacle.  For 
example, consider the special case when αmax → 0.  Here, WDG would use Euclidian distance gain whenever 
within line of sight, and the perimeter distance in all other cases.  While resulting in a somewhat extreme path 
around the obstacle (including traffic being routed through C), this extreme behavior can be smoothed by 
selecting a better value of αmax.  While providing load balancing, it is important to emphasize that this distance 
gain metric, or variations thereof, cannot ensure loop freedom when used on its own.  To see this, note that one 
node may be closer to the destination D than some other node, but have a larger perimeter distance P.  Further, 
consider a special case when αmax → 0, one node is not in line of sight, and one of its neighbors is.  For this case 
the WDG can be positive in both directions, and a loop can easily occur.  Similar examples can be generated for 
arbitrary αmax.  It should further be said that the region from which traffic results in paths through A or B 
vanishes, if αmax < π and the network is sufficiently dense. 

4.3 Load Balanced Local Shortest Path Routing 
Based on our generalization of the original GPSR algorithm [16], as described in Section 3.1, this section 
proposes Load Balanced Local Shortest Path (LBLSP).  LBLSP combines LSP and WDG into a single routing 
technique that exploits their respective advantages.  In particular (i) LSP is used to measure progress, and (ii) 
WDG is used to select the node to route to, among the nodes that provide progress.  Referring to the properties of 
a desirable distance metric outlined in Section 3.3, LBLSP ensures high progress probability and a global 



measure of progress (allowing the generalized routing algorithm to ensure loop freedom and guarantee packet 
delivery) using LSP as “progress” metric, and provides load balancing by greedily using WDG as “neighbor 
selection” metric.  Since both LSP and WDG conform to Euclidian distances once the obstacle has been passed, 
and have high progress probability, this combination of distance metrics satisfies all the desirable properties 
outlined in Section 3.3.  Again, we note that both metrics are used to make greedy routing choices, and LSP is 
used to determine when to enter (or exit) perimeter routing, but neither is used by the perimeter routing 
algorithm.  In fact, LBLSP could easily be modified to use alternative recovery algorithms. 

As described in Section 3.1, a packet starts in greedy mode and each node forwards the packet in either greedy 
mode or recovery mode, until the packet is determined to have reached the final destination.  If a packet is in 
greedy mode the forwarding node calculates the LSP values for itself and all its neighbors.  For the set of 
neighbors with lower LSP values the node calculates their WDG values.  Among the set of nodes with smaller 
LSP values the neighbor with the largest WDG value is chosen as the next node to which to route the packet.  
When sending the packet to this node, the packet remains in greedy mode.  However, if there are no neighbors 
with lower LSP values the packet is marked to be in recovery mode.  The packet is also marked with the location 
of the node as well as the LSP value of the node.  This information can be used to perform perimeter routing. 

When a packet is in recovery mode, perimeter routing or some alternative routing mechanism is required until 
reaching a node with lower LSP value than when first initiated.  Assuming accurate knowledge of the obstacle, it 
is, however, worth emphasizing that the use of perimeter routing in LBLSP is an exceptional condition caused by 
low node density. 

LSP and WDG are designed to work together, such that the best nodes using WDG are likely to be among the 
nodes that make progress when using LSP.  In particular, assuming infinite node density, the optimal WDG 
choices within range are typically within the region that provides improved LSP values.  Clearly, this is not 
always the case if using Euclidian distances to measure progress, as this metric does not even ensure that there 
exists regions that provide progress. 

We assume that each node stores the geometry of the obstacle, as well as some information describing each of 
their neighbors’ relationship to the obstacle.  Each node may independently use table lookups or calculations to 
obtain information describing their relationship to the obstacle.2  This information can be distributed to all 
neighbors so that each node in the neighborhood has the same perception of its relationship to the obstacle.  If it 
is determined acceptable to add additional routing information to packets, calculations of the destination’s 
relationship to the obstacle is at most required once per sender-destination pair.  With the forwarding node’s, the 
neighbors’, and the destination’s relationship to the obstacle pre-processed, a forwarding node only has to use a 
limited number of arithmetic and logic operations to determine which node to forward the packet to. 

While we restrict attention to networks where nodes are non-mobile we note that LBLSP is designed to 
significantly reduce the number of occurrences in which perimeter routing is required.  As greedy routing 
generally does not require the locations of neighboring nodes to be known as accurately as the location 
information required to maintain a planarized graph, we expect any technique determining when to update 
location information, in environments with mobile nodes (e.g., [16]), to perform at least as well when used in 
combination with LBLSP, as when used with GPSR. 

Up until this point non-convex obstacles have not been discussed.  Since LSP is simple to calculate for non-
convex obstacles, it can be used to measure progress in such environments as well.  Rather than modify the 
perimeter distance to be well defined for all obstacles, observe that it is well defined outside the convex 
enclosure of obstacles, and the “neighbor selection” metric (i.e., WDG) mainly is used to push traffic away from 

                                                           
2 This information may include the closest point on the obstacle and, from the node, “visible” tangent points, of the obstacle’s boundary, 

for which the tangents pass through the location of the node.  To reduce the calculations required at each node, each node can also pre-
calculate the perimeter distance along the boundary of the obstacle, from these points, to some common reference point.  Given this 
information for the forwarding node, the neighbor considered, and the destination, both the LSP and WDG metric can easily be 
calculated (using only the locations of the nodes themselves). 



the boundary of obstacles.  Therefore a simple heuristic is to use the WDG metric for neighbor selection when 
outside the convex enclosure of an obstacle, and the LSP metric when inside.  This ensures that the packet is 
routed quickly out of the enclosure, and to a point where the WDG metric is well defined.  In this paper we 
primarily focus on convex obstacles. 

4.4 Performance Evaluation 
Since our focus is on large, dense networks, a graph theoretic approach is taken in most of our performance 
evaluation studies, using a special purpose simulator, rather than using packet level simulations.  (Sample 
simulations from packet level simulations using ns-2 are, however, provided in Section 5.4.)  In our special 
purpose simulator, nodes are first placed uniformly in a rectangular region, each at the center of a hexagonal 
region, forming a honeycomb pattern.  Here, each node is adjacent to six neighbors, each at equal distance.  After 
placing these nodes, their locations are individually perturbed using a random and uniformly distributed 
displacement.  To avoid moving nodes to the outside of the rectangular region, the space is treated as a torus; i.e., 
with wrap-around at each edge.  The above node placement strategy, using perturbation on uniformly placed 
nodes, avoids dead regions and allows for connectivity to be achieved for lower densities than is the case in a 
purely random network.3  Finally, a network boundary and one or more obstacle are defined, and all nodes 
outside the network boundary or within a “real” obstacle are removed. 

The sender and destination are randomly selected for each packet to be sent, with the rate of packet generation 
chosen to achieve a desired average packet rate at each node.  The route used for each packet is logged for later 
analysis.  In these experiments three different versions of the algorithm presented in Section 3.1 are used to 
deliver the packets: (i) regular GPSR using Euclidian distances, (ii) a version using LSP as both progress and 
neighbor selection metric, and finally (iii) LBLSP.  Note that all these techniques use the same base algorithm, 
defined in Section 3.1, to route packets; the only difference is which distance metrics are being used.  

A wide variety of topologies can be generated, by adjusting the node density, the perturbation of nodes, the 
transmission range, and the size and shape of both the network and the obstacles.  When not specified otherwise, 
this paper uses an outer network boundary defined by a circle with radius of 1000 length units (lu), each node has 
a transmission range of 150 lu, and the maximum perturbation is set to half the distance between nodes.  In most 
experiments the density is not a variable and is instead fixed at 0.00025 2−lu , or 1 node per 4000 2lu . This 
translates into approximately 17 nodes within radio range, when ignoring edge effects.  Nodes close to the 
network boundary or obstacles are likely to have fewer neighbors.  While LBLSP is designed for dense networks, 
this density was chosen to show that it performs well in networks where the number of neighbors providing 
progress may not always be that great. 

In this section “circular” and “flat” obstacles are used for the experiments.  We define flat obstacles as a straight 
line (e.g., a large wall) that does not cover any surface area, and circular obstacles as a round region within which 
no nodes are located.  We further distinguish between obstacles that allow communication to pass through their 
boundary (termed “transparent” obstacles), and obstacles that do not allow nodes to communicate if the obstacle 
interferes with their line of sight (termed “non-transparent” obstacles).  By default we consider flat obstacles to 
be non-transparent and circular obstacles to be transparent.4 

                                                           
3 We note that only slightly higher densities would be required in networks with purely random network topologies.  For example, 

assuming the same base topology as used throughout this section (a round network with radius 1000 length units (lu) and a transmission 

range of 150 lu), but ignoring edge effects, it can be shown, using Bettstetter’s [3] findings, that a density of 1 node per 8000 2lu  and 1 

node per 4000 2lu  would result in every node in the experimental topologies used here being connected to a different node with 
probability 94.448% and 99.998%, respectively.  Since neighbor graphs (with a large number of nodes) become fully connected at 

approximately the same density, this also suggests that a density of 1 node per 4000 2lu  would allow full connectivity for the 
corresponding experiments, if using purely random graphs [23].   

4 Similar results were observed when routing around a non-transparent circular obstacle. 



The main metric considered is the ratio of the maximum number of packets forwarded by any single node, to the 
average number of packets generated by a single node.  (Assuming a separate connection for each packet sent 
between a source destination pair, the y-axis labeling of Fig. 5, and subsequent figures, refer to this quantity as 
the maximum forwarded packets per node and connection.)  This metric increases as path lengths increase, but 
also as the load becomes more skewed and hotspots become more intense.  Unless otherwise stated, each data 
point represents the average of 10 simulations, each with an average send rate of 10 packets per node.  The 
confidence intervals capture the true maximum with a confidence of 95%.  The default parameter settings for 
LBLSP are β = 0.5 and αmax = π/4. 

Fig. 5 and Fig. 6 present the results from routing in an environment with a circular and a flat obstacle, 
respectively.  In both experiments the obstacle is placed in the center of the topology and the radius or width is 
changed.  As expected LBLSP outperforms the other two schemes.  From these figures it is clear that the 
improvement is larger for the flat obstacle.  This observation is expected since packets in this environment are 
more likely to reach local minimums, requiring the usage of alternative routing techniques, which further enhance 
hotspot regions along the boundary of the obstacle.  The decrease in the maximum load observed with GPSR and 
LSP is due to the decrease in traffic generated, as the obstacle size increase (and hence the number of nodes in 
the network decreases).  For the largest obstacle sizes we also note that there is only a limited area through which 
all three algorithms must route their traffic, hence the somewhat smaller performance differences. 

Fig. 5: Maximum load as a function of obstacle size, 
when routing around a circular obstacle. 

Fig. 6: Maximum load as a function of obstacle size, 
when routing around a flat obstacle. 
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Fig. 7: Maximum load as a function of node density, 
when routing around a circular obstacle. 

Fig. 8: Maximum load as a function of node density, 
when routing around a flat obstacle. 



Perimeter routing (and similar recovery methods) generally requires longer path lengths as the node density 
increases [12].  Thus, the benefits of LBLSP are expected to increase with increasing node densities.  This 
intuition is confirmed by Fig. 7 and Fig. 8, where the density is varied from 1 node per 8000 2lu  to 1 node per 
1000 2lu , while routing around a circular obstacle with a radius of 500 lu and a flat obstacle with a width of 1000 
lu, respectively.  Here, the lowest density was chosen to allow for connectivity among all nodes.  Again, we note 
that LBLSP primarily is designed for environments with higher node densities, although it performs quite 
competitively for less dense networks.  In such networks the probability of reaching a local minimum may be 
non-negligible; however, with a higher progress probability such occurrences are much less likely than if using 
Euclidian distances.  The larger differences observed in Fig. 8 compared to Fig 7 are mainly due to perimeter 
routing being used more frequently using flat obstacles than using circular obstacles. 

Full factorial experiments have been used to evaluate LBLSP on different types of topologies.  In these 
experiments it has been found that parameter tuning improves LBLSP, but that with essentially all reasonable 
parameter settings LBLSP yields an improvement over the other two schemes.  Fig. 9 illustrates routing around a 
circular obstacle, with a radius of 500 lu, for various parameter settings.  Here, the (β, αmax) pairs indicated in 
brackets give the parameter settings used by LBLSP. 

5. Routing Using a Virtual Obstacle 
This section focuses on load balancing in regions through which routing is possible.  By introducing virtual 
obstacles and adjusting their size and shape we extend the idea of “real” obstacles to allow for routes through the 
obstacle, while performing load balancing and traffic shaping within and around the obstacle.  Virtual obstacles 
are primarily designed to relieve natural and artificial hotspots, created by non-uniform load distribution.5  
However, virtual obstacles are also natural to use in environments with “real” obstacles.  By using virtual 
obstacles, less precision is required when determining the exact shape of the obstacle.  Section 5.1 extends 
LBLSP to handle virtual obstacles.  Section 5.2 evaluates the performance of LBLSP on an artificial hotspot.  
Section 5.3 considers the sensitivity of determining the exact obstacle size and shape, when using virtual 
obstacles to approximate real obstacles.  Finally, Section 5.4 presents a packet level simulation of the traffic 
through a region of a larger network taking medium access interference into consideration. 

5.1 Extending LBLSP 
To make routing through an obstacle possible, both the LSP and WDG metric need to be well defined for all 
points within the obstacle.  Further, to avoid singularities and provide good routing properties, the transitions 
between distances, and distance gains, as defined within and outside the obstacle have to be smooth.  For this 
purpose, whenever at least one of the forwarding node and the packet destination are within a virtual obstacle, the 

                                                           
5 Dynamically identifying hotspot regions may be non-trivial.  However, in some circumstances offline algorithms may be sufficient. 

Fig. 9: A sample of parameter settings, when routing 
around a circular obstacle. 
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LSP and WDG metrics are calculated largely according to a scaled version of the obstacle, such that the node 
with smaller “relative distance” to the center of the obstacle is on its new boundary (in which case, neither node 
is in the interior). 

Considering convex obstacles, it is simple to find a natural candidate for the center of the obstacle.  Inspired by 
classical mechanics, this paper uses the obstacle’s center of mass, assuming its density is constant.  The center 
can easily be obtained using integration, and only has to be determined once for each obstacle.  Alternative 
approximations or user-defined centers can work as well, as long as the center is within the obstacle.  Using this 
center the boundary of the (possibly scaled) virtual obstacle can be determined by, 

( )θ1,
)θ(,

)θ(min R
R

r

R

r

D

D

P

P  ,  (3) 

where R(θ) is the distance from the center to the obstacle boundary in direction θ (0 ≤ θ ≤ 2π); rP and rD are the 
distances from the center to the point of reference P and to the destination D, respectively; and θP and θD are the 
directions of P and D (relative to the center), respectively.  As the first term is a constant, given P and D, this 
simply corresponds to a potential scaling of the obstacle.  If both P and D are outside the obstacle the obstacle 
remains as originally defined, otherwise the obstacle is scaled such that the node with the smaller relative 
distance to the center is located exactly at the new boundary.6 

Using the (possibly) scaled obstacle, the LSP metric can be found for any pair of points, P and D.  Also, the 
perimeter distance can be calculated between two points.  However, using the (scaled) obstacle alone when 
calculating the weighting factor used for the WDG metric can result in unnecessary obstacle avoidance routing 
and long paths.  Also, to avoid additional load in the hotspot region it is important to allow routes going to or 
from the center of the hotspot to use the straightest paths possible through the hotspot.  To encourage such paths, 
while ensuring that routes between nodes on opposite sides still avoid routing through the center, two additional 
factors are added to the weighting factor in (1), β
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These factors reflect the extent to which the virtual obstacle has been scaled (if at all) with respect to each of P 
and D.  Intuitively, the greater the scaling, the more of the virtual obstacle is actually outside of the region 
between P and D, and the more we wish to favor straight paths.  The parameter γ allows us to tune the extent to 
which straight line paths should be favored.  Note that if both P and D are outside of the (unscaled) virtual 
obstacle, both of the new factors are 1. 

Note that if the sender, its neighbors, and the destination, are outside the (unscaled) virtual obstacle the routing 
choices made by LBLSP are the same as for a “real” obstacle.  As discussed in Section 5.3 this allows us to 
approximate “real” obstacles using “virtual” obstacles.  We further note that each node (located at say reference 
point P) only has to calculate rP/R(θP) once (before distributing this information to all its neighbors), and rD/R(θD) 
only is required to be calculated once per sender-destination pair, if recorded in the packet. 

5.2 Hotspot Avoidance 
To evaluate hotspot relief using virtual obstacles, a portion of the traffic in the network is associated with a 
specific region of the network.  This region is located at the center of the network and is characterized by its size 
and strength.  Considering a circular center region, its radius defines the size.  Strength is defined as the 
proportion of the total network traffic that is generated by a sender or destined for a node, in this region, in 
addition to its normal traffic.  The rest of the traffic is independently generated as if there were no such region.  
All nodes are hence generating traffic, but nodes within the center region are generating and receiving traffic at a 
                                                           
6 To see this, assume that rP/R(θP) < min[rD/R(θD), 1].  Note that the size of the obstacle reduces to rP in the direction of P, and reduces to 

rP(R(θD)/R(θP)) < rD in the direction of D. 



higher rate.  Throughout this section the radius of the center region is 250 lu, corresponding to 6.25% of the total 
network area.  The topology used here is generated using the same technique (perturbation of uniformly placed 
nodes) and default parameters as was used in Section 4.4, resulting in roughly 50 nodes within the hotspot region.  
As the strength of this region increases, the average traffic generated to or from this region will increase, while 
other regions may lose traffic. 

Fig. 10 shows results from an experiment with a circular virtual obstacle with radius of 250 lu, matching the 
hotspot center region, and β = 0.5, αmax = π/4, and γ = 2 as parameter settings.  While γ only is required for virtual 
obstacles, these are the default settings used throughout the entire paper.  Because the virtual size is set to 250 lu, 
it is not designed to load balance a natural hotspot created only by the normal traffic.  Therefore, LBLSP 
performs slightly worse than GPSR when the region has a strength of 0, and the traffic generation rate is uniform 
in the network.7  While LBLSP, using a virtual size of 250 lu, does not outperform GPSR for all strengths, 
LBLSP outperforms the other two techniques more and more as the strength increases.  In fact, Fig. 10 indicates 
that LBLSP achieves a lower maximum load when balancing the total network traffic, including both the hotspot 
traffic and the normal traffic, than GPSR is able to achieve when balancing the hotspot traffic alone.  While the 
regular traffic results in additional hotspot traffic for GPSR, LBLSP is able to almost entirely avoid creating 
                                                           
7 A virtual obstacle matching the network would be the most natural candidate when the strength is zero.  In experiments that used a virtual 

obstacle that matches the network size (i.e., using a radius of 1000 lu) and a hotspot that is “natural” (i.e., the strength of the center 
region is 0) LBLSP improved the load balancing over GPSR by 20%. 

Fig. 12: Maximum load when using a circular virtual 
obstacle to route around a circular obstacle. 

Fig. 13: Maximum load when using a circular virtual 
obstacle to route around a square obstacle. 
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Fig. 10: Maximum load as a function of the hotspot 
strength, when using a virtual obstacle. 

Fig. 11: Parameter sensitivity, when using virtual 
obstacles to relieve a hotspot. 



additional load for the hotspot region.  Instead, the regular traffic that is not routed to or from the hotspot region 
is routed around this region.  

While the default parameters chosen for LBLSP and the experiments presented in Fig. 10 perform well, other 
parameters can perform similarly.  In Fig. 11 the sensitivity of these parameter settings is studied.  Here, the 
strength of the hotspot is fixed at 0.5, and the virtual size is varied for a number of parameter settings.  Note that 
with all parameter settings LBLSP provides better performance than regular GPSR and that all parameter settings 
perform at their best when the virtual size is about the same as the size of the hotspot region.  Another interesting 
observation is that decreasing γ trades performance for lower sensitivity to the virtual size.  Similar results can be 
found using hotspots with alternative size and strength. 

5.3 Approximating Real Obstacles 
Section 4, somewhat unrealistically, assumes that the exact size and shape of the obstacle is known.  This is not 
always the case.  As suggested, virtual obstacles can be used when the shape is approximately or only roughly 
known.  Using simpler shapes is also highly beneficial in environments where some nodes may have limited 
computational power. 

To evaluate the importance of the accuracy of this estimation a set of experiments has been performed using 
virtual obstacles in an environment with a “real” obstacle.  Fig. 12 presents results from one such experiment.  
Here, a real obstacle with radius 500 lu is approximated using a virtual obstacle of varying size.  As the figure 
shows, the performance results are not very sensitive to the accuracy with which the size is estimated.  In fact, we 
have found, as illustrated by Fig. 12, that a slightly larger virtual obstacle normally performs best.  This 
improvement comes from these somewhat larger virtual obstacles further restricting the amount of traffic routed 
up to the boundary of the real obstacle.  Similarly, Fig. 13 suggests that the performance is not very sensitive to 
how accurately the shape is estimated either.  Here, a (transparent) square obstacle with sides of 1000 lu is 
approximated using a circular virtual obstacle, for which the radius is varied.  Note that the size that performs 
best roughly matches the circle that encloses the entire square.  As can be observed in these figures, LBLSP 
reduces to GPSR when the size of the virtual obstacle is zero. 

5.4 Packet Level Simulations 
To capture the congestion caused by multiple nodes transmitting in the same region of a network this section uses 
the network simulator ns-28 to simulate packet loss and delay characteristics of the traffic flowing around an 
obstacle.  Here, we present sample results obtained from simulations representing part of a larger network and the 
traffic flowing through this portion of the network.  The area considered is circular, with 16 ingress/egress points 
evenly spread along the boundary.  One connection is set up in each of the two directions, between each pair of 
ingress/egress points.  In the center of this region we remove all nodes within a square region with sides of 1000 
lu, before enclosing this region with a virtual obstacle with a radius of 707 lu.  With the exception of the node 
density, the topology is identical to the topology used in Section 5.3.9  Using a total of 334 nodes, 16 of which are 
ingress/egress points (located at the boundary of the topology), we have a node density of approximately 0.00015 
lu-2 (or approximately 11 nodes per radio range, when ignoring edge effects). 

The results of these simulations are presented in Fig. 14.  The values presented are the average values of ten 
simulations (in which each ingress/egress node generates roughly 1000 packets, each of size 512 bytes).  The first 
10% of each simulation was used as a warm-up period, during which time statistics were not recorded.  The flow 
in each direction between each pair of ingress/egress nodes (240 flows in total) is CBR.  Each flow starts at a 
random time instance (uniformly distributed during an initial portion of the startup period, equal to the inverse of 
each flows packet generation rate) and lasts for the duration of the simulation.  Each node is modeled using ns-
2’s default parameters for a 914MHz Lucent WaveLAN DSSS radio, with a data transmission rate of 2 Mbps.  

                                                           
8 The network simulator ns-2 (version 2.26), http://www.isi.edu/nsnam/ns/, June 2006. 
9 For the ns-2 simulations one lu corresponds to 5/3 meters, since the radio range we assume is 150 lu while ns-2’s default radio range is 

250m. 



The routes used by GPSR, LSP and LBLSP for each flow was calculated offline, and the packets forwarded using 
a modified version of NOAH. 10 

Fig. 14 reports both the packet loss probability and the end-to-end packet delay of successfully received packets, 
as a function of the data generation rate (at each ingress/egress point).  Note that LBLSP outperforms both GPSR 
and LSP, with respect to both metrics.  Also LSP results in a better packet loss probability than GPSR; however, 
this comes at the cost of a slightly larger end-to-end delay.  The average delay values, for low traffic generation 
rates, directly correspond to the average path lengths for GPSR, LSP and LBLSP.  Measured in the number of 
hops these are 21.2, 18.6, and 15.6, respectively.  With GPSR the node that forwards the most packets forwards 
approximately 3.5 times the number of packets generated by an ingress/egress point, while the average node 
forwards 0.86 times as many packets.  The corresponding values for LSP are 3.7 and 0.79, while for LBLSP they 
are 2.7 and 0.70.  This corresponds to GPSR having roughly 30% (23%) higher maximum (average) load per 
node that LBLSP.  Again, comparing with the differences observed in Fig. 13, we expect these differences to 
increase with increased node densities. 

6.  ROUTING AMONG MULTIPLE OBSTACLES 
As previously discussed, finding the shortest path among multiple obstacles is neither scalable nor distributed.  
To be able to find the shortest path global knowledge of all obstacles is required, and as the number of obstacles 
grows, the necessary computations become very expensive.  Since LSP handles the single obstacle case well and 
is relatively simple, we suggest using LSP or some version of LBLSP for each individual obstacle, and 
complementing it with an additional routing rule to allow efficient routing among multiple obstacles. 

In our approach, decisions are based on at most one obstacle at each routing step.  To determine the obstacle 
currently taken into consideration we define a routing rule that takes the closeness of each obstacle into 
consideration.11  We assume that all obstacles (and/or virtual obstacles) are convex.  Section 6.1 extends LBLSP 
to include a routing rule that allows it to use LSP while avoiding loops and guaranteeing delivery in sufficiently 
dense networks.  Section 6.2 evaluates the performance of LBLSP in the presence of multiple obstacles. 

                                                           
10 NO Ad-Hoc (NOAH) routing agent, http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/, June 2006. 
11 An alternative candidate approach could determine the obstacle to consider based on the portion of the view field that each obstacle 

covers.  This allows nodes to be associated with multiple obstacles (where each obstacle corresponds to some set of destinations).  This 
paper restricts attention to the case where each node is associated with one (or possibly a few) obstacle(s) (determined by their 
closeness). 

Fig. 14:  Routing around a square obstacle, using a circular virtual obstacle.  

(a) Packet loss probability.  (b) End-to-end packet delay. 
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6.1 Complementing LSP with a global routing rule 
To maintain the desirable properties of a distance metric, previously outlined in Section 3.3, when routing in 
environments with multiple obstacles, the routing rule must provide a measure of global progress (allows the 
routing algorithm to ensure loop freedom, and guarantee delivery), and maintain high progress probability.   

Before defining such a routing rule, define the tangent points of an obstacle as the points on the obstacle’s 
boundary, for which the tangents of the boundary passes through the destination D.  Note that convex obstacles 
have exactly two such points.  To determine which obstacle to take into consideration at each routing instance, 
we consider a packet committed to an obstacle when that obstacle is closer than any other, and the LSP value 
associated with routing the packet around that obstacle to D is larger than the minimum Euclidian distance 
between D and any of the obstacle’s tangent points.  The routing rule simply limits the routing options of a 
forwarding node, based on whether or not it is committed to an obstacle. 

Routing rule:  When committed to an obstacle the packet should only be forwarded to a node for which the 
committed obstacle is the closest obstacle.  When not committed to an obstacle the packet can be forwarded to 
any neighbor.  In both cases the LSP (and the WDG) metric(s) are calculated with regards to the obstacle closest 
to the forwarding node. 

Here, it is important to note that the LSP value always reduces to the Euclidian distance, as soon as the packet is 
no longer committed.  This allows for a natural selection of the next obstacle to commit to and ensures that each 
node is only required to maintain LSP information with regards to a single obstacle. 

Theorem 1:  When using the above routing rule a packet will never commit twice to the same obstacle. 

Proof:  

We define a green region of an obstacle to be the region with smaller LSP values (with regards to the obstacle 
and some destination D) than the distance between D and the obstacle’s closest tangent point.  We further term 
any point with no greater Euclidian distance to D as the obstacle’s closest tangent point, but not within the green 
region of the obstacle, as behind the obstacle.  We further note that any obstacle A with its closest tangent point 
behind an obstacle B must be outside the green region of B (otherwise these two convex obstacles would 
overlap).  If this is the case we say that A is behind B.  (See Fig. 15.) 

Note that, given a sequence of obstacles a packet commits to, the next obstacle B that the packet commits to, after 
having been committed to A, either (i) has at least one tangent point within the green region of A, or (ii) has both 
its tangent points outside the green region.  Hence, either B’s green region is a subset of A’s green region, or A is 
behind B (as B separates the green region of A into two halves, one containing D and the other containing the 
closest tangent point of A).  Using these observations the theorem can now be proven. 

Assume to the contrary (of the theorem) that the packet can re-commit to an obstacle.  Let A be the first obstacle 
the packet re-commits to, and let grA be the green region of A.  It is impossible to re-commit to A unless an 
obstacle B exists that forces the path outside grA.  Hence, there must exist an obstacle B for which both tangent 
points must be outside grA and that separate the point where A was passed (and hence A itself), and the 

Fig. 16: Routing example using two obstacles. 
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destination.  With A behind B, we would need to have an obstacle C within grB that takes us outside grB; 
however, with the same argument as above, this would result in grC not containing B.  Hence both A and B are 
behind C.  This argument can be repeated, but since the new obstacle’s green region will never contain the 
previously visited obstacle, and the obstacles before it, including A, A will never be revisited.  Thus, we have 
reached a contradiction.   Q.E.D. 

While the routing rule is able to ensure loop freedom, it may result in ridges where no or only a very small 
portion of the neighbors provide progress.  For example, consider routing from S to D in Fig. 16.  Here, routing 
using LSP complemented with this global routing rule results in packets reaching a point C, where only nodes in 
a very small area provide progress.  Such nodes are required to be closer to obstacle G (than to obstacle H), as 
well as having smaller LSP values (with regards to G) than the current node.  Because of this constraint much 
traffic will be concentrated along the divide between G and H, and in the case of lower node densities local 
minimums will likely be observed.  To allow for higher progress probability nodes close to the boundary of the 
obstacle (e.g., within one radio range of the boundary), or within obstacles, should always be associated with that 
obstacle, hence allowing some nodes to be “associated” with more than one obstacle (by “associated with an 
obstacle, we mean that the obstacle is considered to be the node’s “closest obstacle” when applying the routing 
rule described above).  Note that the routing rule and theorem is valid as long as the packet is only forwarded to 
nodes associated with the same obstacle until first reaching a node within the green region of the obstacle.  In 
networks where obstacles are located densely this problem can further be relieved by modifying LSP such that it 
is calculated in the “direction” defined by the tangent point closest to the destination, in the case of Fig. 16, point 
A.  This ensures that the path taken always has a larger progress area.  Note, however, that this path is longer than 
routing over B.  To weight the advantage of shorter paths against the risk of reaching local minimums, a 
weighting function can be used to determine which approach should be used.  These ridges do not occur in 
networks where obstacles are sparsely located.  

With obstacles defined such that it always is possible to route around (or through) an obstacle, the following 
theorem can be derived, which ensures delivery. 

Theorem 2:  Assume the boundary of the network is convex, and the connectivity is dense enough that a path 
exists to get past each obstacle and commit to a new one, or to route to the destination.  Then the packet will 
eventually reach the destination using the above routing rule. 

Proof:  

Since it is always possible to route past the current obstacle it is always possible to either reach the destination or 
commit to a new obstacle.  Since the network is limited by the convex area there is only a limited number of 
obstacles, and since no obstacle is revisited (according to Theorem 1) the destination will eventually be reached 
since there will be no new obstacle to pass.  Q.E.D. 

Fig. 17: Symmetric routing topology, using three 
circular obstacles. 



The above routing rule is fully distributed and requires only minor changes to LBLSP.  As for the single obstacle 
case each node calculates its relationship to only one obstacle (i.e., the obstacle closest to the node), or in some 
cases a very limited number of additional obstacles that the node is associated with.  This information is then 
distributed, together with the ID of that obstacle, to all neighbors of the node.  With knowledge of which 
obstacle(s) each neighbor is associated, routing can now be performed as described above.  The biggest 
difference in terms of calculations is that destination based information (such as the two tangent points and the 
destination’s closest point on the obstacle) may have to be recalculated for each new obstacle that the packet 
commits to, on its path to the destination.  Note that embedding such information into packets and/or caching 
such information can reduce the amount of calculations required when routing packets.  Further, note that 
information about an obstacle will only have to be distributed in a limited area of the network (i.e. an “obstacle-
zone”).  For example, the network in Fig. 17 is split into three zones.  In each zone, each node knows the 
geometry of the same obstacle. 

6.2 Performance Evaluation 
To evaluate how LBLSP performs in the presence of multiple obstacles a very simple topology is considered, see 
Fig. 17.  Here, three round obstacles are symmetrically placed in a round network with a radius of 2000 lu.  The 
distance between the centers of each pair of obstacles is 1600 lu.  In this environment it is expected that the three 
routing schemes would perform approximately the same for the two extreme cases when the radius of the 
obstacles is 0 and 800 lu, respectively.  For the first case there are no obstacles to route around and in the second 
case some nodes become disconnected from the rest of the network, as the obstacles grow together.  With focus 
on what happens between these two extremes, two experiments are presented. 

In Fig. 18 the radius of the obstacles is fixed at 250 lu and the density is varied, while in Fig. 19 the density is 
fixed at 0.00025 2−lu  (or approximately 17 nodes on average within radio range, when ignoring edge effects) and 
the obstacle radius is varied.  From these figures it can be seen that the performance improvement is substantial 
when the obstacles are large enough that routing cannot be performed over the obstacle, and the size is not 
forcing all traffic to take the same routes, as is the case in scenarios with large obstacles.  Consider for example, 
the case where the obstacle radii are 700 lu. This only leaves 200 lu between the obstacles, or slightly more than 
one transmission range.  We note that the higher values observed for low densities, in Fig. 18, are due to the 
additional usage of perimeter routing. 

7. Conclusions 
While greedy geographic routing, based on Euclidian distances, is attractive for large networks because of its 
simple and distributed operation, it may easily result in dead ends or hotspots when routing in a network with 
obstacles.  We propose Load Balanced Local Shortest Path (LBLSP), a routing algorithm that uses the simplicity 
of greedy routing, while providing load balancing and avoiding local minimums.  By replacing the Euclidian 

Fig. 18: Maximum load as a function of the node 
density, when routing among three circular obstacles. 

Fig. 19: Maximum load as a function of the obstacle 
size, when routing among three circular obstacles. 
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distance metric with two non-Euclidian distance metrics and exploiting their respective advantages, a number of 
desirable properties are achieved.  LBLSP is loop free, efficiently routes around obstacles, uses Euclidian or 
close to Euclidian routing once it has passed an obstacle, and performs distributed and stateless routing.  The 
current version of LBLSP also uses perimeter routing to guarantee delivery in static networks whenever a path 
exists.  With dead ends occurring less frequently, LBLSP could potentially be modified to use alternative 
methods to guarantee delivery.  While the basic version of this algorithm is designed to perform load balancing 
around a single obstacle, the algorithm is extended to relieve hotspot regions and route among multiple obstacles. 

While our use of non-Euclidian distance metrics yields a relatively simple routing algorithm, a number of open 
problems remain.  One such problem concerns how to best determine the size and shape of “virtual” obstacles, 
used for hotspot avoidance.  In addition to such open questions, we are currently working on incorporating 
distributed obstacle detection algorithms, such as the algorithm proposed by Fang et al. [9], into LBLSP. 
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