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Abstract

Greedy geographic routing is attractive for large multi-hopeless networks because of its simple and
distributed operation. However, it may easily result in dead entl®tepots when routing in a network with
obstacles (regions without sufficient connectivity to forward mgss). In this paper we propose a distributed
routing algorithm that combines greedy geographic routing with two nichelean distance metrics, chosen so
as to provide load balanced routing around obstacles and hotspots. Thefiirst Local Shortest Path, is used
to achieve high probability of progress, while the second metricghésl Distance Gain, is used to select a
desirable node among those that provide progress. The proposed Load BalmaleShortest Path (LBLSP)
routing algorithm provides loop freedom, guarantees delivery whenhaepats, is able to efficiently route
around obstacles, and provides good load balancing.
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1. Introduction

This paper considers routing in large multi-hop wireless ad hoc fetwgth non-mobile nodes, such as sensor
networks or rooftop networks. Sensor networks are networks thete usinall sensing devices to capture
physical phenomenon by distributing a large number of sensing units aorassterrain. While each of these
units has limited resources, they are generally equipped with eneaghrees to perform sensing, process
information, and communicate among each other. Rooftop networks arepatitéin area networks with
comparatively well-resourced nodes used to share resources among a group of people.

In a multi-hop wireless ad hoc network the nodes cooperate and eslayother’'s packets toward their final
destinations. There have been many routing protocols proposed for such networks [6, 21, 14]ndtelfprthe
same characteristics that make these networks attratswecomplicate routing. In particular, individual nodes
are not reliable, and the network topology may therefore change frequently.

A promising routing approach for large-scale networks is geographiing, in which packets are forwarded
based on location information available to each node [28, 10, 5, 16]. More edsuiemes may take energy
consumption, load at individual nodes, and other additional node charactdristiosonsideration. In the
geographic routing scheme proposed in this paper, routing may alsotinsatess or assumptions about the
connectivity, traffic load, and other network characteristics in the varigigneof the network.

The simplest form of geographic routing is greedy routing [10], whesach hop packets are forwarded to the
neighbor closest to the destination. Greedy geographic routingasta for large networks with frequent
topology changes because of its simple and distributed operation. Hopwadnes routing in a network with
obstacles (areas through which packets cannot be forwarded, owing to re b®iadg present for packet
forwarding, for example), pure greedy routing may fail.
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Fig. 1 illustrates routing in a network with an obstacle, as dermytede darker area in the centre of the figure.
Consider a packet with source &d destination D Using pure greedy routing, this packet would be forwarded
up to point A, at which further progress would not be possible. At this th@npacket would have reached a
dead end, or a local minimum with respect to the distance to theadiest. An alternative routing mechanism,
such as perimeter routing [16, 5] or limited flooding [10, 27], is requivedn reaching a local minimum.
Perimeter routing routes packets along the faces defined bynsegounded by the edges in a planar graph
network topology. This approach may, however, result in many routesviiodl the boundary of an obstacle,
creating congestion. Limited flooding may also result in network congestion.

The routing approach proposed in this paper attempts to retain much sifnflieity of greedy routing while
providing load balancing and avoiding dead ends. This is achieved bgingpllae Euclidian distance metric,
generally used by greedy routing, with non-Euclidian distance metrats make use of knowledge of the
locations of obstacles. The proposed Load Balanced Local Shortegt BagP) routing algorithm combines
two such metrics, one of which (Local Shortest Path) is used tevachigh probability of progress, and the
other (Weighted Distance Gain) is used to select among those piadéding progress. A basic version of
LBLSP designed to perform load balancing around a single obstamlesisnted first, followed by an extension
of LBLSP and its distance metrics that is able to reli@rgestion in hotspot regions and route among multiple
obstacles.

The remainder of the paper is organized as follows. Section @uevelated work. Section 3 describes our
network model, a generalization of the Greedy Perimeter &at&outing (GPSR) [16] protocol on which our
new protocol is based, how information about obstacles can be obtained &bdtddstand the properties of a
desirable distance metric. The following three sections metiaatl describe the distance metrics proposed in
this paper, and how they can be used within the routing algorithm tovachie objectives. Section 4 discusses
routing around a single obstacle. Sections 5 and 6 extend the distanics ared LBLSP to handle hotspot
avoidance and routing among multiple obstacles, respectively.o®&ctioncludes the paper with a summary of
our findings and a discussion of future directions.

2. Related Work

Most geographic routing algorithms require each node to know itsidocats neighbors’ locations and the
destination’s location. Assuming that each node has some way of detertsm@ng location (e.g., using a GPS
device), the locations of a node’s neighbors can easily be determiaestalable manner. The location of the
destination can in some rooftop networks be obtained using an offline chanteh some sensor networks the
destination is by default a location; however, many networks requidetional mechanisms to obtain this
information. Geographic Location Service (GLS) [20], Reactiveation Service (RLS) [19], and the location
part of Distance Routing Effect Algorithm for Mobility (DREANR] are examples of systems or techniques that
can be used to distribute this information. Das et al. [7] provides a performance sompasuch services.

Many of the early proposals in geographic routing are based on some obfirogress and use this to greedily
forward packets. Takagi and Kleinrock [28] originally proposed Mmastvard within Radius (MFR), which
forwards packets to the node within radio range that makes thepruagess toward the destination, when
projecting the progress onto a line between the sender and the dmstirkéitn [10] later proposed forwarding
messages to the node within transmission range that is clogbstdestination. Naturally, there are many other
measures of progress that can be used [14].

Greedy geographic routing has been proven effective in sensingedowetworks, in which every point of a
region is covered (i.e., within sensing range of at least one seode). In particular, in convex sensing-covered
networks without obstacles a transmission range of at least twe sensing range of the participating sensor
nodes is sufficient to guarantee that Euclidian routing alwaysgesyrogress [29]. In contrast, we assume that
some areas of the network may contain larger obstacles antierafote not ensure Euclidian progress. For
example, the entire network may be sensing-covered, with the erctegtian enclosed lake or mountain.
Assuming that nodes can communicate when within transmission range, it can be shownanisatiasion range



of at least twice the sensing range is sufficient to gusgahtg a path exists between any source destination pair,
as long as the nodes cover a (single) connected area [11].

To avoid routing loops, techniques have been proposed that drop packets wdmiémgreaints at which no
progress towards the destination is possible (a “local minimumijh@n a packet revisits a previously visited
node [27]. Other techniques use limited flooding to circumvent loaga@hmaims [10, 27]. To avoid flooding the
entire network, while guaranteeing delivery, Stojmenovic and Lin [28pose a type of limited flooding in
which a packet at a local minimum is flooded to all neighbors. The node performingatti@dl then rejects any
incoming copies of the packet. All receiving nodes forward the packet as ushahevexception that they must
retransmit the packet to the best neighbor that has yet notekjdee packet, until there is a neighbor that
accepts the packet. Bose et al. [5] propose a more scalabiegtez that does not require flooding. Their
algorithm, FACE-2, called perimeter routing here, first planaritee neighbor graph, by removing edges.
Packets are then forwarded around the faces of this planar graptewXaces are entered, the packet is updated
with information about the progress that has been made along the timeebethe original sender and the
destination. This technique assumes that all nodes within some thre$taince are within communication
range of each other; however, efficient techniques that guararniesrylbave been proposed for environments
where transmission ranges are somewhat irregular [1, 18].

Bose et al. [5] propose combining greedy routing and perimeter routiaglgorithm has later been referred to
as Greedy Perimeter Stateless Routing (GPSR) [16]. Th&PBBilgorithm presented in this paper generalizes
GPSR. Many orthogonal improvements have been made to GPSR tHalPldduld benefit from. For example,
better algorithms to planarize a graph have been proposed [13], ane@tpenouting has been modified to
perform better on average [17]. More sophisticated techniques sarb@limagined, which use alternative
techniques as the packet approaches the destination. For exampieedocalting tables can be used for the
last few hops [4]. When reaching less severe local minimums;ansponding to an obstacle, information
about nodes on the periphery of these smaller “holes” can be used to provide progress [9].

To handle obstacles, dead areas, or holes, a packet can first loetosgeds an intermediate location, at which
point the packet’s target is changed to the location of the agtistination [8]. While this strategy may be
efficient when routing around some obstacles it does not solve thermroblaore general obstacles, especially
not the case of multiple obstacles. Blazevic et al. [4] eragiath of anchor nodes which packets can be routed
along. For each anchor point reached, the packet's destinationtisoréise next anchor point, until the final
destination is reached. While not designed for this, Nath and Nialgdd&2] notion of routing along a curve
can be used to create a sender-defined routing path among obstéiteappfoach may not, however, guarantee
delivery since progress is not well defined for all points innttevork. Also, such an approach would not scale
to networks with many obstacles since it requires complete netanmwledge. Instead, this paper proposes
embedding the distance function into the network.

He et al. [15] do not consider obstacles, but instead address thefissuéing around congested areas. While
their routing protocol, SPEED, combines congestion avoidance togetherbaskpressure to route around
congested areas, SPEED does not allow forwarding to nodes that do nde gaelidian progress. Instead
packets are dropped when reaching local minimums.

More closely related to our work is work by Rao et al. [24]. Tpr@gent an elegant and distributed algorithm to
create an alternative coordinate space that helps avoid sohepmbblems with reaching local minimums when
routing among obstacles. However, they do not perform additional loattivgaand are not able to guarantee
delivery using these coordinates. Rather than creating a nevin(aomhe cases additional) coordinate space we
assume that the locations of the nodes are known, or can be closayimpped [25, 26]. We then use this
natural coordinate space and knowledge of obstacles to develop aleedistance metrics that achieve all the
desirable properties outlined in Section 3.3, including load balancing.
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3. Problem Description

Throughout this paper the network is modeled as a unit graph, in whidlwvamodes can communicate if and
only if the distance between them is less than some fixed distdncthis environment, assuming sufficient
connectivity, delivery can be guaranteed when routing using only tlaéidos of the destination, and each
forwarding node and its neighbors [16, 5]. As previously discussed, extems®mossible to handle more
flexible radio ranges [1, 18].

We restrict attention to networks in which nodes are stationadykaow their location. Nodes are considered
unreliable; however, we expect the lifetime of a node to be lomger the time required to route around an
obstacle. We envision obstacles to be more stable than individual réoilesxample, nodes surrounding a lake
in an area covered by a sensor network may be unreliable (asroodast of energy, for example) while the
lake will remain.

Section 3.1 describes a generalization of the GPSR protocol on whitBIo8P protocol is based. Section 3.2
discusses how the geometry of obstacles can be obtained, and distigbsitede appropriate subset of nodes.
Section 3.3 discusses and outlines the desired properties of the nemcalisietrics that will be developed.

Section 3.4 discusses some of the problems with using Euclidian dsstemesvironments with obstacles.

Section 3.5 describes some natural candidate geographic routing appayaaiethle to networks with one or

more obstacles, and their shortcomings.

3.1 Greedy Routing with Guaranteed Delivery

In Greedy Perimeter Stateless Routing (GPSR) [16], packatbe either igreedymode or inrecoverymode.
When a new packet is generated, the packet is initially iadgrenode. Each packet is forwarded until the
destination, or the node closest to the destination location, is reafchessible. When receiving a packet each
node determines if it is the final destination; if not, it detersiihéhe packet is in greedy or recovery mode. The
algorithm presented here uses the same basic structure as GPSR.

If the packet is in greedy mode the forwarding node uses someadisteetric (termed here “progress” metric) to

calculate the distance to the destination for itself and afleigghbors. Provided with a “global” distance metric,

such that all nodes agree on their distance to the final destinptagress is achieved, if possible, by always
forwarding packets to a node closer to the final destination. Natettis not necessary to choose the neighbor
closest to the destination at each hop. Instead, some alterrdgioos metric (termed the “neighbor selection”

metric) can be used to select from among those neighbors closer to the destination.

If there is no neighbor closer to the destination (using the progrest) the packet is marked in recovery
mode. The packet is also marked with the location of the currentawdell as that node’s distance to the
destination. This information can be used to perform perimeter rootirspme alternative routing mechanism



for recovery from local minimums. While one of the design goalsuofdistance metrics is to minimize the
number of occurrences of and the time spent in recovery mode, it cannot be avoided entirely.

In perimeter routing, packets are forwarded around the faces définesbions bounded by the edges in the
planar graph, formed by removing edges as needed from the neighbor §pagatifically, at each hop a packet is
forwarded to the clockwise (or counter clockwise) closest neigtaparhich the transition does not cross the
line between the location where perimeter routing was initiateldttze destination, among all neighbors in this
planar graph. As new faces are entered, the packet is updatedfatimation about the progress that has been
made along the line between the initiating node and the destinatiorpatket returns to greedy routing as soon
as it is closer to the final destination than it was when first entering rgaoesie.

The algorithm presented here modifies the greedy portion of GP$&lacing its distance metric (Euclidian)
with two arbitrary distance metrics, one measuring progress rendther used for neighbor selection. The
progress metric is further used to determine when to enter (andtwlexit) perimeter routing. This algorithm
reduces to GPSR if the Euclidian distance metric is used as both the progresstarat selgction metric.

3.2 Obtaining Obstacle Geometries

Our proposed distance metrics use information about obstacles inwekyathere an obstacle is defined as an
area through which packets cannot be forwarded. In general, this atimmnecould be obtained through some
offline method, or could be obtained dynamically using an online algorithm.

While we expect offline approaches to be sufficient in many envirotsnghese methods may not always be
sufficiently reactive in environments in which obstacle locationl &ize evolve dynamically. In such
environments it is important to be able to dynamically detect cbstaobtain their geometry, and distribute this
information to those nodes that must acquire it. Fang et al. [9] pabpadistributed algorithm to detect “holes”
(i.e., obstacles). Their approach relies on each node determiningeilygforwarding will reach a local
minimum at the node for some region of possible final destinationghatfis the case, the node is at the
boundary of a hole and can then determine the rest of the boundary by ckickydse routing rule and an edge
intersection rulé. For example, the location of all nodes currently on the boundary of thackbsan be
recorded as the packet traverses the boundary of the obstachey thisiinformation, the shape and size of the
obstacle can be determined, before being distributed to all nodes satharegion of the network. We expect
that the boundary can be approximated using some simple geometry @rgle)a or some piecewise linear
curve, defined by a relatively small number of points. This allfmwgelatively low storage, processing, and
communication requirements.

In this paper we assume that information regarding obstacles kasdistributed throughout the network,
without modeling a particular mechanism for accomplishing thisilligion. Thevirtual obstacle concept
introduced later in this paper allows obstacle boundaries to be appreajmaatthis allows nodes to be inside
obstacles. Section 5.3 shows that the performance of the routinghatgproposed here is fairly insensitive to
the accuracy with which the shapes and sizes of obstacles aoziamted (allowing simpler geometries to be
used in environments where storage or processing capacity is limited).

3.3 A Desirable Distance Metric

Greedy routing, based on Euclidian distances, may suffer from loatcleggroblems and the phenomenon of
local minimums. Our goal is to find alternative, non-Euclidian dtametrics that maintain the desirable
properties of greedy routing. Such metrics should therefore be:

Distributed: Each routing choice should be done using only locally available information.

Stateless: Each routing choice should be independent of previous routing choices, goe\tioels path
taken by the packet.

! This technique can be used to discover and cafitarboundary of holes of any size. While smalehanay not necessarily be treated as
obstacles, nodes on the boundary of such holesdalsefit from this knowledge when in recovery mode.



These distance metrics are also expected to provide:

Globally Agreeable Distances:Neighboring nodes should agree on their distances to the destination, hence
ensuring that progress is measured in a unique way throughout the netfvarlath exists between the
sender and the destination and the network is sufficiently stédicandition allows the generalized routing
protocol, presented in Section 3.1, to (i) avoid persistent routing loops, and (ii) guarakttalpkeery.

High Progress Probability: The probability of reaching a local minimum where no neighbor is closbe
destination should be small. This allows the recovery mode, of ouradjead routing algorithm, to become
an exceptional condition caused by low node density.

Load Balancing: Routing using the distance metric should avoid creating hotspots.

Conformity to Euclidian Distances: The metric should conform to Euclidian distances when having passed
or when far away from an obstacle, or hotspot. This is to avoidgakinecessarily long paths, which may
affect routing delays.

Finally, geographic routing using these distance metrics is expected to applyifonments with:

“Real” Obstacles: Regions that are not possible to route through, due to physical darieecause of
insufficient connectivity.

“Virtual” Obstacles: Hotspots or other regions through which routing should be avoided.
Multiple Obstacles: More than one real or virtual obstacle, intervening between source and destination.

Furthermore, changes to the basic greedy routing algorithm should rimized to allow for simple
implementation. When designing our metrics we focus on the casenairke with high connectivity, although,
as will be shown in the experiments, the proposed metrics are beneficial in lesaatammsks as well.

3.4 The Euclidian Distance Metric

Before considering alternative approaches, it is important to uaddrgtie disadvantages of Euclidian distance
as a distance metric in an environment with obstacles. Considigmg from S to D in Fig. 2. Here, regular
greedy routing reaches a local minimum at point P. At this paiah with an infinite node density no progress
is possible (i.e., the probability of progress is zero). From leemvery techniques such as perimeter routing are
required. Perimeter routing results in the traffic being routedgathe boundary of the obstacle. Because all
other source destination pairs, for which the obstacle interferes, wiltedglt in paths along the boundary of the
obstacle, traffic hotspots along this boundary may be created. Foplexany traffic destined for D that is
generated by a node in the area between the “Euclidian” linebg(ifigure) will be routed over point A or B,
resulting in high traffic concentration at these points.

As perimeter routing (and other recovery techniques using planagraptis) requires longer path length in

networks with higher node density this problem becomes worse withasiog node densities [12]. Perimeter
routing may also take unnecessarily long paths when traversiag fia the “wrong” direction. To reduce this

cost, Kuhn et al. [17] propose using techniques that limit the number of moaddace that should be traversed,
before attempting to traverse the face in the opposite diredtihmle this may avoid extremely long paths, these
techniques still result in a high load along the boundary of an obstacle.

3.5 Some Candidate Metrics

To improve on the Euclidian distance metric and avoid creating hotspois traffic should be pushed or routed
further from the obstacle, rather than along its boundary. Therenamg alternative distance metrics that
perform this redistribution of load, many of which we have explored. Sdite more intuitively promising of
these metrics are discussed here.

One natural approach might be to associate each position with a, haighto route in the resulting 3-
dimensional space using 3-dimensional Euclidian distance. Each opstaute¢spot region, can be surrounded
with a hill to force some traffic not destined for locations on the hill tidarouting closer to the obstacle, and in
that way perform load balancing. Unfortunately, this idea does not etatypkliminate the problem of local



minimums. For example, consider the symmetric topology in Fig. 1. tWaeoints $ and B must have the
same height and hence, every path connecting the two points must keag ane point that is further from D
than S. S is then within a region with a local minimum with respect toinguto D,. So as to avoid such local
minimums, a desirable distance metric should have smoothly dexetistances around the obstacle, when
proceeding from source to destination.

Inspired by the notion of a third dimension, a more general approaclagsdoiate a cost with routing through
each point in the space, and to use shortest weighted path routing. id@hilg these weights are dynamically
adjusted, finding these weights and the distances in this continuous space seems costly

A third approach is to measure the distance along some equidistenaeound the obstacle, as well as how far
away from the obstacle that the node is located. For examplestaradi betweens@nd B, in Fig. 1, could be

calculated asydc?® +dt? , wheredc is the distance between the two equidistance lines that the twis poe
located at, andit is the distance along some equidistance line. While most sucttsredn eliminate local
minimums when routing around a single obstacle, such approaches do not@apesait in good load balancing
or efficient routing (i.e., short paths may become lengthy).

Rather than exploring further any of the above candidate metricsettiesection focuses on finding simple
metrics that avoid local minimums and perform load balancing and norglihem in a way that ensures all of
the properties outlined in Section 3.3.

4. Routing Around a Single Obstacle

Section 4.1 and 4.2 describe the two distance metrics used in this Jdmefirst metric, Local Shortest Path
(LSP), is a global distance metric that provides most of thieediegroperties, including loop freedom and low
probability of reaching local minimums. The second distance méfieighted Distance Gain (WDG), does not
ensure loop freedom, but provides good load balancing. Section 4.3 descripesptteed routing technique,
Load Balanced Local Shortest Path (LBLSP), which combines thesendtrics and exploits their respective
advantages. In Section 4.4 LBLSP is evaluated against GPSR,simuigtions. Throughout this section it is
assumed that there is just a single obstacle whose exact sttapizea is known. We further assume that no
nodes are located within the obstacle boundary and refer to such abstacleal”. Section 5 relaxes the
requirement of exact knowledge of shape and size, while Section 6 considers the adsplefastacles.

4.1 Local Shortest Path Metric

Focusing on the single obstacle case the shortest path (takirecaaiont the obstacle location) is probably the
simplest and most natural metric that does not result in locahmmims, provided sufficient connectivity. It is
straightforward to calculate the shortest path around a singleclahgiarticularly a convex obstacle. However,
calculating the shortest path among multiple obstacles is comegliGad computationally expensive. We
propose a metric called Local Shortest Path (LSP) that tat@®ccount at most a single obstacle, even in a
network with multiple obstacles.

LSP can be calculated as follows. Given two locations, S and Daramistacle, a standard computational
geometry algorithm can be used to determine if the two nodes ane iof sight. If that is the case, the LSP is

simply the Euclidian distance. Otherwise, the LSP can be ceduls the sum of three distances, each
represented by a separate part of the shortest path around thesobBlkefirst part is a straight line from S to a

point on the boundary of the obstaclg, the second part is a straight line from a point on the obstaglé D,

and the third part is a peripheral path along the boundary of the oltsi@tictmnnects the two boundary points,

Ss and . The distances along the straight lines are simply calcdulageng Euclidian distances and the

peripheral distance may be found using a table lookup, storing cumutksitaaces between points on the

periphery of the obstacle, or using some geometric algorithm.

Given an obstacle and a destination, LSP is a global metric, wetise that all nodes could compute the same
distance to the destination from any desired point in the network. mélwc is easy to calculate and routing
loops cannot occur, assuming a packet is never forwarded to a nodeighign distance value. This metric



Fig. 3: Definition of the perimeter distance P, and Fig. 4: lllustration of the view field, and the quantities
the perimeter distance gaingdP. o and ama from which the weighting factor used by
WDG is computed

ensures that there always exists a relatively largemethiat provides progress towards the destination. For
example, referring to point P in Fig. 2 (where Euclidian routinghesi@ local minimum), any node within the
quarter-circle, centered at B, provides progress towards D. chhmcteristic allows LSP to maintain a high
probability of progress, and greedy routing using LSP to guaranteetpiatikery when routing around a single
obstacle in a sufficiently dense network. In sparser networks a packet miaydeaal minimum during routing.

At this point an alternative routing technique is required, such asgier routing [16, 5]. However, as the
density becomes greater and local minimums are less likebgdur it is reasonable to assume that heuristics
simpler than perimeter routing can be used to deal with local mmén For example, a node might forward the
message toward a random rerouting point, from which point greedy rdotiagd the final destination can
resume [8]. Note that greedy routing using LSP still cresigsificant hotspots along the boundary of the
obstacle and does not handle the case of multiple obstacles. Agaidecdfig. 2. While S would route its
traffic directly towards B (rather than towards P), the regibsources that expect their traffic generated for D,
to be routed over A or B, are only reduced to the area between the “LSP” lines shown iaréhe fig

4.2 Weighted Distance Gain Metric

Load balancing around an obstacle is important for two reasons. I&adtpalancing can help to avoid the
creation of hotspots around the obstacle. Secondly, load balancing cardlie pssh traffic away from the

boundary of the obstacle where local minimums are more likeligi. e Therefore, load balancing around
obstacles may also decrease the number of occurrences of relachinginimums where alternative routing
mechanisms are required.

To perform load balancing, this paper uses a heuristic distancie teetned Weighted Distance Gain (WDG),
based on the intuition of weighting the importance of using the stdaightoute and an obstacle-avoidance
route. These routes are represented by routing using an Euclidiartelistatric and a perimeter distance metric
(defined below), respectively. Since the magnitude of these twicmenay be different, the weighted metric
combines distance gains (i.e., the amounts by which the distancedestive@ation decreases, under each metric)
rather than absolute distances.

The perimeter distance between an arbitrary node N and the destiDais defined as the distance along the
path from the forwarding node S towards the destination that (i) @@ constant distance from the obstacle
boundary, (ii) starts where the line between the node N and iesstlosint on the obstacle boundary intersects
with the path, (iii) ends where the line between the destinationtsuadosest point on the obstacle boundary
intersects with the path, and (iv) is measured in the samdidirecound the obstacle as the shortest path (i.e.,
the LSP) around the obstacle. Note that the path is defined based musitihen of the forwarding node, not
only when calculating the perimeter distance from itself to the destinationsbubhat from its neighbors. Fig. 3



illustrates the perimeter distance gain obtained if a forwandaug S forwards a packet with destination D to
neighbor N. The perimeter distance between N and D is the didtantg@oint N’ to D’, along the connecting
contour between S and D’, and the perimeter distance gain is the distance from Sdog\thelsame contour.

To weight the two distance gains (Euclidian and perimeter) thdiant of a view field is applied. The view
field is defined as the segment of a circle, with its ceatethe forwarding node S and radius equal to the
Euclidian distance to the destination D, that is covered by aangle,dm., centered on the straight line from S
to D, see Fig. 4. The weight given to perimeter distance roigingmputed as a function of the proportion of
the view field that is covered by the obstacle, as given bgubgenta/a.,. This approach is motivated by the
intuition that Euclidian distance routing should be used when the obsaui¢ in the forwarding node’s view
field (i.e., the quotient is 0), and that all weight should be givenrimpter distance gain, or obstacle avoidance
routing, when the obstacle blocks the forwarding node’s view field the quotient is 1). In general, this
guotient is expected to be larger the more the obstacle isiadfette path between the sender and the
destination. The weighting factor is then defined as,

o[ ]
WDG — ’ (1)

a max

where the exponenf, allows tuning of the method. Our simulation results suggesf3tka0.5 consistently
yields good performance. Using this weighting factor, the Weigbisthnce Gain (WDG) for forwarding a
packet from a node S to a neighboring node can be defined as,

where dP is the perimeter distance gain achieved with forwarding tontighboring node, andE is the
Euclidian distance gain.

The perimeter distance is relatively easy to calculatedarvex obstacles since the forwarding node only needs
to know the two boundary points (of the obstacle) closest to the poimsdretvhich the distance is measured
and the distance along the boundary between these two boundary points.ilyTobéais this information the
boundary of the obstacle can be stored as a function or a set of bounddsyopowhich table lookups and
binary searches can be performed. Having obtained the perimeatarcdidor itself and its neighbors, the
perimeter distance gaidP, can be calculated for each neighbor. Weighting these distante against the
Euclidian distance gaindE, the WDG for sending the packet to each neighbor can be obtained.

In Fig. 2, we note that WDG allows S to route to D without eveiimguwtlong the boundary of the obstacle. For
example, consider the special case wbgg — 0. Here, WDG would use Euclidian distance gain whenever
within line of sight, and the perimeter distance in all otherscad#hile resulting in a somewhat extreme path
around the obstacle (including traffic being routed through C), thisnestieehavior can be smoothed by
selecting a better value aof., While providing load balancing, it is important to emphasize thiatdistance
gain metric, or variations thereof, cannot ensure loop freedom wherusedown. To see this, note that one
node may be closer to the destination D than some other node, but laagergérimeter distance P. Further,
consider a special case when,, —» 0, one node is not in line of sight, and one of its neighbors is. Faratbds
the WDG can be positive in both directions, and a loop can easily c8ouilar examples can be generated for
arbitrary ama It should further be said that the region from which traffialtesin paths through A or B
vanishes, itx,x< T1and the network is sufficiently dense.

4.3 Load Balanced Local Shortest Path Routing

Based on our generalization of the original GPSR algorithm [16feasribed in Section 3.1, this section
proposes Load Balanced Local Shortest Path (LBLSP). LBLSP conib#fesnd WDG into a single routing
technique that exploits their respective advantages. In partigulaBP is used to measure progress, and (ii)
WDG is used to select the node to route to, among the nodes that gmmgdess. Referring to the properties of
a desirable distance metric outlined in Section 3.3, LBLSP ensugbsphbgress probability and a global



measure of progress (allowing the generalized routing algoribhemsure loop freedom and guarantee packet
delivery) using LSP as “progress” metric, and provides load halay greedily using WDG as “neighbor
selection” metric. Since both LSP and WDG conform to Euclidiamumiigts once the obstacle has been passed,
and have high progress probability, this combination of distance metitsdies all the desirable properties
outlined in Section 3.3. Again, we note that both metrics are usedk® gneedy routing choices, and LSP is
used to determine when to enter (or exit) perimeter routing, but neghesed by the perimeter routing
algorithm. In fact, LBLSP could easily be modified to use alternative recalgoyithms.

As described in Section 3.1, a packet starts in greedy mode andaghcforwards the packet in either greedy
mode or recovery mode, until the packet is determined to have detehdinal destination. If a packet is in
greedy mode the forwarding node calculates the LSP values étfr arsd all its neighbors. For the set of
neighbors with lower LSP values the node calculates their W@&sa Among the set of nodes with smaller
LSP values the neighbor with the largest WDG value is choséimeasext node to which to route the packet.
When sending the packet to this node, the packet remains in greedy rodever, if there are no neighbors
with lower LSP values the packet is marked to be in recanede. The packet is also marked with the location
of the node as well as the LSP value of the node. This information can be used to perforterpeniieg.

When a packet is in recovery mode, perimeter routing or som@atlte routing mechanism is required until
reaching a node with lower LSP value than when first initiatessufing accurate knowledge of the obstacle, it
is, however, worth emphasizing that the use of perimeter routinBLiSP is an exceptional condition caused by
low node density.

LSP and WDG are designed to work together, such that the best nodpSMBG are likely to be among the
nodes that make progress when using LSP. In particular, assumiimiteinbde density, the optimal WDG
choices within range are typically within the region that providgsroved LSP values. Clearly, this is not
always the case if using Euclidian distances to measure pogethis metric does not even ensure that there
exists regions that provide progress.

We assume that each node stores the geometry of the obstagtd] as some information describing each of
their neighbors’ relationship to the obstacle. Each node may independsatigble lookups or calculations to
obtain information describing their relationship to the obstaclehis information can be distributed to all
neighbors so that each node in the neighborhood has the same perceptioglaifatship to the obstacle. If it
is determined acceptable to add additional routing information to paok&iculations of the destination’s
relationship to the obstacle is at most required once per sendeatiestpair. With the forwarding node’s, the
neighbors’, and the destination’s relationship to the obstacle pre-prdces®rwarding node only has to use a
limited number of arithmetic and logic operations to determine which node to forwardccket fga

While we restrict attention to networks where nodes are non-mulgleote that LBLSP is designed to
significantly reduce the number of occurrences in which perimetging is required. As greedy routing
generally does not require the locations of neighboring nodes to be knowocastely as the location
information required to maintain a planarized graph, we expect ahpigee determining when to update
location information, in environments with mobile nodes (e.g., [16]), to per&irleast as well when used in
combination with LBLSP, as when used with GPSR.

Up until this point non-convex obstacles have not been discussed. Sinds ki8iple to calculate for non-
convex obstacles, it can be used to measure progress in such envisoamevell. Rather than modify the
perimeter distance to be well defined for all obstacles, obdbateit is well defined outside the convex
enclosure of obstacles, and the “neighbor selection” metric (i.e., Mihly is used to push traffic away from

2 This information may include the closest pointtba obstacle and, from the node, “visible” tangewints, of the obstacle’s boundary,
for which the tangents pass through the locatiothefnode. To reduce the calculations requirezhaeh node, each node can also pre-
calculate the perimeter distance along the boundfitihe obstacle, from these points, to some commaference point. Given this
information for the forwarding node, the neighbamsidered, and the destination, both the LSP andGWiktric can easily be
calculated (using only the locations of the nodesrtselves).



the boundary of obstacles. Therefore a simple heuristic is thhes&DG metric for neighbor selection when
outside the convex enclosure of an obstacle, and the LSP metric wihtkn if$is ensures that the packet is
routed quickly out of the enclosure, and to a point where the WDG nietwell defined. In this paper we

primarily focus on convex obstacles.

4.4 Performance Evaluation

Since our focus is on large, dense networks, a graph theoretic apdakkn in most of our performance
evaluation studies, using a special purpose simulator, rather than p#sikgt level simulations. (Sample
simulations from packet level simulations using ns-2 are, howevevjded in Section 5.4.) In our special
purpose simulator, nodes are first placed uniformly in a rectangedaon, each at the center of a hexagonal
region, forming a honeycomb pattern. Here, each node is adjacenhghkors, each at equal distance. After
placing these nodes, their locations are individually perturbed usirgndom and uniformly distributed
displacement. To avoid moving nodes to the outside of the rectangmilan,rthe space is treated as a torus; i.e.,
with wrap-around at each edge. The above node placement strategypedurbation on uniformly placed
nodes, avoids dead regions and allows for connectivity to be achieveviar densities than is the case in a
purely random network. Finally, a network boundary and one or more obstacle are defined, |amades
outside the network boundary or within a “real” obstacle are removed.

The sender and destination are randomly selected for each pablkesént, with the rate of packet generation

chosen to achieve a desired average packet rate at each medeufe used for each packet is logged for later
analysis. In these experiments three different versions oflglogitam presented in Section 3.1 are used to

deliver the packets: (i) regular GPSR using Euclidian dis&n@g a version using LSP as both progress and
neighbor selection metric, and finally (iii) LBLSP. Note thhitlaese techniques use the same base algorithm,
defined in Section 3.1, to route packets; the only difference is which distance metrizsing used.

A wide variety of topologies can be generated, by adjusting the now#ydehe perturbation of nodes, the
transmission range, and the size and shape of both the network and @leséesbstVhen not specified otherwise,
this paper uses an outer network boundary defined by a circle witls @dL000 length unitsu), each node has
a transmission range of 150 and the maximum perturbation is set to half the distance between rindesst
experiments the density is not a variable and is instead fix6d@025Iu~2, or 1 node per 400Q?. This
translates into approximately 17 nodes within radio range, when ignadijgy effects. Nodes close to the
network boundary or obstacles are likely to have fewer neighbohile WBLSP is designed for dense networks,
this density was chosen to show that it performs well in netweHere the number of neighbors providing
progress may not always be that great.

In this section “circular” and “flat” obstacles are used forekperiments. We define flat obstacles as a straight
line (e.g., a large wall) that does not cover any surface areairanldicobstacles as a round region within which
no nodes are located. We further distinguish between obstaclefidhat@mmunication to pass through their
boundary (termed “transparent” obstacles), and obstacles that doomonhalies to communicate if the obstacle
interferes with their line of sight (termed “non-transparent” aties). By default we consider flat obstacles to
be non-transparent and circular obstacles to be transparent.

3 We note that only slightly higher densities wolle required in networks with purely random netwtskologies. For example,
assuming the same base topology as used throutifisection (a round network with radius 1000 tangnits (u) and a transmission

range of 150u), but ignoring edge effects, it can be shown, gi8ettstetter’s [3] findings, that a density of dde per 800du? and 1

node per 4000lu? would result in every node in the experimentalotogies used here being connected to a differede neith
probability 94.448% and 99.998%, respectively. c8imeighbor graphs (with a large number of nodespime fully connected at

approximately the same density, this also suggésts a density of 1 node per 40002 would allow full connectivity for the
corresponding experiments, if using purely randoaphs [23].

4 Similar results were observed when routing aroaimdn-transparent circular obstacle.
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The main metric considered is the ratio of the maximum number kéarwarded by any single node, to the

average number of packets generated by a single node. (Assusepgrate connection for each packet sent
between a source destination pair, the y-axis labeling of Fig. 5,ulnsdcuent figures, refer to this quantity as

the maximum forwarded packets per node and connection.) This metaasas as path lengths increase, but
also as the load becomes more skewed and hotspots become more ibkelless. otherwise stated, each data
point represents the average of 10 simulations, each with an ews¥ad rate of 10 packets per node. The
confidence intervals capture the true maximum with a confidence of 968 default parameter settings for

LBLSP aref3 = 0.5 antb = 174.

Fig. 5 and Fig. 6 present the results from routing in an environmeht avicircular and a flat obstacle,
respectively. In both experiments the obstacle is placed in therasf the topology and the radius or width is
changed. As expected LBLSP outperforms the other two schemes. tliw@eenfigures it is clear that the
improvement is larger for the flat obstacle. This observatagxpected since packets in this environment are
more likely to reach local minimums, requiring the usage of alternativeng techniques, which further enhance
hotspot regions along the boundary of the obstacle. The decrease #xthreim load observed with GPSR and
LSP is due to the decrease in traffic generated, as the @bsizelincrease (and hence the number of nodes in
the network decreases). For the largest obstacle sizdsaveote that there is only a limited area through which
all three algorithms must route their traffic, hence the somewhat smafiempance differences.
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Perimeter routing (and similar recovery methods) generatjyires longer path lengths as the node density
increases [12]. Thus, the benefits of LBLSP are expected to $eckeih increasing node densities. This

intuition is confirmed by Fig. 7 and Fig. 8, where the density isedafiom 1 node per 80002 to 1 node per

1000 Iu?, while routing around a circular obstacle with a radius ofl6GMd a flat obstacle with a width of 1000
lu, respectively. Here, the lowest density was chosen to allowofarectivity among all nodes. Again, we note
that LBLSP primarily is designed for environments with higher nddesities, although it performs quite

competitively for less dense networks. In such networks the prapaifilreaching a local minimum may be

non-negligible; however, with a higher progress probability such ocmeseare much less likely than if using
Euclidian distances. The larger differences observed in Fig. pavechto Fig 7 are mainly due to perimeter
routing being used more frequently using flat obstacles than using circular abstacle

Full factorial experiments have been used to evaluate LBLSP ¢eredif types of topologies. In these
experiments it has been found that parameter tuning improves LBLSEhabwith essentially all reasonable
parameter settings LBLSP yields an improvement over the mtloeschemes. Fig. 9 illustrates routing around a
circular obstacle, with a radius of 504 for various parameter settings. Here, fBed(..) pairs indicated in
brackets give the parameter settings used by LBLSP.

5. Routing Using a Virtual Obstacle

This section focuses on load balancing in regions through which routipgsssble. By introducing virtual
obstacles and adjusting their size and shape we extend the idealbtblystacles to allow for routes through the
obstacle, while performing load balancing and traffic shaping withihasound the obstacle. Virtual obstacles
are primarily designed to relieve natural and artificial hotspoteated by non-uniform load distribution.
However, virtual obstacles are also natural to use in environmdgtitis‘real” obstacles. By using virtual
obstacles, less precision is required when determining the exqut shdhe obstacle. Section 5.1 extends
LBLSP to handle virtual obstacles. Section 5.2 evaluates the parfoe of LBLSP on an artificial hotspot.
Section 5.3 considers the sensitivity of determining the exact tbsteae and shape, when using virtual
obstacles to approximate real obstacles. Finally, Section 5.4 wesgaicket level simulation of the traffic
through a region of a larger network taking medium access interference intbecatish.

5.1 Extending LBLSP

To make routing through an obstacle possible, both the LSP and WDG@ metd to be well defined for all
points within the obstacle. Further, to avoid singularities and pradd routing properties, the transitions
between distances, and distance gains, as defined within and outsalstdigle have to be smooth. For this
purpose, whenever at least one of the forwarding node and the packet destinatithiragevivtual obstacle, the

5 Dynamically identifying hotspot regions may be ftawmial. However, in some circumstances offlingaithms may be sufficient.



LSP and WDG metrics are calculated largely according twaked version of the obstacle, such that the node
with smaller “relative distance” to the center of the obstalon its new boundary (in which case, neither node
is in the interior).

Considering convex obstacles, it is simple to find a natural candimfatiee center of the obstacle. Inspired by
classical mechanics, this paper uses the obstacle’s centersef assuming its density is constant. The center
can easily be obtained using integration, and only has to be determiredooreach obstacle. Alternative
approximations or user-defined centers can work as well, as Iahg aenter is within the obstacle. Using this
center the boundary of the (possibly scaled) virtual obstacle can be determined by,

min{r—P o J}R(e) , ©))

R(6p) R@p)

whereR(0) is the distance from the center to the obstacle boundary inidir€ct0 < 6 < 2m); rp andrp are the
distances from the center to the point of reference P and to tteaties D, respectively; an@ and6y are the
directions of P and D (relative to the center), respectivaly.the first term is a constant, given P and D, this
simply corresponds to a potential scaling of the obstacle. If batidMD are outside the obstacle the obstacle
remains as originally defined, otherwise the obstacle is scaled that the node with the smaller relative
distance to the center is located exactly at the new bouhdary.

Using the (possibly) scaled obstacle, the LSP metric can be fourah§ pair of points, P and D. Also, the
perimeter distance can be calculated between two points. Howesieg, the (scaled) obstacle alone when
calculating the weighting factor used for the WDG metric @sult in unnecessary obstacle avoidance routing
and long paths. Also, to avoid additional load in the hotspot regionritpisriant to allow routes going to or
from the center of the hotspot to use the straightest paths pdbsialgh the hotspot. To encourage such paths,
while ensuring that routes between nodes on opposite sides still autiitgrthrough the center, two additional
factors are added to the weighting factor in (1),
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These factors reflect the extent to which the virtual obsteadebeen scaled (if at all) with respect to each of P
and D. Intuitively, the greater the scaling, the more of thalirobstacle is actually outside of the region
between P and D, and the more we wish to favor straight pathspafdmetey allows us to tune the extent to
which straight line paths should be favored. Note that if both P aactkutside of the (unscaled) virtual
obstacle, both of the new factors are 1.

Note that if the sender, its neighbors, and the destination, are dimsidenscaled) virtual obstacle the routing
choices made by LBLSP are the same as for a “real” obstadediscussed in Section 5.3 this allows us to
approximate “real” obstacles using “virtual” obstacles. Weh&urnote that each node (located at say reference
point P) only has to calculatg/R(8p) once (before distributing this information to all its neighbors),rafiR(6p)

only is required to be calculated once per sender-destination pair, if recorded in #te pack

5.2 Hotspot Avoidance

To evaluate hotspot relief using virtual obstacles, a portion ofr#ffic in the network is associated with a
specific region of the network. This region is located at théecof the network and is characterized by its size
and strength. Considering a circular center region, its radiusedethe size. Strength is defined as the
proportion of the total network traffic that is generated by a seodédestined for a node, in this region, in
addition to its normal traffic. The rest of the traffic is ipdedently generated as if there were no such region.
All nodes are hence generating traffic, but nodes within the cegiem are generating and receiving traffic at a

® To see this, assume thatR(6p) < min[rp/R(Bp), 1]. Note that the size of the obstacle reduoes in the direction of P, and reduces to
re(R(6p)/R(Bp)) <rp in the direction of D.
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higher rate. Throughout this section the radius of the center regifiu, corresponding to 6.25% of the total
network area. The topology used here is generated using theesdmigtie (perturbation of uniformly placed
nodes) and default parameters as was used in Section 4.4, resulting in roughly 50 thimésewiotspot region.
As the strength of this region increases, the average tggfierated to or from this region will increase, while
other regions may lose traffic.

Fig. 10 shows results from an experiment with a circular virbbatacle with radius of 25, matching the
hotspot center region, afid= 0.5,0max = W4, andy = 2 as parameter settings. Whylenly is required for virtual
obstacles, these are the default settings used throughout theoapéire Because the virtual size is set tol250

it is not designed to load balance a natural hotspot created only byotimal traffic. Therefore, LBLSP
performs slightly worse than GPSR when the region has a streingtland the traffic generation rate is uniform
in the networK. While LBLSP, using a virtual size of 290, does not outperform GPSR for all strengths,
LBLSP outperforms the other two techniques more and more as thgtistirecreases. In fact, Fig. 10 indicates
that LBLSP achieves a lower maximum load when balancing theneettabrk traffic, including both the hotspot
traffic and the normal traffic, than GPSR is able to achielwermbalancing the hotspot traffic alone. While the
regular traffic results in additional hotspot traffic for GPEBLSP is able to almost entirely avoid creating

" A virtual obstacle matching the network would he most natural candidate when the strength is Zerexperiments that used a virtual
obstacle that matches the network size (i.e., uaimgdius of 1000u) and a hotspot that is “natural” (i.e., the stibngf the center
region is 0) LBLSP improved the load balancing &SR by 20%.



additional load for the hotspot region. Instead, the regular tra#ici$ not routed to or from the hotspot region
is routed around this region.

While the default parameters chosen for LBLSP and the experimpezgsnted in Fig. 10 perform well, other
parameters can perform similarly. In Fig. 11 the sensitvitthese parameter settings is studied. Here, the
strength of the hotspot is fixed at 0.5, and the virtual size isd/dor a number of parameter settings. Note that
with all parameter settings LBLSP provides better performtrane regular GPSR and that all parameter settings
perform at their best when the virtual size is about the sarfeaize of the hotspot region. Another interesting
observation is that decreasiptrades performance for lower sensitivity to the virtual.si@amilar results can be
found using hotspots with alternative size and strength.

5.3 Approximating Real Obstacles

Section 4, somewhat unrealistically, assumes that the exacraizehape of the obstacle is known. This is not
always the case. As suggested, virtual obstacles can be bheadhe shape is approximately or only roughly
known. Using simpler shapes is also highly beneficial in envirorsmeghere some nodes may have limited
computational power.

To evaluate the importance of the accuracy of this estimatiget af experiments has been performed using
virtual obstacles in an environment with a “real” obstacle.. E®ypresents results from one such experiment.
Here, a real obstacle with radius 900s approximated using a virtual obstacle of varying size. hadigure
shows, the performance results are not very sensitive to theaagavith which the size is estimated. In fact, we
have found, as illustrated by Fig. 12, that a slightly largeuafrobstacle normally performs best. This
improvement comes from these somewhat larger virtual obstactesr restricting the amount of traffic routed
up to the boundary of the real obstacle. Similarly, Fig. 13 sugthedtthe performance is not very sensitive to
how accurately the shape is estimated either. Here, a (trangpaquare obstacle with sides of 1000s
approximated using a circular virtual obstacle, for which the radivaried. Note that the size that performs
best roughly matches the circle that encloses the entire sgAarean be observed in these figures, LBLSP
reduces to GPSR when the size of the virtual obstacle is zero.

5.4 Packet Level Simulations

To capture the congestion caused by multiple nodes transmitting in teeesgion of a network this section uses
the network simulator nst2o simulate packet loss and delay characteristics of tffec tfiowing around an
obstacle. Here, we present sample results obtained from simulatiorsergg part of a larger network and the
traffic flowing through this portion of the network. The area conemli€s circular, with 16 ingress/egress points
evenly spread along the boundary. One connection is set up in eachtved tiieections, between each pair of
ingress/egress points. In the center of this region we rentlaved&s within a square region with sides of 1000
lu, before enclosing this region with a virtual obstacle with ausadf 707lu. With the exception of the node
density, the topology is identical to the topology used in Sectioh Bslng a total of 334 nodes, 16 of which are
ingress/egress points (located at the boundary of the topology), we mde density of approximately 0.00015
lu™ (or approximately 11 nodes per radio range, when ignoring edge effects).

The results of these simulations are presented in Fig. 14. Thesvatesented are the average values of ten
simulations (in which each ingress/egress node generates roughly 108 peakh of size 512 bytes). The first
10% of each simulation was used as a warm-up period, during whichkttitistics were not recorded. The flow
in each direction between each pair of ingress/egress nodes (240iriléatal) is CBR. Each flow starts at a
random time instance (uniformly distributed during an initial portiothefstartup period, equal to the inverse of
each flows packet generation rate) and lasts for the duratidre alirhulation. Each node is modeled using ns-
2's default parameters for a 914MHz Lucent WaveLAN DSSS radtb, avdata transmission rate of 2 Mbps.

8 The network simulator ns-2 (version 2.26), htypafiv.isi.edu/nsnam/ns/, June 2006.

% For the ns-2 simulations ohe corresponds to 5/3 meters, since the radio rargassume is 150 while ns-2's default radio range is
250m.
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The routes used by GPSR, LSP and LBLSP for each flow was calculated offtin®egpackets forwarded using
a modified version of NOAH?

Fig. 14 reports both the packet loss probability and the end-to-end platikeof successfully received packets,
as a function of the data generation rate (at each ingressquriat). Note that LBLSP outperforms both GPSR
and LSP, with respect to both metrics. Also LSP results intarkgcket loss probability than GPSR; however,
this comes at the cost of a slightly larger end-to-end deléwg aVerage delay values, for low traffic generation
rates, directly correspond to the average path lengths for GERSRahd LBLSP. Measured in the number of
hops these are 21.2, 18.6, and 15.6, respectively. With GPSR the node thatsfoineanost packets forwards
approximately 3.5 times the number of packets generated by an iagress point, while the average node
forwards 0.86 times as many packets. The corresponding valuesHareS.7 and 0.79, while for LBLSP they
are 2.7 and 0.70. This corresponds to GPSR having roughly 30% (23%) highetumagdverage) load per
node that LBLSP. Again, comparing with the differences observedginlB, we expect these differences to
increase with increased node densities.

6. ROUTING AMONG MULTIPLE OBSTACLES

As previously discussed, finding the shortest path among multiple sstameither scalable nor distributed.
To be able to find the shortest path global knowledge of all obstaalequired, and as the number of obstacles
grows, the necessary computations become very expensive. Sintehd@Es the single obstacle case well and
is relatively simple, we suggest using LSP or some versiohB&fSP for each individual obstacle, and
complementing it with an additional routing rule to allow efficient routing amongpteutibstacles.

In our approach, decisions are based on at most one obstacle at eaxchsteyti To determine the obstacle

currently taken into consideration we define a routing rule thatstake closeness of each obstacle into
consideratiol! We assume that all obstacles (and/or virtual obstaclegparex. Section 6.1 extends LBLSP

to include a routing rule that allows it to use LSP while avoithlogs and guaranteeing delivery in sufficiently

dense networks. Section 6.2 evaluates the performance of LBLSP in the presenciplef ohsliacles.

19 NO Ad-Hoc (NOAH) routing agent, http://icapeopleflech/widmer/uwb/ns-2/noah/, June 2006.

11 An alternative candidate approach could deterrttieeobstacle to consider based on the portion efvtew field that each obstacle
covers. This allows nodes to be associated withiphei obstacles (where each obstacle correspandsre set of destinations). This
paper restricts attention to the case where eacle m® associated with one (or possibly a few) aihsts) (determined by their
closeness).



Region closest
toH

Region Sﬁ{ )
behind %/ A Closest \

tangent point
B
G
/ Green region
Second of B .
tangent poin Region closest
to G
DW
Fig. 15: Routing example using two obstacles. Fig. 16: Routing example using two obstacles.

6.1 Complementing LSP with a global routing rule

To maintain the desirable properties of a distance metric, préywioutlined in Section 3.3, when routing in
environments with multiple obstacles, the routing rule must provideasure of global progress (allows the
routing algorithm to ensure loop freedom, and guarantee delivery), and maintain higsgppogbability.

Before defining such a routing rule, define tlamgent points of an obstacks the points on the obstacle’'s
boundary, for which the tangents of the boundary passes through the desfinafitmte that convex obstacles
have exactly two such points. To determine which obstacle tonakednsideration at each routing instance,
we consider a packebmmittedto an obstacle when that obstacle is closer than any other, an&Phealue
associated with routing the packet around that obstacle to Dgier [#ran the minimum Euclidian distance
between D and any of the obstacle’s tangent points. The routingimpéy $imits the routing options of a
forwarding node, based on whether or not it is committed to an obstacle.

Routing rule: When committed to an obstacle the packet should only be forwarded to a nodecfothe
committed obstacle is the closest obstacle. When not committed totacleobse packet can be forwarded to
any neighbor. In both cases the LSP (and the WDG) metric(s) are cattwlditeregards to the obstacle closest
to the forwarding node.

Here, it is important to note that the LSP value always redocé® Euclidian distance, as soon as the packet is
no longer committed. This allows for a natural selection of the alestacle to commit to and ensures that each
node is only required to maintain LSP information with regards to a single obstacle.

Theorem 1: When using the above routing rule a packet will never commit twice to the same obstacle.
Proof:

We define agreen regionof an obstacle to be the region with smaller LSP values ¢egards to the obstacle
and some destination D) than the distance between D and the obstlde& tangent point. We further term
any point with no greater Euclidian distance to D as the obstattesast tangent point, but not within the green
region of the obstacle, &&hindthe obstacle. We further note that any obstacle A with its stiéaagent point
behind an obstacle B must be outside the green region of B (otheéhese two convex obstacles would
overlap). If this is the case we say that AéhindB. (See Fig. 15.)

Note that, given a sequence of obstacles a packet commits to, the next obdiatkhdgacket commits to, after
having been committed to A, either (i) has at least one tangentwaittiin the green region of A, or (ii) has both
its tangent points outside the green region. Hence, either B8 gegion is a subset of A’'s green region, or A is
behind B (as B separates the green region of A into two halvegootaining D and the other containing the
closest tangent point of A). Using these observations the theorem can now be proven.

Assume to the contrary (of the theorem) that the packet caommeit to an obstacle. Let A be the first obstacle
the packet re-commits to, and let grA be the green region oft 4 impossible to re-commit to A unless an
obstacle B exists that forces the path outside grA. Hence,rthesteexist an obstacle B for which both tangent
points must be outside grA and that separate the point where A wssdpg@nd hence A itself), and the



Fig. 17: Symmetric routing topology, using three
circular obstacles.

destination. With A behind B, we would need to have an obstacle C wijtBinthat takes us outside grB;
however, with the same argument as above, this would result inagrébntaining B. Hence both A and B are
behind C. This argument can be repeated, but since the new obsgaetaisregion will never contain the
previously visited obstacle, and the obstacles before it, includiy wiJl never be revisited. Thus, we have
reached a contradictionQ.E.D.

While the routing rule is able to ensure loop freedom, it may rasultiges where no or only a very small
portion of the neighbors provide progress. For example, consider routingftor® in Fig. 16. Here, routing
using LSP complemented with this global routing rule results ingtackaching a point C, where only nodes in
a very small area provide progress. Such nodes are requirectlimséeto obstacle G (than to obstacle H), as
well as having smaller LSP values (with regards to G) tharcurrent node. Because of this constraint much
traffic will be concentrated along the divide between G and H, arte case of lower node densities local
minimums will likely be observed. To allow for higher progressbpbility nodes close to the boundary of the
obstacle (e.g., within one radio range of the boundary), or within obstsletedd always be associated with that
obstacle, hence allowing some nodes to be “associated” with morertkaobstacle (by “associated with an
obstacle, we mean that the obstacle is considered to be the nddsést'®bstacle” when applying the routing
rule described above). Note that the routing rule and theoremdsagalong as the packet is only forwarded to
nodes associated with the same obstacle until first reaching awnibdte the green region of the obstacle. In
networks where obstacles are located densely this problem caerfoet relieved by modifying LSP such that it
is calculated in the “direction” defined by the tangent point cldsetste destination, in the case of Fig. 16, point
A. This ensures that the path taken always has a larger progress area. Naoter, libatethis path is longer than
routing over B. To weight the advantage of shorter paths aghiestisk of reaching local minimums, a
weighting function can be used to determine which approach should be usese rilges do not occur in
networks where obstacles are sparsely located.

With obstacles defined such that it always is possible to rootear(or through) an obstacle, the following
theorem can be derived, which ensures delivery.

Theorem 2: Assume the boundary of the network is convex, and the connectivity issdengé that a path
exists to get past each obstacle and commit to a new one, or to routedestmation. Then the packet will
eventually reach the destination using the above routing rule.

Proof:

Since it is always possible to route past the current obstaslalways possible to either reach the destination or
commit to a new obstacle. Since the network is limited by dm¥ex area there is only a limited number of
obstacles, and since no obstacle is revisited (according to Théprde destination will eventually be reached
since there will be no new obstacle to paQsE.D.
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The above routing rule is fully distributed and requires only minor @satgLBLSP. As for the single obstacle
case each node calculates its relationship to only one obstagléhé.ebstacle closest to the node), or in some
cases a very limited number of additional obstacles that the saglesociated with. This information is then
distributed, together with the ID of that obstacle, to all neighborth@fnode. With knowledge of which
obstacle(s) each neighbor is associated, routing can now be perfosmdes@ibed above. The biggest
difference in terms of calculations is that destination basedmaforn (such as the two tangent points and the
destination’s closest point on the obstacle) may have to be retaftdbr each new obstacle that the packet
commits to, on its path to the destination. Note that embedding sucmation into packets and/or caching
such information can reduce the amount of calculations required when rpatohgts. Further, note that
information about an obstacle will only have to be distributed in ikeliharea of the network (i.e. an “obstacle-
zone”). For example, the network in Fig. 17 is split into three zoneseach zone, each node knows the
geometry of the same obstacle.

6.2 Performance Evaluation

To evaluate how LBLSP performs in the presence of multiple obstactery simple topology is considered, see
Fig. 17. Here, three round obstacles are symmetrically placedound network with a radius of 2000 The
distance between the centers of each pair of obstacles idul60this environment it is expected that the three
routing schemes would perform approximately the same for the twenextcases when the radius of the
obstacles is 0 and 800, respectively. For the first case there are no obstaclesit® around and in the second
case some nodes become disconnected from the rest of the netwhekphstacles grow together. With focus
on what happens between these two extremes, two experiments are presented.

In Fig. 18 the radius of the obstacles is fixed at 58nd the density is varied, while in Fig. 19 the density is

fixed at 0.00025u 2 (or approximately 17 nodes on average within radio range, when igndgegeéfects) and
the obstacle radius is varied. From these figures it candpetlsat the performance improvement is substantial
when the obstacles are large enough that routing cannot be performettheowbdstacle, and the size is not
forcing all traffic to take the same routes, as is the taseenarios with large obstacles. Consider for example,
the case where the obstacle radii are [G00 his only leaves 20u between the obstacles, or slightly more than
one transmission range. We note that the higher values obserled fdensities, in Fig. 18, are due to the
additional usage of perimeter routing.

7. Conclusions

While greedy geographic routing, based on Euclidian distances, astiagrfor large networks because of its
simple and distributed operation, it may easily result in dead enlstgpots when routing in a network with
obstacles. We propose Load Balanced Local Shortest Path (LBL&®R}irey algorithm that uses the simplicity
of greedy routing, while providing load balancing and avoiding local mimisa By replacing the Euclidian



distance metric with two non-Euclidian distance metrics and exmidilieir respective advantages, a number of
desirable properties are achieved. LBLSP is loop free, effigieoutes around obstacles, uses Euclidian or
close to Euclidian routing once it has passed an obstacle, and pedistriizited and stateless routing. The
current version of LBLSP also uses perimeter routing to guaraelesry in static networks whenever a path
exists. With dead ends occurring less frequently, LBLSP could pdkerites modified to use alternative
methods to guarantee delivery. While the basic version of tpisitidm is designed to perform load balancing
around a single obstacle, the algorithm is extended to relieve hotspot regions and oogtenaitiple obstacles.

While our use of non-Euclidian distance metrics yields a relgtsienple routing algorithm, a humber of open
problems remain. One such problem concerns how to best determineetlamaishape of “virtual” obstacles,
used for hotspot avoidance. In addition to such open questions, we are gumakihg on incorporating
distributed obstacle detection algorithms, such as the algorithm proposed by Faf®],entd LBLSP.
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