
Optimized Adaptive Streaming of Multi-video

Stream Bundles
Niklas Carlsson† Derek Eager§ Vengatanathan Krishnamoorthi† Tatiana Polishchuk†

† Linköping University, Sweden
§ University of Saskatchewan, Canada

Abstract—In contrast to traditional video, multi-view video
streaming allows viewers to interactively switch among multiple
perspectives provided by different cameras. One approach to
achieving such a service is to encode the video from all of the
cameras into a single stream, but this has the disadvantage that
only a portion of the received video data will be used, namely
that required for the selected view at each point in time. In
this paper we introduce the concept of a “multi-video stream
bundle” that consists of multiple parallel video streams that are
synchronized in time, each providing the video from a different
camera capturing the same event or movie. For delivery we
leverage the adaptive features and time-based chunking of HTTP-
based Adaptive Streaming (HAS), but now employing adaptation
in both content and rate. Users are able to change their viewpoint
on-demand and the client player adapts the rate at which data is
retrieved from each stream based on the user’s current view, the
probabilities of switching to other views, and the user’s current
bandwidth conditions. A crucial component of such a system is the
prefetching policy. For this we present an optimization model as
well as a simpler heuristic that can balance the playback quality
and the probability of playback interruptions. After analytically
and numerically characterizing the optimal solution, we present
a prototype implementation and sample results. Our prefetching
and buffer management solution is shown to provide close to
seamless playback switching when there is sufficient bandwidth
to prefetch the parallel streams.

I. INTRODUCTION

The average connection bandwidth for Internet users has
increased by more than an order of magnitude per decade over
the past few decades and is expected to continue improving
at a similar rate. These advances have enabled companies
such as Netflix to offer on-demand video streaming services
that are challenging the traditional TV providers, and are
expected to enable many additional innovative video streaming
applications that will deliver us tomorrow’s entertainment.

In particular, there has been considerable recent interest in
video streaming in which users are able to interactively choose
among the views provided by different cameras. Consider
for example a video recording of a sporting event. Usually
multiple cameras are used in capturing the event, but selection
among these cameras is controlled by the producer, so that
at any particular point in time video from only one camera
is being included in the recording. It would be preferable,
however, if the views provided by all cameras were available to
the viewer, with each viewer able to interactively switch among
these as desired during playout without playback interruption.
Other use cases include reality TV shows such as “big brother”,

crowd-sourced recordings of a concert, and movies produced
with multiple cameras so as to allow multiple perspectives.

One way to provide multi-view streaming is to encode
the video from all views into a single stream [1], [2], [3],
[4]. However, this approach has the disadvantage that only a
portion of the received video data will be used, implying lower
achievable video quality given fixed client bandwidth. Instead,
we propose here an approach in which multiple (regular) video
streams, capturing the same scenes from different perspectives,
are used to create what we term a “multi-video stream bundle”.
Crucially, each client does not have to receive all of this content
at the same desired playback video quality, but instead the
data (and qualities) retrieved depend on the viewer’s current
viewpoint selection and viewpoint switching probabilities.
Viewers are able to dynamically switch among the streams
in the bundle, at arbitrary times, while being provided with
seamless playback at a high playback quality.

To provide such a service, in addition to streaming the
currently played stream, the player must be able to (i) adap-
tively prefetch alternative streams that the user may switch to,
at quality levels dependent on the switching likelihoods, and
(ii) seamlessly (during playback) stitch together the playback
sequences of multiple videos when a user selects to switch to
a different stream. Adaptive prefetching is needed to ensure
that the available bandwidth is best used to prepare the
player for potential future stream switching and careful buffer
management is needed to ensure that clients do not endure
noticeable playback interruptions when switching streams.
Current players do not provide these functionalities.

In this paper we present a general multi-video stream bundle
framework that leverages the quality adaptive features and
natural time-based chunking of modern HTTP-based Adaptive
Streaming (HAS) systems. The use of HAS allows us to
adapt the streaming quality of each stream based on the user’s
current bandwidth conditions and estimated stream switching
probabilities, so as to best balance the playback quality and
the probability of playback interruptions at the time of stream
switching. The paper makes three major contributions.

First, we present the design of a novel multi-video stream
bundle system (Section II). Our design introduces the concept
of multi-video stream bundles (defined above), allows con-
tent producers to easily define default stream(s), and gives
users the freedom to switch between alternative viewpoints
at arbitrary times. Our design combines dynamic bandwidth
sharing, which determines the share of the bandwidth given
to the currently played video stream versus that given to the

This is the authors’ version of the work (as accepted). It is posted here by permission of IEEE for your personal use. Not for redistribution.

The definitive version is published in IEEE Transactions on Multimedia (IEEE TMM) and is available at IEEE Xplore Digital Library.

2

alternative streams that the user may switch to, with a chunk
quality selection policy for the alternative streams.

Most recordings are done with conventional cameras. Mo-
tivated by this observation, we assume a simple service in
which users can only view one (conventional) video stream at
a time. Although some of the results and insights provided in
this paper might be extendable to free viewpoint (where videos
from multiple strategically placed cameras can be combined so
to create virtual viewpoints [5], [6]) and tiled video streaming
(where multiple tiles of an often panoramic or omni-directional
view can be combined to allow panning, tilting, and zooming
functionalities [7], [8], [9]), extensions for services in which
the user’s viewpoint is a combination of multiple parallel video
streams are left as future work.

Although there are recent works on multi-view video stream-
ing [3], [4] and tiled streaming [10], [9] that have used
a HAS-based design, to the best of our knowledge, our
framework is the first to perform quality adaptation of a
set of conventional video-on-demands streams based on both
current bandwidth conditions and switching probabilities. In
contrast to free viewpoint videos [6], the video streams in
a stream bundle can be individual recordings and require no
depth information. In contrast to free viewpoint videos and
region-of-interest (ROI) based streaming using tiled videos
(which typically require specialized high definition panoramic
or omni-directional cameras) stream bundles can be composed
of streams from any set of cameras. The concept of stream
bundles also has the advantage that the bandwidth consumed
by streams can easily be adjusted based on their popularities.
This is particularly important for content providers that would
make large bundles available. In contrast, many multi-view
video streaming solutions encode all views (popular and less
popular) into a single stream [1], [2], [3], [4].

Second, we provide analytically (Section III) and numer-
ically (Section IV) derived insights into the characteristics
of optimized prefetching policies for alternative streams. We
present an optimization framework to determine the download
schedule of the optimized prefetching policies. The framework
addresses the problem of chunk quality selection for the alter-
native streams and balances considerations of playback quality
and probability of playback interruptions, given current net-
work bandwidth constraints and stream switching probabilities.
Using the framework, we then derive and identify properties
of the optimal solution for our specific problem, and provide
insights into how the generally NP-hard mixed integer linear
programming (MILP) formulation can be solved efficiently for
various special cases. The optimal solutionand theaccuracyofa
simpler heuristic are analytically (Section III) and numerically
(Section IV) characterized for example systems.

Finally, we present a prototype implementation (Section V)
of our multi-video stream bundle system and show that it
is able to achieve effective prefetching and close to seam-
less stream switching when there is sufficient bandwidth for
prefetching alternative streams. Using our system implementa-
tion, we demonstrate the feasibility of our solution and show
that our solution provides significant performance improve-
ments over alternative baseline implementations.

The remainder of the paper is organized as follows. Sec-

tion II presents the overall system design. Sections III and IV
present our chunk quality selection optimization framework
and a numerical characterization of the optimal solution,
respectively. Our implementation and evaluation thereof are
presented in Section V. Finally, related work (Section VI) and
conclusions (Section VII) are presented.

II. MULTI-VIDEO STREAM BUNDLING

At the core of our system design is the concept of a “multi-
video stream bundle” that consists of multiple “parallel” video
streams that are synchronized in time, each providing the video
from a different camera capturing the same event or movie. In
contrast to prior work on multi-view streaming, we employ
a HAS-based approach, in which each individual stream of
a stream bundle is individually encoded and delivered us-
ing HTTP-based Adaptive Streaming (HAS). Leveraging that
each stream is split and encoded into chunks of different
qualities, we provide bandwidth-aware prefetching (involving
quality adaptation across both time and individual streams)
and carefully split the bandwidth allocated to the currently
played stream and alternative streams that the user may choose
to switch to next. Our solution is client-driven and does not
depend on whether the service is provided in the cloud, by
CDN servers, or a single origin server, for example.

A. Streaming Structure

A stream bundle can easily be created by leveraging parallel
video recordings (professional or crowd-sourced) from any
sporting event or concert, or from parallel recordings typically
done when recording a movie or TV show, for example.

Interactive personalized streaming: With our design, each
user can change which stream they are viewing at any point
in time. By allowing users to instantaneously and repeatedly
change which stream they view, our stream bundle design
enables interactive personalized streaming experiences.

Creator defined vs user-driven paths: A content creator
can easily define a “default path”, if desired, but also allow the
users to select their own alternative paths through the stream
bundle. We define a path as a sequence of stream switches. In
the simplest scenario, the default path consists of the “video
cuts” selected by a professional editor and the other streams
contain parallel recordings from alternative viewpoints.

B. Adaptive Streaming, Prefetching, and Seamless Switching

Bandwidth-aware prefetching: The use of HAS allows for
quality adaptation across both time and individual streams.
With HAS, a video stream is encoded into chunks that are of
equal play duration (e.g., 2-5 second long), each available in
different quality encodings, and encoded so they can be played
individually. The use of multiple encodings per chunk and
aligned chunk boundaries allow the client player to adaptively
choose the most suitable encoded chunks of that stream based
on the current conditions. In addition to downloading chunks
for the currently played stream, in our context, bandwidth-
aware prefetching is also used to download chunks for the
parallel streams that the user may be most likely to switch to.

Quality maximization and seamless stream switching:
The most important parts of our solution are the dynamic

3

bandwidth sharing (Section II-C) and the prefetching policies
(Section III) that determine which chunks of each stream
should be downloaded, and the quality for each of these
chunks. Ideally, such policies should make best possible use
of the available bandwidth, adapt to current conditions, and
provide seamless playback at the highest possible quality.

Prefetching policies are needed that determine the set of
chunks and chunk qualities that best balance the goals of
maximizing the playback quality and minimizing the prob-
ability of playback stalls at switching instances. We define
an optimization framework for such policies, derive optimal
policies, and characterize their structure and computational
complexity. We then derive a simpler heuristic, evaluate its
performance relative to the theoretic optimal, implement it in
a real system, and show that it works in practice.

Whereas precise switching probabilities may be difficult
to assign for individual users, we note that there are many
scenarios where the relative order of these probabilities could
be easily predicted. For example, in many cases physical
constraints may cause some camera views to be relatively
closer to each other than others. In these cases, users may
be more likely to switch to such neighboring streams. Streams
may also have a natural viewing popularity ordering according
to their coverage of some central element of a scene (e.g., the
main actor, or the area of current action in a sporting event).

Buffer management: In addition to prefetching policies,
our proof-of-concept implementation includes careful buffer
management to allow caching of alternative streams and seam-
less switching of video containers at the times that a user
chooses to switch video streams during ongoing playback.
The chunks belonging to the currently played stream are
delivered in-order to the playback buffer, whereas prefetched
chunks from parallel streams are downloaded into the browser
cache, from which they can be quickly retrieved when the user
switches streams. At the time of a stream switch, the playback
buffer is flushed and a new video container is quickly loaded.

C. Dynamic Bandwidth Sharing

HAS players must handle time-varying buffer conditions.
For example, even though HAS players typically spend most
time in steady state conditions [11], a player starting with an
empty buffer must go through a transient phase during which
the buffer is filled. In this section, we describe how our system
determines the share of the bandwidth given to the currently
played stream versus that given to the alternative streams.

1) Determining Bandwidth Share: To allow for smooth
streaming it has been suggested that players should use the
current buffer occupancy for determining their quality adap-
tation choices [11]. Inspired by the buffer-based reservoir
concept proposed by Huang et al. [11] and implemented in
(proprietary) Netflix players, we keep track of both the amount
of buffered data T (measured in seconds) of the currently
played video stream and an estimate of the total available
bandwidth capacity Cest (measured in bytes per second). Using
this information, the bandwidth capacity is then split into
two parts: (i) Cplay is used for the quality selection when
downloading chunks of the currently played video stream, and
(ii) Cpref = Cest − Cplay is used for prefetching chunks of

0

Cest

0 Tmin Tmax

B
a
n
d
w

id
th

 f
o
r

p
la

y
e
d

v
id

e
o
 s

tr
e
a
m

 (
C

p
la

y
)

Buffer size (T)

max[(1+g)Qmax,Cest/(N+1)]

max[Qmax,Cest/(N+1)]

Fig. 1. Dynamic bandwidth sharing between the currently played video
stream and the prefetching of parallel video streams.

the other parallel streams. Our objective is to bias this split so
that we prioritize the current stream (Cplay) when the amount
of buffered data T is low (so as to avoid stalls) and to give
more bandwidth to prefetching (Cpref) when T is large.

Primarily designing for high-bandwidth scenarios where it
is possible to download the currently played stream at highest
possible quality while also prefetching data for the alternative
streams, we assume that (on average) Cest ≥ (1 + g)Qmax,
where g ≥ 0 is a parameter of the bandwidth sharing protocol
and Qmax (measured in bytes per second) is the maximum
quality encoding that the player may choose. For scenarios
in which the maximum available quality encoding does not
satisfy this condition, we simply constrain the client player to
a Qmax value that does satisfy the condition.

Figure 1 illustrates the dynamic bandwidth sharing split,
showing Cplay as a function of the amount of buffered data
T . Similar to the thresholds used by typical HAS systems, we
use Tmin and Tmax for low and high buffer thresholds.

Under low buffer conditions (when T < Tmin) the currently
played video stream is given 100% of the estimated bandwidth
capacity Cest. This facilitates building and maintaining a
sufficient buffer of video data for the currently played stream.
Between Tmin and Tmax the currently played stream is given
a bandwidth share that follows a linear decreasing function,
reflecting the decreasing need to fetch data for this stream at
high rate. For T > Tmax, the currently played stream is given
a bandwidth share Qmax, unless there is excess bandwidth
(Cest > (N + 1)Qmax), in which case the bandwidth is split
equally across the played stream and the N alternative streams,
possibly allowing workahead on all streams. More formally:

Cplay =















Cest, if T ≤ Tmin,

(1− x)max[(1 + g)Qmax,
Cest

N+1]

+ xmax[Qmax,
Cest

N+1], if Tmin < T < Tmax,

max[Qmax,
Cest

N+1], if Tmax ≤ T.
(1)

where x = T−Tmin

Tmax−Tmin
. Note that the condition Cest ≥ (1 +

g)Qmax ensures that additional buffer buildup (workahead) of
the played video is always possible whenever T < Tmax.

2) Chunk Download Schedule: Having determined the band-
width share for both the played stream and for prefetching the
alternative streams, we next describe how the chunk download
schedule is determined during time-varying buffer conditions.
The key idea here is to decouple the calculations of the
bandwidth share and the choice of the next chunk to download.
In particular, at the time a new chunk request is about to
be made, we re-calculate the bandwidth shares Cplay and
Cpref = (Cest − Cplay), as per the above calculations.

4

Using Cpref as the bandwidth allocated to prefetching we
then use a quality selection policy (for which an optimization
framework is defined in Section III) to determine which chunk
quality qi should be used for each stream i in the bundle.
Figure 2 shows an example of a quality assignment structure
that we later (in Section III-C) show is optimal under some
circumstances. In the case there is not enough bandwidth for all
streams, the algorithm also calculates the fraction fi of chunks
from stream i that should be downloaded.1 The example of
Figure 2 is for the special case when either fi = 1 (when
1 ≤ i ≤ k) or fi = 0 (when k < i).

Finally, to pick the chunk to download next, round-robin
ordering is used across the streams from which chunks will be
downloaded, starting with the currently played video stream
and followed by the alternative streams ordered according to an
assigned stream weight that can reflect the relative probability
of switching to that stream. During each round exactly one
chunk from the currently played video stream is downloaded,
as well as at most one chunk from each alternative stream.

Note that round-robin schedules can be non-optimal in some
scenarios. For example, in scenarios where there is a high
probability of switching away from the currently played stream
to some particular alternative stream, it may be appropriate to
not download at all from the currently played stream and/or
to download more than one chunk from the alternative stream.
However, we do not consider such scenarios here.

Figure 3 illustrates the round-robin scheduling approach.
The timings of when chunks of the played stream are down-
loaded and played are all shown in red; so is the buffer
level of the played stream. The download timings of prefetch-
ing streams are shown in green, blue, and black. Here we
have assumed a stream bundle with at least four streams, in
which the client is currently viewing the first and performs
prefetching when above the minimum buffer threshold Tmin.
We also assume that the client uses a single TCP connection
and only show the buffer of the played stream. In this example,
the client initially downloads chunk 1 and 2 of the played
stream at a low quality (these downloads are depicted by the
small red rectangles, numbered 1 and 2, in the figure) before
downloading later chunks of the played stream at a high quality
(larger red rectangles, numbered 3, 4, 5 and 6). As dependent
on the bandwidth capacity estimate and the amount of buffered
data for the played stream (shown at the bottom of the figure),
the client also prefetches low quality chunks of 2-3 alternative
streams in round robin (small green/blue/black rectangles,
each illustrated using a different line type). We note that all
of the depicted downloads are completed well ahead of the
respective playback deadlines (the playbacks of the first four
chunks from the played stream are depicted by the rectangles
in the top row of the figure), and that, as desired, the amount of
prefetching (download of chunks from the alternative streams)
is adapted based on the buffer conditions.

Although our discussion assumes a single TCP connection,
the use of round-robin easily generalizes to multiple connec-

1For example, in the case fi = 0.5, the client would download 50%
of the chunks of stream i. Note that chunks are independently encoded in
HAS/DASH systems. Downloading a fraction fi of a stream’s chunks would
correspondingly reduce the stall probability when switching to that stream.

0

Qmin

Qk'

Qmax

1 k' k N

Q
u
a
lit

y
 e

n
c
o
d
in

g

Stream index

Qmax

Qk.

Qmin

Fig. 2. Optimal stream quality assignment example.

Fig. 3. Round-robin dynamic bandwidth sharing example.

tions. In fact, we have validated our implementation using
experiments with both a single connection and multiple parallel
connections. However, similar to most other HAS work we
focus here on the case of just a single TCP connection.

For the currently played stream, Cplay is used when select-
ing the encoding rate of the next downloaded chunk, exactly
as the total download rate would be used with a regular player.
Naturally, many optimizations and metrics can be taken into
account here, including ones that try to reduce playback quality
variations. Here, we just used the default player selection rule.
For the other streams, we use the chunk encodings assigned by
the quality selection policy based on the remaining capacity
Cpref . Assuming back-to-back downloads at rate Cest, each
download during a round should complete within the time it
takes to play out a chunk of the currently played stream.

III. OPTIMIZATION MODEL

In this section we develop an analysis and optimization
framework for the problem of determining what chunks, at
what qualities, should be prefetched. Our framework general-
izes the buffer-based approach used by Huang et al. [11] to the
stream bundle scenario. In particular, we consider the steady-
state case in which new chunks are being added to the buffer
for each alternative candidate stream i at the same average
rate that they are being removed due to playback deadlines
expiring. When the overall system is not in steady state, our
analysis can be applied a single round-robin round at a time,
for which the current estimate of Cpref allows determination
of a prefetch schedule for that round.

We consider a single client streaming a multi-video stream
bundle with N+1 parallel video streams. One of these streams
is currently being played and the other N are the alternative
streams, from which data will be prefetched (the “prefetching
streams”). The client has bandwidth capacity C = Cpref for
the prefetching streams. Each video is chunked and available
in n video qualities (encoding rates). For each chunk to be

5

TABLE I. SUMMARY OF NOTATION

Notation Definition

C Available bandwidth capacity for prefetching
N Number of prefetching streams
Q Set of video qualities
n Number of quality encodings (n = |Q|)

Qmin Minimum video quality encoding
Qmax Maximum video quality encoding
wi Weight of stream i

qi Selected quality encoding of stream i

fi Selected fraction of chunks of stream i

ui,j Utility of stream i using choice j

qi,j Quality encoding of stream i using choice j

bi,j Average bandwidth of stream i using choice j

xi,j Binary assignment variable for stream i and choice j

A Normalized stall penalty
k Number of prefetching streams being downloaded from

downloaded from a stream i, the client must select at which
quality encoding qi ∈ Q it should download that chunk, where
Q is the set of available qualities. We consider the case where
N > ⌊ C

Qmax
⌋ where Qmax = max q ∈ Q; otherwise, the client

can simply select the maximum quality for all of the streams.

A. General Optimization Problem

In the following, we present a quite general analytic opti-
mization model. As is standard with such models, we employ
general concepts such as weights and utility functions. How-
ever, we also provide examples of how these could be more
concretely defined. Table I summarizes our notation.

First, we let wi be the normalized weight given to stream

i, such that
∑N

i=1 wi = 1, with the weights reflecting the
relative prefetching priorities. Although these weights can be
interpreted quite generally, for the purpose of simplifying
our discussion we will consider the particular case in which
the weight wi given to each stream i is proportional to the
probability of switching to stream i prior to the play time of
a prefetched chunk for that stream. Without loss of generality,
streams are ordered such that w1 ≥ w2 ≥ ... ≥ wN .

In the stream bundle scenario, the client player must balance
the importance of receiving high quality chunks and the
probability of playback stalls when switching streams, given
fixed prefetching bandwidth capacity C. For each stream i,
the player must therefore decide both (i) the fraction fi of
chunks that are downloaded, and (ii) at what quality encoding
qi these chunks are downloaded. Using these two factors, the
average bandwidth usage is calculated as bi = fiqi, measured
as data per time unit (e.g., bytes/second). We assume a given
mapping between the combination of these two factors and
the estimated utility u(fi, qi), when switching to stream i
at a random time instance. Our optimization problem is to
maximize the weighted client utility subject to the bandwidth
constraint; i.e.,

maximize

N
∑

i=1

wiu(fi, qi), subject to

N
∑

i=1

bi ≤ C. (2)

Although this is a concise formulation, the infinite solution
space makes this problem hard to solve for general utility func-

tions and arbitrary fi values. Consider instead some discrete
set of potential fi values for each stream i, and enumerate
the combinations with the potential qi values. Let bi,j and
ui,j denote the average bandwidth usage and utility for the
j’th such combination. Introducing the binary variable xi,j for
each i and j, which is 1 when combination j is chosen for
stream i and 0 otherwise, the optimization problem can now
be written as a mixed integer linear program (MILP):

maximize

N
∑

i=1

wi

∑

j

xi,jui,j , (3)

subject to

N
∑

i=1

∑

j

xi,jbi,j ≤ C, (4)

∑

j
xi,j = 1, xi,j ∈ {0, 1}, 1 ≤ i ≤ N, ∀j. (5)

For the general case, this problem is NP-hard. To see this,
note that the 0-1 knapsack problem (which is NP-hard) can be
reduced to a special case of this problem in which all the wi

are 1 and there are only two choices for each stream (either
download with probability 1 at the single available quality level
for that stream, or do not download from the stream at all).
The objective in this case is to maximize the sum over the
utilities of the downloaded chunks, under the constraint that
these downloads must fit within the bandwidth capacity.

Although this problem is NP-hard and the number of candi-
date solutions to consider can be exponential, moderately-sized
problems can be solved using modern solvers. Here, however,
we explore structure in the problem that can reduce the number
of possibilities that need be considered. In the process we also
provide insights into the characteristics of the optimal policies.

First, clearly we need to consider only combinations for
each stream i such that combinations with higher bandwidth
usage also have higher utility. Suppose that there are s com-
binations remaining for each stream after doing this pruning,
and enumerate these choices based on increasing bandwidth
usage bi,j = fi,jqi,j and utility ui,j = u(fi,j , qi,j). Assuming
the same choices across all streams, it is then easy to show
that we need consider further only

(

N+s
s

)

possible choices for
the set of xi,j values. We first prove the following lemma.

Lemma 1: There exists an optimal solution for which bl ≥
bk whenever l < k.

Proof: (Lemma 1) Assume that there exists an optimal
solution for which this property does not hold; i.e., there exists
at least some l < k for which bl < bk. Consider now an
alternative solution in which the bandwidths used by streams
l and k are exchanged such that b′l = bk > b′k = bl. This
alternative solution is feasible since it consumes the same total
bandwidth. Furthermore, due to the ordering of the streams,
the objective function of the alternative solution is no less than
the objective function for the original solution; i.e., wlu(bl) +
wku(bk) ≤ wlu(bk) + wku(bl) = wlu(b

′
l) + wku(b

′
k). Such

exchanges can be repeated on a pairwise basis until all streams
satisfy the condition given in the lemma statement.

This lemma shows that there is an optimal allocation of
bandwidth that is non-increasing. The number of choices for
the set of xi,j values that would need to be considered is

6

therefore no greater than the number of unique monotone paths
in an N × s grid, equal to

(

N+s
s

)

.

B. Baseline Scenario

We now take a closer look at the case where, for each
stream i, the client either downloads a chunk for that stream
in each round, or never does. In this case fi is either 1 or 0,
and can be interpreted as an indicator variable. Furthermore,
to balance the objective of maximizing expected video quality
and minimizing the probability of stalls we assume that each
client endures a potentially client-dependent stall penalty (in
the utility) of −A whenever there is a stall event, and the
client’s utility when switching to stream i is otherwise pro-
portional to the playback quality encoding qi. In this case, the
utility can be taken as qi ∈ Q whenever fi = 1, and −A
otherwise. Assuming n = |Q| quality levels, for this case, we
can now write the optimization problem as

maximize
N
∑

i=1

wi

(

n
∑

j=1

qi,jxi,j −A(1− fi)

)

, (6)

subject to

N
∑

i=1

n
∑

j=1

qi,jxi,j ≤ C, (7)

n
∑

j=1

xi,j = fi, 1 ≤ i ≤ N, (8)

xi,j ∈ {0, 1}, fi ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ n. (9)

Here, xi,j is a binary variable equal to 1 when the jth quality
choice qi,j is assigned to the ith stream, and 0 otherwise. Note
that constraints (8) and (9) ensure that at most one term within
the large brackets of the objective function (6) is non-zero at a
time, giving the expected utility when switching to that stream.

Determining the best metrics for QoE in a new context
(multi-video stream bundles), is a non-trivial and substantial
problem in its own right. However, linear models weighting
playback quality and stalls have been used in other contexts.
For example, Yin et al. [12] use the linear combination of
the average video quality, the average quality variation, the
rebuffering times, and the startup delay to capture the quality
of experience for linear video. Here, we instead focus on
the presence (or absence) of stalls, rather than their duration,
and do not model quality variations. While future work could
incorporate a quality variation metric into the model, we
believe that in our stream switching context, avoiding a stall
after a stream switch would be more important to users than
avoiding some brief quality variation after a stream switch. In
Section V-E we compare the quality variations of our solution
and two alternative baseline implementations.

While Model Predictive Control (MPC) and other control-
based approaches provide promising future extensions, we
believe that studying the simpler one-time shot optimization
problem is an important first step that provides useful insight
into the characteristics of optimal solutions for given available
bandwidth. Such solutions are a desirable target for periods
with stable available bandwidth. In some streaming contexts,
at least, these stable periods appear to be quite common [13].

C. Special Cases

Insights can be gained into the optimal solution for our
baseline scenario by considering some special cases.

Infinitesimal Granularity: Consider the limiting scenario
when there is an unbounded number of quality levels (n →
∞), with the difference between each pair of successive quality
levels in the range Qmin = min q ∈ Q to Qmax = max q ∈ Q
infinitesimally small. For this scenario, consider first the case
when there is no stall penalty (A = 0) and the user is
only interested in maximizing the weighted playback quality
∑

i wifiqi. For this case, the optimal policy is to greedily
allocate as much bandwidth (and quality) as possible to the
most weighted streams. Therefore, the optimal policy down-
loads from exactly k = ⌈ C

Qmax
⌉ streams, with the following

quality selections:

qi =

{

Qmax, 1 ≤ i ≤ k − 1,
C − (k − 1)Qmax i = k.

(10)

Greedy exchange arguments can be used to show that this
policy is optimal for the A = 0 case. Note that any alternative
policy would need to select lower quality for at least one of
the first k− 1 streams with higher weights, and higher quality
for at least one of the streams with lower weights, than what
is assigned with the above policy. Such an alternative policy
is sub-optimal since the weighted client utility would improve
by moving some bandwidth from the lower weighted stream
to increase the quality of a higher weighted stream. With
infinitessimal granularity, this redistribution is always possible.

As the penalty A > 0 increases, the optimal policy will
download from more and more streams, but has an easily
defined structure. Suppose that k streams are being down-
loaded from in an optimal solution, for some k between
⌈ C
Qmax

⌉ and min[N, ⌊ C
Qmin

⌋]. Then k′ − 1 streams, where

k′ = ⌊ C−kQmin

Qmax−Qmin
⌋ ≤ k, will have the highest quality,

k − k′ streams the lowest quality, and one stream will have a
quality equal to one of, or between, these two extremes. This
assignment is illustrated in Figure 2, and defined as follows:

qi =

{

Qmax, 1 ≤ i ≤ k′ − 1,
C − (k′ − 1)Qmax − (k − k′)Qmin, i = k′,
Qmin k′ < i ≤ k.

(11)
Using the same exchange arguments as used for the A = 0
case, note that this assignment cannot be improved by reallo-
cating bandwidth among the streams being downloaded from.

Clearly, for the case when A → ∞, it is optimal to
select the largest feasible k. For an arbitrary A, the overall
optimal solution and the corresponding estimated utility of
the client can be found by taking the maximum over the

possible values of k of
∑k

i=1 wiq
k
i −A

∑N
i=k+1 wi, where qki

denotes the quality allocation for stream i when downloading
from k streams, as given by (11). Since there are at most
N −⌈ C

Qmax
⌉+1 possible values of k, and k′ is nondecreasing

in k, this problem can be solved in O(N) time.
Multiples of Qmin: Suppose now that for all j, qi,j =

jQmin, with qi,n = Qmax. The solution approach for the case
of infinitesimal granularity can be applied in this case as well,

7

yielding a solution in O(N) time, by replacing C in (11) by
⌊ C
Qmin

⌋Qmin. Note that C−⌊ C
Qmin

⌋Qmin cannot be allocated

owing to the granularity of the available qualities.

D. Number of Candidate Solutions

The stall penalty A captures the extent to which a user
prioritizes high average playback quality, versus avoiding
playback stalls when switching streams. While the problem
of how to determine an appropriate value for this parameter
in some particular context of interest is outside the scope of
this paper, we note that the stall penalty could be personalized,
based on preferences observed for (or selected by) each user. In
such a scenario, rather than just a solution to the optimization
problem for one particular value of A, we would like to find a
minimal set of solutions and the range of A values over which
each is optimal, such that for any stall penalty A there is a
solution in the set that is optimal for that A. We call such
solutions “candidate solutions”. In this sub-section we prove a
result upper bounding the number of candidate solutions in a
minimal set, for the baseline scenario. In the subsequent sub-
section we address the problem of finding a minimal set and
the optimality range for each set member.

Although the special cases considered previously provide
some insights regarding the characteristics of candidate solu-
tions, the problem of finding a set of candidate solutions is
in general computationally expensive to solve. For example,
even in the case where all quality levels are divisible by Qmin

(but the quality levels do not include all multiples of Qmin

up to Qmax as was assumed in the special case at the end of
Section III-C) and A = 0 it is not always optimal to greedily
assign qualities (and bandwidth) to the most heavily weighted
streams. Furthermore, given a solution in which k streams are
being downloaded from, it is not always optimal to use greedy
re-allocation of bandwidth to obtain a solution (suitable for
larger A) in which k+1 streams are being downloaded from.
Instead, the allocation for k streams may need to be revisited
prior to such a bandwidth re-allocation.

For example, consider a scenario in which there are video
quality levels Q = {7, 6, 4, 1} and stream weights (0.5, 0.251,
0.15, 0.1, 0.05, ...), and a solution in which the top two most
heavily weighted streams are being downloaded from, with
respective qualities (7, 6). A greedy approach to constructing,
from this solution, a solution (for larger A) in which the top
three streams are being downloaded from, with no greater total
bandwidth usage, would compare the utility change that would
result from moving to (6, 6, 1) versus that from moving to
(7, 4, 1), and would select (6, 6, 1) since (7 − 6) × 0.5 <
(6−4)×0.251. However, this choice would need to be revisited
when constructing a solution in which the top four streams are
being downloaded from, since the optimal choice in this case
is (7, 4, 1, 1). Clearly, it is not always optimal to greedily
move bandwidth from high weight streams so as to enable
downloading from additional (lower weight) streams.

There are, however, insights from the special cases consid-
ered previously that generalize. First, the number of streams
being downloaded from in an optimal solution is monotoni-
cally increasing with the stall penalty A. Also, as established

by Lemma 2 below, the number of candidate solutions in a
minimal set can be upper bounded using C, Qmin, and Qmax.
In the proof of Lemma 2 it is shown that there is at most one
solution in any minimal set of candidate solutions, for any
particular number of streams being downloaded from.

Lemma 2: Considering the full range of stall penalties A
(0 ≤ A < ∞), there are at most kmax − kmin + 1 candi-
date solutions in a minimal set, where kmin = ⌊ C

Qmax
⌋ +

min[1, ⌊
C−Qmax⌊

C
Qmax

⌋

Qmin
⌋] and kmax = min[N, ⌊ C

Qmin
⌋].

Proof: (Lemma 2) Let k be the number of streams being
downloaded from (i.e., k = |{i|fi = 1}|). First, note that there
is never any benefit from downloading from less than kmin

streams. Any solution with k < kmin is using no more than
kQmax ≤ (kmin − 1)Qmax bandwidth, which by definition
of kmin is at most C − Qmin, allowing the solution to be
improved by downloading from another stream with Qmin (or
more). Second, it is not feasible to download from more than
kmax streams (with Qmin or higher quality). Third, for a fixed
k in the considered range there exists a quality allocation that
is optimal for all A. To see this, note that for fixed k and any
A, there is an optimal solution in which the first k streams
(ordered by weight) are the ones being downloaded from (see
proof of Lemma 1). The objective function (6) can now be split

into two sums (i)
∑k

i=1 wiqi, and (ii) −
∑N

i=k+1 wiA. Since
the second sum is independent of the quality choices for the
streams being downloaded from, the objective function for a
fixed k is maximized by the set of qi values that maximize

the simplified objective function
∑k

i=1 wiqi, conditioned on
∑k

i=1 qi ≤ C. For k in the considered range there exists a
solution to this problem, and it is obviously independent of A.
This completes the proof.

Although k = kmax is always optimal when A → ∞, it is
not necessarily the case that every one of the kmax−kmin+1
values of k has some A value for which it is optimal. For
example, consider the case of C = 12, twelve or more streams,
and two qualities 10 and 1. In this case, kmin = 2 and
kmax = 12, but only k = 3 (in which case the optimal qualities
are 10, 1, and 1) and k = 12 (12 streams each with quality 1)
are optimal for some A. Note in particular that the optimal k
when A = 0 need not be kmin, as there could be additional
bandwidth that could be allocated, after making the maximum
possible allocations to the highest-weight kmin streams. In
general, the size of a minimal set of candidate solutions can
be substantially smaller than the bound of Lemma 2.

E. Finding Optimal Solutions

The proof of Lemma 2 suggests the following approach to
finding a minimal set of solutions and the range of A values
over which each is optimal: First solve the simplified optimiza-

tion problem with objective function
∑k

i=1 wiqi, conditioned

on
∑k

i=1 qi ≤ C, for all kmin ≤ k ≤ kmax, and then find the
range of A values (if any) for which each solution is optimal.

Consider the two solutions for when k1 and k2 streams are
being downloaded from, for some k1, k2 such that kmin ≤
k1 < k2 ≤ kmax. Since both solutions are feasible for
any A, and the objective function (6) is a linear function

8

INPUT: Capacity C, weights wi, and utility function
OUTPUT: Quality qi allocation

1. qi ← 0, ∀i
2. while (

∑
i
qi +mini ∆

q

i) ≤ C

2.1. j ← argmaxi[
wi∆

u
i

∆
q
i

|
∑

i
qi +∆q

i ≤ C]

2.2. qj ← qj +∆q

j

3. end while

Fig. 4. Pseudo-code of simple greedy algorithm.

of A, we can find the crossover point Ak1,k2
where the k2

solution becomes better than the k1 solution by setting the
two objective functions equal and solving for A. Denoting
the quality allocation for stream i in the solution for when
k streams are being downloaded from by qki , this yields:

Ak1,k2
=

∑k1
i=1

wiq
k1
i

−
∑k2

i=1
wiq

k2
i∑k2

i=k1+1
wi

. (12)

Although typically 0 < Ak1,k2
≤ Ak2,k3

for k1 < k2 < k3,
there are exceptions. For example, when a given k1 is not
optimal for any A, then Ak1,k2

may be negative. For this
reason, we calculate one transition point at a time.

The algorithm begins with k = kmin and Ak =
−∞. The transition point Ak,k′ is found, such that k′ =
argmink<i≤kmax

(Ak,i|Ak ≤ Ak,i). Since Ak ≤ Ak,k′ , the so-

lution qki is optimal for the interval [max[0, Ak], Ak,k′] (which
could be null; i.e., if Ak,k′ < 0). Then we set Ak = Ak,k′

and k = k′, and the above step is repeated to find the next
transition point. The algorithm terminates when k = kmax,
with the solution qkmax

i being optimal for all nonnegative A
values greater than or equal to the last transition point.

By always finding the next transition point, this algorithm
follows the convex curve of the optimal objective function (as
a function of A) and so is guaranteed to find all optimal tran-
sition points. The algorithm must calculate at most (kmax−k)
candidate transition points in each iteration and there are at
most kmax − kmin + 1 values of k that could be optimal for
some A. The total number of transition point calculations is

therefore upper bounded by
(kmax−kmin)(kmax−kmin+1)

2 .
The number of candidate allocations that may need to

be considered when finding the solutions for the simplified
optimization problem (i.e., the qki values for each k) is upper

bounded by
∑kmax

k=kmin

(

k+n−1
n−1

)

. This sum is equal to the num-
ber of monotonically non-decreasing paths in the (n− 1)× k
grids associated with the (kmax−kmin+1) LPs that need to be
solved for kmin ≤ k ≤ kmax. We note, however, that it often
may be faster to find the (kmax−kmin+1) solutions by solving
the corresponding LPs using standard solvers, as typically most
of the above candidate allocations can be pruned.

F. Greedy Heuristic

Motivated by the high computational complexity of the
optimal solution, we next describe a simple greedy heuristic.

First, consider the general problem of maximizing the over-
all utility, given some available bandwidth C, and assuming
a non-convex utility function. The greedy algorithm outlined
in Figure 4 adds bandwidth to the stream i that maximizes
wi∆

u
i

∆q

i

, where ∆u
i is the change in utility for stream i (in our

baseline scenario equal to qnewi −qoldi or qnewi +A, depending

on if qoldi > 0 or not) and ∆q
i = qnewi − qoldi is the change in

quality of improving the quality of stream i one quality level.
In each step, this choice greedily maximizes the increase in
weighted utility per unit bandwidth. These greedy choices are
then repeated as long as bandwidth can be allocated without
exceeding the capacity constraint.

For the baseline scenario, this algorithm results in a solution
that has very similar characteristics as the allocation illustrated
in Figure 2. In fact, when the qualities are perfectly divisible
(as in Section III-C) the greedy policy finds the optimal
solution. To see this note that for our baseline utility function,

the
wi∆

u
i

∆q

i

is equal to wi whenever a stream already has non-

zero quality assigned. There will always be some number
of streams with non-zero quality (say k), and these will be
greedily loaded starting from one with highest weight.

Assuming again the baseline scenario, note that the above
algorithm assumes that a solution is needed for just one
particular value of A. For this case, a naive implementation of
the algorithm (that uses O(N) time for each evaluation of the
mini and argmaxi terms and always starts from qi = 0 for all
i, for example) achieves a worst-case complexity of O(nN2).
Optimizations to the time complexity are of course possible. To
find a set of solutions that includes the greedy solution for any
A value, we can find all candidate greedy solutions by simply
considering all solutions in which exactly k streams first are
allocated Qmin data and the remaining capacity (C−kQmin)
is greedily allocated among this subset of streams, as per the
above algorithm. The same O((kmax − kmin)

2) algorithm as
described for the optimal solution (Section III-E) can then be
used to determine all the solution transition points.

IV. NUMERICAL CHARACTERIZATION

This section presents a numerical characterization of the
optimal solution under steady-state conditions. We assume
that each video stream is available in four encoding qualities
(250Kb/s, 500Kb/s, 850Kb/s, and 1300Kb/s) and the utility
function normalizes all qualities relative to the lowest quality
encoding Qmin = 250Kb/s. With these normalized units a
client downloading all streams at rate Qmin has the normalized
utility of 1 and the maximum possible normalized utility is 5.2
(when all streams are downloaded at the maximum quality).

Figure 5(a) shows examples of the optimal solution, for four
different stall penalties. We have used C = 2000Kb/s, N = 6,
and Zipf distributed weights with shape parameter α = 1.2 For
each of the prefetching streams (indexed from 1-6) the y-axis
shows the chunk quality determined for that stream. The Zipf
model is used as an example distribution and is motivated by
the popularity distributions observed in many diverse systems,
including various content delivery applications and for the

2In practice, similar to other related systems, the switching probabilities
can be estimated by monitoring the choices made by other clients and can
be biased by recommendations and the user interface used for the switching,
for example. We note that the problem of modeling switching probabilities
and setting the best possible weights is orthogonal to this work, and we are
not aware of any work modeling these probabilities in the stream bundle
context. The Zipf model is only used as an example. Our design allows any
technique (good or bad) to be used for setting weights. Section V-G evaluates
and discusses the impact of the prediction accuracy.

9

channel switching in IPTV systems [14], [15]. Note that when
A = 0 all of the bandwidth is used for the top two streams.
As A increases there is downloading from more streams, and
when A reaches 1.2, from all six streams. It turns out that
the four candidate solutions shown here are the only candidate
solutions, each optimal for a separate region of stall penalties.

Using the algorithm in Section III-E, the number of can-
didate solutions in a minimal set can be found for different
numbers of streams N and Zipf parameters α. Example results
are shown in Figure 5(b). Note that when α = 0 all streams
are given the same weight and there is only a single candidate
solution, with k = kmax. The number of candidate solutions
also reduces with more concave utility functions. For example,
Figure 6 shows results with the normalized utility function
u(qi) = (qi

Qmin
)1/2−(1−fi)A, obtained using a MILP solver.

We next take a closer look at the stall penalty A and its
impact on the optimal tradeoff between the weighted playback
quality (

∑

i wifiqi) and the stall probability (
∑

i wi(1− fi)).
Figure 7 shows each of these two quantities and Figure 8(a)
shows the normalized utility (where the playback quality is
divided by Qmin) for the corresponding cases. As expected,
both quantities decrease with increasing A according to a step
function (each step corresponds to a new candidate solution),
while the normalized utility follows a smoother curve.

Similar observations can be made when varying other pa-
rameters. Figures 8(b)-(d) show example results illustrating
the impact of varying the number of streams N (in Fig-
ure 8(b)), the available bandwidth C (in Figure 8(c)), and
the shape parameter γ of the normalized utility function
u(qi) = (qi

Qmin
)γ − (1 − fi)A (in Figure 8(d)). Note that the

normalized utility function shows a diminishing decrease with
increasing N , diminishing increase with increasing C, and
that the overall utility differences between optimal solutions
decrease with a more concave utility function (smaller γ).

We also have evaluated the above test cases with the
greedy heuristic. While it is easy to show (by construction
of counterexamples) that the greedy algorithm is not optimal,
the greedy algorithm did actually find the optimal solution in
all cases considered here. This suggests that it may be a good
approximation algorithm for our purposes.

V. EXPERIMENTAL IMPLEMENTATION AND EVALUATION

We have implemented a proof-of-concept system3 based on
the open source OSMF framework4.

A. System Design

At a high level, our implementation (i) feeds the currently
played stream straight into the player buffer, (ii) prefetches
the alternative streams into the cache (from which they can
quickly be fetched when switching streams), (iii) keeps track
of the workahead of the currently played stream, the prefetched
workahead of the alternative streams, as well as the estimated
download rate, and (iv) when a client switches streams, flushes

3Our source code and system framework are available at http://www.ida.
liu.se/∼nikca89/papers/tmm17.html.

4http://sourceforge.net/projects/osmf.adobe/

the playback buffer, and loads the initial chunks of the new
stream from the cache.

Our modified OSMF player uses both standard libraries
and a custom built class that manages most aspects of our
implementation. First, at the end of every chunk download,
the client estimates the available bandwidth Cest using an ex-
ponentially weighted moving average (EWMA) with α = 0.4.5

For simplicity, the client downloads chunks back-to-back over
a single TCP connection. As outlined in Section II-C, we
first calculate the dynamic bandwidth shares Cplay and Cpref

(Section II-C1), then the individual qi values (Section III),
before finally using our round-robin technique (Section II-C2)
to select the next chunk (and quality) to download next.
To ensure fast calculations, we use the greedy algorithm
(Section III-F) for the qi calculations in our implementation.

The player continually tracks the playback point of the cur-
rent stream. When a stream switch is initiated, the current time
is passed to the new player instance, which automatically seeks
to the current play point. This ensures that the stream switch
moves to a different video (camera/view) while maintaining
time synchronization among streams.

The client uses an intelligent buffer management solution
to ensure that transitions are as seamless as possible. Every
newly played stream requires a new player instance. Instead
of waiting for a new stream to commence playback, the client
continues playing the video on the older instance. Once the
buffer of the new instance is sufficiently full, it is brought
to the foreground and the older instance is deleted, thereby
masking a significant portion of the stream switching delay.

B. Experimental Setup

We use a Firefox browser (v 26.0) configured with the
browser cache in RAM. We use Flash Media Server (v
4.5) to host our video and Dummynet [19] to control the
total bandwidth capacity and round-trip time (RTT) to the
server. For the majority of the presented results, and unless
otherwise stated, we use 6000Kbps and 50ms RTT. The client
implementation runs on Windows 7 and the server is hosted
on a PC running Ubuntu 14.10.

For each stream, we use parts of the Big Buck Bunny video
encoded according to Adobe’s media encoding recommenda-
tions and packaged into chunks of 4 second durations, but
with a different name and individual manifests for each copy.
Each of these videos is encoded at four bit rates (250Kbps,
500Kbps, 850Kbps, and 1300Kbps).

In our default scenario, streams are weighted according to
a Zipf distribution (with α = 1), with the streams ordered
by their relative distance from the currently played stream
as measured by the difference between the stream indices
(modulo N). Such an ordering could correspond to a scenario
in which the stream indexing reflects similarity in viewpoint,
and users usually make incremental changes in viewpoint.

5The choice of using a simple EWMA allows easy head-to-head policy
comparison. However, we note that any rate estimator potentially could be used
here and that more advanced rate and throughput estimation techniques [16],
[17], [18] would allow more accurate estimation of Cest; hence, further
improving the performance of all the policies.

10

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5 6

C
h

u
n

k
 q

u
a

lit
y
 (

K
b

p
s
)

Stream index

A=0
A=0.4
A=0.8
A=1.2

(a) Example solutions

 1

 2

 3

 4

 5

 6

2 4 6 8 10

Number of streamsN
u

m
b

e
r

o
f

c
a

n
d

id
a

te
 s

o
lu

ti
o

n
s

α=0

α=0.5

α=1

(b) Number of candidate solutions

Fig. 5. Example solutions for different stall penalties A (when α = 1) and number of candidate solutions
for different weight skews α and streams N .

 1

 2

 3

 4

 5

 6

2 4 6 8 10

Number of streamsN
u

m
b

e
r

o
f

c
a

n
d

id
a

te
 s

o
lu

ti
o

n
s

α=0

α=0.5

α=1

Fig. 6. Number of candidate solutions when using a
square-root-based utility function, for different weight
skews α and streams N .

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
lit

y
 (

K
b
p
s
)

Stall penalty (A)

α=1, C=4000
α=1, C=2000
α=1, C=1000

(a) Weighted playback quality

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

S
ta

ll
p
ro

b
a
b
ili

ty

Stall penalty (A)

α=1, C=4000
α=1, C=2000
α=1, C=1000

(b) Stall probability
Fig. 7. Breakdown into weighted playback quality
and stall probability.

−2

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

N
o

rm
a

liz
e

d
 u

ti
lit

y

Stall penalty (A)

α=1, C=4000
α=1, C=2000
α=1, C=1000

(a) Stall penalty

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10

N
o

rm
a

liz
e

d
 u

ti
lit

y

Number of streams (N)

C=1000
C=2000
C=3000
C=4000

(b) Number of streams

 1

 2

 3

 4

 5

 6

 1000 1500 2000 2500 3000 3500 4000

N
o

rm
a

liz
e

d
 u

ti
lit

y

Available bandwidth (C)

N=2
N=4
N=6

N=8
N=10

(c) Available bandwidth capacity

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 0.2 0.4 0.6 0.8 1

N
o

rm
a

liz
e

d
 u

ti
lit

y

Utility shape parameter (γ)

A=0
A=0.8

A=2
A=4
A=8

(d) Utility function

Fig. 8. Impact of parameters on the normalized utility.

We also perform experiments with scenarios in which all
streams are equally likely to be selected and scenarios in
which the selection bias is even greater than with the Zipf
distribution. For the first case, we use uniform weights. This
case also helps in understanding the case when it is not possible
to predict the switching probabilities. For the other extreme,
we use a geometric distribution. In particular, each stream is
given half the weight of an (adjacent) stream one index closer
to the currently played stream, with relative proximity being
measured by the difference in stream index modulo N . With
this choice, the weight of a stream that is k streams away from
the currently played stream has a weight proportional to 1

2k
. In

general, we expect the bias to be between these two extremes.

Policies: To put the dynamics of our adaptive prefetching
technique in perspective, in addition to our prefetching policy
framework (called “Adaptive”), we also include results for a
“Vanilla” player that uses the default settings of a regular
OSMF player, and hence goes idle (creating “off” periods)
when reaching Tmax, as well as for a baseline policy (RR-
OFF) that simply downloads alternative streams in round-robin
order when the currently played stream is in an off period.
Here, an “off period” is the time during which the Vanilla
player would drain its buffer from Tmax back to Tmin, where

Tmin and Tmax are the main parameters used in the OSMF
framework, and the quality of each chunk prefetched by the
RR-OFF player is selected based on the full download rate
estimates and using the same quality selection rule as used
for the currently played stream. This policy is based on our
previous work [20] that shows how downloading chunks of
other videos during off periods, as with the RR-OFF policy,
can greatly reduce the startup times of alternative videos in the
context of video-on-demand. For the Adaptive and RR-OFF
implementations we use Tmin = 4 seconds and Tmax = 30
seconds, whereas for the Vanilla player we use the default
OSMF parameters Tmin = 4 seconds and Tmax = 6 seconds.

C. Validation of Stream Switching

To understand the impact of stream switching and how
seamless this can be made, we instrumented the player to
collect low-level time measurements and analyzed a large
number of stream switching events. Considering our default
scenario, the average time observed from when the client
selects to play the new stream until the new stream commences
playback is 0.93 seconds (SD=0.21). However, during the
majority of this time period, the previous stream would have
still been playing, allowing the transition interval to be masked.

11

In fact, the average time taken to change player instances and
resume playback was only 0.054 seconds (SD=0.016). This is
the effective time for which there is no video playback.

Our prefetching strategies play an important part in keeping
the transition time small by ensuring that the landing chunk
is available in the cache. With a policy that does not prefetch,
the load time will be a function of the available bandwidth. In
our experiments without prefetching at 2Mbps and 50ms RTT
the average load time was 1.98 seconds (SD=0.45), making
the switch delay much more apparent to the user even though
the stall itself is similar (0.056± 0.010 seconds).

D. Buffer Occupancy under Example Scenarios

We next present some measurement results illustrating the
operation and performance of our system for the initial (tran-
sient) phase of two example scenarios. Figure 9 shows the
buffer occupancy for the currently played stream (0) and
six alternative streams (1-6) as a function of time for the
initial phase of a scenario without switching. Results are
shown for both the RR-OFF (Figure 9(a)) and our Adaptive
(Figure 9(b)) policy. We use a penalty A = 1.6 for the
Adaptive policy. The most important observation here is that
with the Adaptive policy the most likely alternative streams
are prefetched roughly twice as quickly as with the RR-OFF
policy. This difference is in part due to the RR-OFF policy
not beginning to prefetch alternative streams until reaching
Tmax. In addition, since the RR-OFF policy does not take
into account each stream’s rightful share, but instead uses the
full download rate estimates to select chunk qualities, it will
typically prefetch each stream at a higher quality, reducing the
amount of buffer that can be built up for each stream. Again,
as noted by Huang et al. [11], for example, a large buffer
(reservoir) is important to avoid unnecessary stalls.

Figure 9(c) shows example results for the Adaptive policy
for a scenario where the client switches from stream 0 to
stream 1 at the 30 second mark, and then to stream 2 at the
60 second mark. Note that the buffer conditions adapt well to
changes in which stream is being currently played, and that
there is substantial prioritization of the closest (according to
our ordering) streams. This is perhaps made even clearer by
observing how the quality of the buffered chunks changes with
time (Figure 10). First the quality of the buffered stream 0
chunks is highest, then the quality of the stream 1 chunks, and
finally the stream 2 chunks have the highest quality. Figure 11
shows the buffer occupancies of the differently ranked streams
as CDFs. The observed similarities in CDFs imply that there
is almost as much buffered content for the highest priority
alternative streams as for the played stream, as desired. These
results are encouraging and show that our system works well.

E. Longer Duration Experiments

We next present some results from longer duration exper-
iments with more stream switches, considering both general
behavioral differences among the policies, and the impact of
the bias in the stream switching probability distribution. In
these experiments the client switches streams with probability
0.5 every 30 seconds, over a 360 second (6 minute) experiment

duration. Following each switch, over the next 30 seconds we
track the playback quality, buffer occupancy associated with
the currently played stream, and the probability that a stall
would occur if the client immediately switched streams again.
Figure 12 shows the results averaged over ten runs with each
of several stream switching bias and policy combinations.

Referring to Figure 12(b), we note that our Adaptive policy
consistently maintains a larger buffer for the played stream
than the Vanilla player and the RR-OFF policy, for all the
switching probability models. The larger buffer is important
for protecting against stalls caused by variations in bandwidth,
variations in encoding (as in the case of VBR, for example),
or other unforeseen connection variations and interruptions.

Perhaps most importantly, note that the Adaptive policy
increases both the buffer size (Figure 12(b)) and playback qual-
ity of the played video (Figure 12(a)), while simultaneously
maintaining a relatively low stall probability (Figure 12(c)).
For example, in these results, the stall probability is almost
always at least twice as high for RR-OFF than for Adaptive,
and often significantly greater. Comparing the results for a Zipf
selection bias when A = 1.6 (our default) versus A = 3.2,
note that the stall probability can be further reduced with our
policy, simply by giving more weight to the importance of
avoiding stalls. The higher protection against stalls is also
evident from the buffer occupancy for the new played stream
immediately after a switch, as shown by the values for a
time of 0 in Figure 12(b). This buffer size corresponds to
the average (weighted) buffer occupancies of the alternative
streams, immediately prior to the switch. Again, the Adaptive
policy consistently has higher initial buffer values.

The lowest stall probabilities (Figure 12(c)) are observed
for the Adaptive policy with uniform random stream switch-
ing probabilities. In this case, the available bandwidth for
prefetching is spread more uniformly among the alternative
streams, rather than prefetching higher quality chunks from
only a few streams as occurs with highly skewed probabilities.
This is reflected in the lower playback quality (Figure 12(a))
observed just after a switch in the case of uniform random
probabilities, compared to with Zipf or geometric probabilities.
In general, for all of the switching probability distributions, the
playback quality of the played stream (Figure 12(a)) increases
as an approximately concave function, reaching the qualities
observed with the RR-OFF policy within the first 30 seconds
after a switch. The difference in shape between the curves for
the Vanilla player and the RR-OFF policy primarily comes
from the Vanilla player (i) not having any prefetched chunks,
(ii) interpreting a switch as a download of a new video
(followed by a seek to the current playpoint), and (iii) therefore
starting the initial downloads at a low quality, whereas the
other policies almost always have some prefetched chunks.

In contrast to the Adaptive policy, the RR-OFF policy
almost exclusively downloads at the highest possible quality
(as seen in Figure 12(a) for the played stream), not allowing
as much prefetching of alternative streams. In addition to
substantially higher stall probability at switching instances
(Figure 12(c)), we note that the smaller average buffer size
for the currently played stream (Figure 12(b)) makes the
RR-OFF policy much less resilient to other variability and

12

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90

B
u
ff
e
r

o
c
c
u
p
a
n
c
y
 (

s
)

Elapsed time (s)

S0
S1
S2
S3
S4
S5
S6

(a) RR-OFF, no switches

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90

B
u
ff
e
r

o
c
c
u
p
a
n
c
y
 (

s
)

Elapsed time (s)

S0
S1
S2
S3
S4
S5
S6

(b) Adaptive, no switches

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90

B
u
ff
e
r

o
c
c
u
p
a
n
c
y
 (

s
)

Elapsed time (s)

S0
S1
S2
S3
S4
S5
S6

(c) Adaptive, two switches

Fig. 9. Buffer occupancy for example scenarios with RR-OFF and Adaptive policy.

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90

Elapsed time (s)

A
v
e
ra

g
e
 q

u
a
lit

y
 i
n
 b

u
ff
e
r

(K
b
p
s
)

S0
S1

S2
S3

S4
S5

S6

Fig. 10. Average chunk quality encoding in two-switch scenario with
Adaptive policy.

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

Buffer occupancy (s)

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Played stream
Other streams

Fig. 11. Buffer occupancy distributions with Adaptive policy.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

Time since most recent switch (s)

Q
u
a
lit

y
 o

f
p
la

y
e
d
 s

tr
e
a
m

 (
K

b
it
/s

)

Adaptive, Zipf (A=1.6)
Adaptive, Zipf (A=3.2)

Adaptive, Geometric
Adaptive, Uniform

RR-OFF, Zipf
RR-OFF, Uniform

Vanilla

(a) Quality of played stream

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

Time since most recent switch (s)In
-o

rd
e
r

b
u
ff
e
r

o
f
p
la

y
e
d
 s

tr
e
a
m

 (
s
)

Adaptive, Zipf (A=1.6)
Adaptive, Zipf (A=3.2)

Adaptive, Geometric
Adaptive, Uniform

RR-OFF, Zipf
RR-OFF, Uniform

Vanilla

(b) Buffer of played stream

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time since most recent switch (s)
S

ta
ll

p
ro

b
a

b
ili

ty

Adaptive, Zipf (A=1.6)
Adaptive, Zipf (A=3.2)

Adaptive, Geometric
Adaptive, Uniform

RR-OFF, Zipf
RR-OFF, Uniform

Vanilla

(c) Stall probability if switching

Fig. 12. Average playback conditions as a function of the time since the most recent switch, for each of the different policies and switching probability biases.

unforeseen bandwidth interruptions, for example. The RR-OFF
policy usually downloads at the highest possible quality since
it does not take into account the bandwidth needed for the
downloading of chunks from other streams. Furthermore, the
large difference in average buffer size of the played stream can
be explained by differences in the general protocol dynamics.
In particular, whereas the Adaptive policy tries to maintain a
steady buffer of the played stream, the RR-OFF policy cycles
between Tmin and Tmax, going back and forth between on-off
periods. This cycling results in the average buffer size observed
for the RR-OFF policy being roughly half that for the Adaptive
policy. Given that stalls typically are the main deterrent to good
quality of experience, the larger and steadier buffer occupancy
with the Adaptive policy is therefore desirable.

While the stall probabilities and playback quality capture the
first-order metrics of the performance, we note that the quality
variations also can impact the perceived user experience.
Referring to Figures 12(a) and 12(c), we note that Vanilla has
worse quality variation and will always stall, while RR-OFF
has more consistent quality, but at the cost of unacceptable
stall probability. In contrast to these, our Adaptive policy tries
to adapt the quality selection across all streams and over time
so as to achieve a good tradeoff between quality and stall

probabilities, resulting in intermediate quality variations over
time (typically starting at a lower quality after a switch and
then increasing the quality over time). In future work, we will
look at enhancements of our proposed techniques, which more
fully consider the issue of quality variations of the playback
quality itself, given similar stall probabilities, for example.

F. Longitudinal Characterization

Naturally, it may take some time before the buffers are
first filled, and the system reaches some form of steady state.
To investigate this longitudinal aspect, we next break down
the results from one of our longer duration experiments with
multiple stream switches, using the Adaptive policy, according
to how many switches had occurred prior to each 30 second
tracking interval. Results are shown in Figure 13 for the
first six switches, and for a Zipf stream selection probability
distribution. Results with other biases are similar.

Although there are non-negligible quantitative differences,
the qualitative behavior after each of the six switches is similar.
In such experiments we have not observed any clear trends
after the first switch or two, suggesting that with the Adaptive
policy, the system may reach steady state relatively quickly.
Most of the differences in the curves appear to be random in

13

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

Time since most recent switch (s)Q
u
a
lit

y
 o

f
p
la

y
e
d
 s

tr
e
a
m

 (
K

b
it
/s

)

switch1
switch2
switch3

switch4
switch5
switch6

(a) Quality of played stream

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

Time since most recent switch (s)In
-o

rd
e
r

b
u
ff
e
r

o
f
p
la

y
e
d
 s

tr
e
a
m

 (
s
)

switch1
switch2
switch3

switch4
switch5
switch6

(b) Buffer of played stream

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time since most recent switch (s)

S
ta

ll
p

ro
b

a
b

ili
ty

switch1
switch2
switch3

switch4
switch5
switch6

(c) Stall probability if switching
Fig. 13. Average playback conditions with the Adaptive policy as a function of the time since the most recent switch, after each of the first six switches.

nature, due to the random selection of an alternative stream
when a stream switch occurs. This is, for example, the reason
for the higher stall probabilities and lower buffer occupancies
after the sixth stream switch in the results in Figure 13.

G. Impact of Prediction Accuracy

While the problem of modeling and estimating the switching
probabilities is orthogonal to this work and our system solution
is independent of how these probabilities are predicted, the
prediction accuracy can impact the absolute performance of
the system. We next take a closer look at this performance
impact. First, referring back to Figure 12, we note that the
performance of the Adaptive policy is relatively good even
when the probabilities are completely unknown (as exemplified
by the “uniform” curves). This suggests that assuming uniform
probabilities (or applying a large penalty A) can be a good
solution when probabilities are difficult to predict.

Second, in Table II we compare results for cases when
the system has predicted the probabilities to be Zipf and
uniform, respectively, and the true probabilities either are a
match or they follow the other example distribution. For the
cases in which the distributions match, the results correspond
to the left-most and right-most values for the corresponding
plots in Figure 12. We again observe that assuming more
uniform probabilities (regardless if correct) results in smaller
stall probabilities. A similar effect can be achieved with the
Adaptive policy by using a larger penalty value A.

Overall, the Adaptive policy only sees minor degradations
from incorrect prediction and consistently outperforms the
RR-OFF policy for all metrics shown in Table II except the
initial playback quality immediately after a switch. Again, the
somewhat lower initial playback quality just after a switch
(e.g., left-most points in Figure 12(a)) is due to more weight
being given to avoid stalls. These results are encouraging,
as they show that much of the performance improvements
over RR-OFF can be achieved even when the system is not
accurately predicting the magnitude of the biases. Note also
that good prediction algorithms could be expected to make
better predictions than the simple uniform assumption. Finally,
we note that determining the best methods for estimating these
probabilities is an interesting open problem for future work.

H. Bandwidth Variations

We conclude our evaluation with experiments in which we
either use competing traffic, or synthetically vary the available

bandwidth over time using Dummynet. Table III summarizes
example results for Adaptive and RR-OFF. (Results for Vanilla
are consistently much worse than both Adaptive and RR-OFF.)
For the scenarios with competing traffic we set up a second
server from which the client downloads one or more large
files in parallel using TCP. We use the same default RTT
(50ms) for both servers as in the default scenario, but scale
the bandwidth of the shared bottleneck link proportional to
the number of parallel connections. For the low-variability
Dummynet scenario we use a trace in which we randomly
toggle between one of three bandwidths every 30 seconds,
where the set of bandwidths are 3,000, 6,000, and 9,000
Kbit/s. For the high-variability scenario we toggle to a new
bandwidth every 6 seconds, each time randomly picking from
the set 2,000, 4,000, 6,000, 8,000, and 10,000 Kbit/s. The high-
frequency scenario uses the same bandwidth-hopping sequence
as the later scenario, but changes occur at twice the rate.

We have also evaluated the different policies under real-
world commuter traces, collected in 2011 while using different
modes of transport in Oslo [21]. So as to make the average
available bandwidth more representative of likely current sce-
narios, as well as more similar to those in our other tests,
bandwidths were inflated. Bandwidths for the bus trace were
inflated by a factor 3, for the car trace by a factor 2.5
(equal to the average bandwidth increase in mobile networks
between 2013 and 2016 as per the Swedish speed test service
Bredbandskollen [22]), and for the metro trace by a factor
6.2 (equal to the average bandwidth increase between 2011
and 2016). After these inflations, the bus trace has an average
bandwidth of 6,209 Kbit/s and a standard deviation of 2,057
Kbit/s. The corresponding values for the inflated car trace are
5,250 Kbit/s and 1,740 Kbit/s, respectively, and for the metro
trace they are 6,062 Kbit/s and 2,541 Kbit/s, respectively.
When interpreting the results and comparing the impact of
bandwidth variations, it is important to remember that the av-
erage available bandwidth will differ for the competing traffic
cases compared to the other cases, and the real-world traces
do not have exactly the same average available bandwidth.

As expected, high variability negatively impacts perfor-
mance. However, we again observe that the Adaptive policy
consistently outperforms the RR-OFF policy. In summary, our
results show that our system provides a good step in the right
direction for providing seamless stream bundling services.

14

TABLE II. IMPACT OF PREDICTION ERRORS

Playback quality (Kbit/s) Buffer played stream (s) Stall probability
Right after switch 30s after switch Right after switch 30s after switch Right after switch 30s after switch

Assumed/true bias Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF

Zipf/Zipf (correct) 874 889 1,059 794 25.0 2.33 34.9 13.2 0.38 0.89 0.45 0.90

Zipf/Uniform (wrong) 764 775 1,022 684 28.9 2.44 29.1 12.0 0.33 0.87 0.59 0.90

Uniform/Uniform (correct) 530 775 901 684 32.3 2.44 27.6 12.0 0.21 0.87 0.20 0.90

Uniform/Zipf (wrong) 628 889 911 794 17.8 2.33 21.9 13.2 0.21 0.89 0.29 0.90

TABLE III. EXAMPLE CASES WITH DIFFERENT BANDWIDTH VARIABILITY

Playback quality (Kbit/s) Buffer played stream (s) Stall probability
Right after switch 30s after switch Right after switch 30s after switch Right after switch 30s after switch

Scenario Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF Adaptive RR-OFF

Default scenario 874 1,133 1,059 1,023 25.1 5.0 34.9 14.1 0.38 0.89 0.45 0.90

One (1) competing flow 828 713 1081 913 28.9 6.5 38.8 9.9 0.16 0.46 0.32 0.96

Two (2) competing flows 775 886 1019 1013 26.1 7.7 27.6 15.2 0.25 0.37 0.44 0.94

Three (3) competing flows 907 769 1063 994 26.3 9.0 28.8 13.9 0.15 0.52 0.28 0.91

Low-variability emulation 827 977 999 774 19.8 3.3 23.3 7.9 0.27 0.58 0.49 0.94

High-variability emulation 865 950 1,033 835 15.3 5.0 20.5 8.6 0.29 0.55 0.61 0.97

High-frequency emulation 786 598 1,000 990 14.9 7.7 19.4 12.8 0.32 0.5 0.64 0.96

Bus trace (x3) emulation 829 647 1,036 970 20.5 14.25 24.8 22.0 0.27 0.50 0.43 0.83

Car trace (x2.5) emulation 777 427 988 638 13.7 3.4 20.0 6.8 0.45 0.65 0.67 0.97

Metro trace (x6.2) emulation 848 457 1,025 818 21.1 4.3 23.7 11.0 0.42 0.53 0.58 0.97

VI. RELATED WORK

While the concept of HAS-based multi-video stream bundles
is new, multi-view streaming is not. Most previous work
concerning multi-view streaming has focused on various video
coding aspects, including how to best encode multiple view-
points into a single video stream [1], [2], coding schemes
that facilitate quick viewpoint switching [23], [24], [25], and
that combine multiple texture/color and depth map streams to
achieve free viewpoint streaming, including of virtual view-
points [26], [5], [27], [28], [29]. In the context of 3D-TV,
both multi-layered solutions [30] and prefetching information
of alternative viewpoints [31] have been shown useful.

Others have considered coding or network coding solutions
for reduced bandwidth usage in multi-user scenarios [32], [33].
Both multicast-based delivery protocols [34] and peer-assisted
solutions [35], [36] have also been proposed, typically deliver-
ing different views of a fixed encoding quality per stream over
parallel overlay networks, but also solutions that implement
pan/tilt/zoom functionality into the delivery protocol, taking
into account the region of interest [37].

In contrast to the above works, we present a client-driven
HAS-based multi-video streaming approach and solution in
which the user selects between a finite number of viewpoints
(one per stream in the stream bundle), and in which each
stream easily can be individually recorded and encoded. The
use of HAS allows us to optimize the bandwidth allocated to
both the played video stream and the prefetched alternative
video streams (alternative view points) such as to provide
highest possible playback quality and stall-free switching.

In the context of linear video (without viewpoint selection),
much work has been done on HAS rate adaptation [38], [39],
[16]. For example, researchers have proposed and evaluated
various rate estimation techniques [17], [18], [11] beyond
the basic EWMA-based techniques used here. Others have
demonstrated the value of good rate estimations [40], and
shown that playback stalls and frequent quality switches are
the most common reasons for low user satisfaction and video
abandonment during playback [41], [42]. These latter insights
highlight the importance of careful prefetching in our stream
bundle context. Other orthogonal techniques to reduce the stall

times, proposed and evaluated for linear video streaming of
a single video, rather than for stream bundles, include data-
driven throughput prediction techniques [16] and techniques
that combine buffer and rate estimations [43] going beyond the
reservoir approach [11] that inspired our design. Applying such
additional optimization techniques in the context of our stream
bundling system presents interesting future work, including
how to best balance more complex objectives related to the
played stream (focus of the above works) and the streams that
the client may switch to (considered here).

HAS-based prefetching solutions have previously been ap-
plied to both branched video streaming [44] and to preload the
beginning of alternative videos [20]. With branched video [44]
(sometimes called nonlinear video [45], [46]) clients can
interactively select their own path through a video in which the
plot sequences can be described as a graph structure. A related
concept is hypervideo, in which hyperlinks to other related
video segments are presented during video streaming. Unlike
with branched video, transitions do not need to be seamless,
but prefetching is still important so as to minimize latency.
Prior work has developed hypervideo prefetching policies
using a Markov Decision Process framework [47], and has
considered the use of immersive video in which the users
can also change direction and zoom in/out so as to interact
with the environment [48]. Other related work has used a
modified player to combine video snippets based on tagged
videos and user search queries into a single personalized video
stream [49]. In contrast to these works, with stream bundles,
as considered here, the clients are allowed to switch between
the different streams at any arbitrary point in time and the
new playback point must be aligned with that in the prior
stream (not the start of the video or branch of the video). This
system design also presents a new and challenging prefetching
problem, for which we present optimized solutions.

Other related works have used HAS for multi-view stream-
ing [3], [4], region-of-interest (ROI) based tiled streaming [9],
[10], [50], [51], or systems in which video from multiple
cameras is combined into personalized wide-field-of-view
panorama video experiences [52]. All these works combine
video streams from multiple cameras or use tiles from ultra-

15

high resolution omni-directional (360◦) or panoramic video to
provide personalized interactive streaming experiences. How-
ever, none of these works consider the prefetching problem
associated with stream switching. In particular, while these
solutions perform adaptation based on the available bandwidth,
they do not perform adaptation of what video data is retrieved
by the client based on the stream switching probabilities so as
to balance the estimated playback quality and the probability
of playback interruptions at the time of stream switching.
Balancing this tradeoff is important for the user perceived
quality of experience. The stream bundle concept provides a
simple abstraction under which client-driven adaptation and
quality rate optimization can be performed along both these
dimensions. Interesting future work could include attempting
to extend the optimization framework developed here to the
context where clients may combine streams from multiple
parallel streams (or tiles) to make up the current viewpoint.

Perhaps most closely related to our work is the work of
Zhang et al. [53], and that of Hamza and Hefeeda [6]. Zhang
et al. [53] combine HAS and multi-view streaming, but for a
context in which clients view all video streams concurrently,
rather than switch from stream to stream as they change view-
points. In the work of Zhang et al., each stream is allocated
a separate buffer. A unified scheduling heuristic is proposed,
with complexity O(N3), where N is the number of video
streams. The number of streams is expected to be small since
only a small number of videos would typically be concurrently
presented on the same screen, and the experiments presented
are only for two video streams.

Hamza and Hefeeda [6] also employ HAS, but for free
viewpoint video streaming. With free viewpoint video stream-
ing, viewers are able to choose viewpoints that have not
been captured by cameras, but instead must be synthesized
from the reference views that have been captured. Hamza and
Hefeeda focus on the problem of adaptively determining which
reference views should be requested at each point in time, and
for each of these the quality levels for the associated texture
and depth streams, so as to best support view synthesis. Again,
neither of these works consider the optimized prefetching
problem of stream bundling systems, in which the playback
quality of the played stream must be balanced against the
probability of playback interruptions when switching streams.

VII. CONCLUSIONS

This paper presents a novel multi-video stream bundle
framework for interactive video playback that allows users to
dynamically switch among multiple parallel video streams cap-
turing the same scenes from different viewpoints. Our solution
includes an optimization framework and an adaptive protocol
for chunk download scheduling that allows the quality of
each parallel stream to be adapted based on the user’s current
bandwidth conditions and stream switching probabilities. The
framework balances the estimated playback quality and the
probability of playback interruptions at the time of stream
switching. Through analytic, numerical, and experimental
study, we show that our optimization framework and buffer
management solution are able to achieve effective prefetch-

ing and close to seamless playback switching when there is
sufficient bandwidth to prefetch the alternative streams.

In this paper we have assumed known weights and utility
functions for each client. Interesting future work includes how
to dynamically assign personalized weights for the most likely
streams to switch to next (e.g., by the design of data-driven
methods for determining stream switching probabilities), and
the design of (online) algorithms for determining appropriate
values of the penalty parameter A. Other interesting future
work could be to integrate social media and other aspects that
may impact the switching probabilities [54].

Finally, we note that our technique is client-driven and does
not depend on whether the service is provided in the cloud, by
CDN servers, or a single origin server, for example. There is
much complementary work concerning video delivery from the
cloud [55] and/or with proxy support [56]. Future work could
concern exploiting proxy support and/or cloud-computing ca-
pabilities in delivery of multi-video stream bundles.

ACKNOWLEDGEMENTS

This work was supported by funding from the Swedish
Research Council (VR), the Center for Industrial Information
Technology (CENIIT), and the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada.

REFERENCES

[1] N. Cheung, A. Ortega, and G. Cheung, “Distributed source coding
techniques for interactive multiview video streaming,” in Proc. PCS,
2009.

[2] G. Cheung, A. Ortega, and T. Sakamoto, “Coding structure optimization
for interactive multiview streaming in virtual world observation,” in
Proc. IEEE MMSP, 2008.

[3] T. Su, A. Sobhani, A. Yassine, S. Shirmohammadi, and A. Javadtalab,
“A DASH-based HEVC multi-view video streaming system,” Journal

of Real-Time Image Processing, vol. 12, no. 2, pp. 329–342, 2016.

[4] M. Zhao, X. Gong, J. Liang, J. Guo, W. Wang, X. Que, and S. Cheng,
“A cloud-assisted DASH-based scalable interactive multiview video
streaming framework,” in Proc. PCS, 2015.

[5] X. Xiu, G. Cheung, and J. Liang, “Delay-cognizant interactive stream-
ing of multiview video with free viewpoint synthesis,” IEEE Trans. on

Multimedia, vol. 14, no. 4, pp. 1109–1126, 2012.

[6] A. Hamza and M. Hefeeda, “Adaptive streaming of interactive free
viewpoint videos to heterogeneous clients,” in Proc. ACM MMSys, 2016.

[7] A. Mavlankar, P. Agrawal, D. Pang, S. Halawa, N.-M. Cheung, and
B. Girod, “An interactive region-of-interest video streaming system for
online lecture viewing,” in Proc. PV, 2010.

[8] R. van Brandenburg, O. Niamut, M. Prins, and H. Stokking, “Spatial
segmentation for immersive media delivery,” in Proc. IEEE ICIN, 2011.

[9] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and
S. Y. Lim, “MPEG DASH SRD: Spatial relationship description,” in
Proc. ACM MMSys, 2016.

[10] J. Devloo, N. Lamot, J. Van Campen, E. Weymaere, S. Latré, J. Famaey,
R. Van Brandenburg, and F. De Turck, “Design and evaluation of tile
selection algorithms for tiled HTTP adaptive streaming,” in Proc. IFIP

AIMS, 2013.

[11] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in Proc. ACM SIGCOMM, 2014.

[12] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in Proc.

ACM SIGCOMM, 2015.

16

[13] J. Summers, T. Brecht, D. L. Eager, and A. Gutarin, “Characterizing the
workload of a Netflix streaming video server,” in Proc. IEEE IISWC,
2016.

[14] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain,
“Watching television over an IP network,” in Proc. IMC, 2008.

[15] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu, “Modeling
channel popularity dynamics in a large IPTV system.” in Proc. ACM

SIGMETRICS/Performance, 2009.

[16] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “CS2P: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proc. ACM SIGCOMM,
2016.

[17] J. Jiang, V. Sekar, and H. Zhang., “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE,” in
Proc. ACM CoNEXT, 2012.

[18] L. Zhi, Z. Xiaoqing, J. Gahm, P. Rong, H. Hao, A. Begen, and D. Oran,
“Probe and adapt: Rate adaptation for HTTP video streaming at scale,”
IEEE JSAC, vol. 32, no. 4, pp. 719–733, 2014.

[19] L. Rizzo., “Dummynet: A simple approach to the evaluation of network
protocols,” ACM CCR, vol. 27, no. 1, pp. 31–41, 1997.

[20] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shah-
mehri, “Bandwidth-aware prefetching for proactive multi-video preload-
ing and improved HAS performance,” in Proc. ACM Multimedia, 2015.

[21] H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz.,
“A comparison of quality scheduling in commercial adaptive HTTP
streaming solutions on a 3g network.” in Proc. MoVid, 2012.

[22] P. Davidsson, “Bredbandskollen: Mobil surfhastighet i Sverige 2016 -
Technical report,” 2016.

[23] X. Guo, Y. Lu, W. Gao, and Q. Huang, “Viewpoint switching in
multiview video streaming,” in Proc. IEEE ISCAS, 2005.

[24] G. Cheung, A. Ortega, and C. Ngai-Man, “Generation of redundant
frame structure for interactive multiview streaming,” in Proc. PV, 2009.

[25] H. Huang, B. Zhang, S. Chan, G. Cheung, and P. Frossard, “Coding
and replication co-design for interactive multiview video streaming,” in
Proc. IEEE INFOCOM, 2012.

[26] C. Fehn, “Depth-image-based rendering (DIBR), compression, and
transmission for a new approach on 3D-TV,” in Proc. SD&A, 2004.

[27] T. Maugey and P. Frossard, “Interactive multiview video system with
low complexity 2D look around at decoder,” IEEE Trans. on Multime-

dia, vol. 15, no. 5, pp. 1070—-1082, 2013.

[28] J. Chakareski, V. Velisavljevic, and V. Stankovic, “User-action-driven
view and rate scalable multiview video coding,” IEEE Trans. Image

Process, vol. 22, no. 9, pp. 3473–3484, 2013.

[29] A. D. Abreu, L. Toni, N. Thomos, T. Maugey, F. Pereira, and
P. Frossard, “Optimal layered representation for adaptive interactive
multiview video streaming,” Journal of Visual Communication and

Image Representation, vol. 33, pp. 255–264, 2015.

[30] A. M. Tekalp, E. Kurutepe, and M. R. Civanlar, “3DTV over IP: End-to-
end streaming of multiview video,” IEEE Signal Process. Mag., vol. 24,
no. 6, pp. 77—-87, 2007.

[31] E. Kurutepe, M. Civanlar, and A. Tekalp, “Client-driven selective
streaming of multiview video for interactive 3DTV,” IEEE Trans. on

Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1558–
1565, 2007.

[32] T. Fujihashi, Z. Pan, and T. Watanabe, “UMSM: A traffic reduction
method on multi-view video streaming for multiple users,” IEEE Trans.

Multimedia, vol. 16, no. 1, pp. 228––241, 2014.

[33] L. Toni, N. Thomos, and P. Frossard, “Interactive free viewpoint video
streaming using prioritized network coding,” in Proc. IEEE MMSP,
2013.

[34] J. Chakareski, “Adaptive multiview video streaming: challenges and
opportunities,” IEEE Commun. Mag., vol. 51, no. 5, pp. 94–100, 2013.

[35] E. Kurutepe and T. Sikora, “Multi-view video streaming over P2P
networks with low start-up delay,” in Proc. IEEE ICIP, 2008.

[36] Z. Chen, M. Zhang, L. Sun, and S. Yang, “Delay-guaranteed interactive
multiview video streaming,” in Proc. IEEE ISCAS, 2009.

[37] A. Mavlankar, J. Noh, P. Baccichet, and B. Girod, “Peer-to-peer
multicast live video streaming with interactive virtual pan/tilt/zoom
functionality,” in Proc. IEEE ICIP, 2008.

[38] S. Akhshabi, A. C. Begen, and C. Dovrolis., “An experimental evalu-
ation of rate-adaptation algorithms in adaptive streaming over HTTP,”
in Proc. ACM MMsys, 2011.

[39] T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari.,
“Confused, timid, and unstable: Picking a video streaming rate is hard,”
in Proc. ACM IMC, 2012.

[40] Z. Kelvin, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin,
J. Rexford, and R. Sinha, “Can accurate predictions improve video
streaming in cellular networks?” in Proc. ACM HotMobile, 2015.

[41] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang., “Understanding the impact of video quality on user
engagement,” in Proc. ACM SIGCOMM, 2011.

[42] T. Hossfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia, “Iden-
tifying QoE optimal adaptation of HTTP adaptive streaming based on
subjective studies,” Computer Networks, vol. 81, pp. 320–332, 2015.

[43] J. M. Batalla, P. Krawiec, A. Beben, P. Wisniewski, and A. Chydzinski,
“Adaptive video streaming: Rate and buffer on the track of minimum
rebuffering,” IEEE JSAC, vol. 34, no. 8, pp. 2154–2167, Aug. 2016.

[44] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shah-
mehri., “Quality-adaptive prefetching for interactive branched video
using HTTP-based adaptive streaming,” in Proc.ACM Multimedia, 2014.

[45] Y. Zhao, D. L. Eager, and M. K. Vernon, “Scalable on-demand stream-
ing of nonlinear media,” IEEE/ACM Trans. on Networking, vol. 15,
no. 5, pp. 1149–1162, 2007.

[46] N. Carlsson, A. Mahanti, Z. Li, and D. L. Eager, “Optimized periodic
broadcast of nonlinear media,” IEEE Trans. on Multimedia, vol. 10,
no. 5, pp. 871–884, 2008.

[47] R. Grigoras, V. Charvillat, and M. Douze., “Optimizing hypervideo
navigation using a markov decision process approach,” in Proc. ACM

Multimedia, 2002.

[48] M. Wijnants, P. Quax, G. Alberto, R. Ruiz, W. Lamotte, J. Claes, and
J.-F. Macq, “An optimized adaptive streaming framework for interactive
immersive video experiences,” in Proc. BMSB, 2015.

[49] D. Johansen, P. Halvorsen, H. Johansen, H. Riiser, C. Gurrin, B. Olstad,
C. Griwodz, Å. Kvalnes, J. Hurley, and T. Kupka., “Search-based com-
position, streaming and playback of video archive content,” Multimedia

Tools Appl., vol. 61, no. 2, pp. 419–445, 2012.

[50] O. Niamut, G. Thomas, E. Thomas, R. van Brandenburg, L. D’Acunto,
and R. Gregory-Clarke, “Live event experiences-interactive UHDTV on
mobile devices,” in Proc. IET IBC, 2014.

[51] O. A. Niamut, A. Kochale, J. R. Hidalgo, R. Kaiser, J. Spille, J.-F. Macq,
G. Kienast, O. Schreer, and B. Shirley, “Towards a format-agnostic
approach for production, delivery and rendering of immersive media,”
in Proc. ACM MMSys, 2013.

[52] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, P. Halvorsen,
and D. Johansen, “Scaling virtual camera services to a large number of
users,” in Proc. ACM MMSys, 2015.

[53] W. Zhang, S. Ye, B. Li, H. Zhao, and Q. Zheng, “A priority-based
adaptive scheme for multi-view live streaming over HTTP,” Computer

Commun., vol. 85, pp. 89–97, 2016.

[54] D. Seo, S. Kim, H. Park, and H. Ko, “Real-time panoramic video
streaming system with overlaid interface concept for social media,”
Multimedia Systems, vol. 20, no. 6, pp. 707–719, 2014.

[55] Y. Wen, X. Zhu, J. J. P. C. Rodrigues, and C. W. Chen, “Cloud mobile
media: Reflections and outlook,” IEEE Trans. on Multimedia, vol. 16,
no. 4, pp. 885–902, 2014.

[56] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shah-
mehri., “Helping hand or hidden hurdle: Proxy-assisted HTTP-based
adaptive streaming performance,” in Proc. IEEE MASCOTS, 2013.

