
Quality-adaptive Prefetching for Interactive Branched
Video using HTTP-based Adaptive Streaming∗

Vengatanathan Krishnamoorthi† Niklas Carlsson† Derek Eager‡

Anirban Mahanti§ Nahid Shahmehri†
† Linköping University, Sweden, firstname.lastname@liu.se
‡ University of Saskatchewan, Canada, eager@cs.usask.ca

§ NICTA, Australia, anirban.mahanti@nicta.com.au

ABSTRACT

Interactive branched video that allows users to select their
own paths through the video, provides creative content de-
signers with great personalization opportunities; however,
such video also introduces significant new challenges for the
system developer. For example, without careful prefetch-
ing and buffer management, the use of multiple alternative
playback paths can easily result in playback interruptions.
In this paper, we present a full implementation of an in-
teractive branched video player using HTTP-based Adap-
tive Streaming (HAS) that provides seamless playback even
when the users defer their branch path choices to the last
possible moment. Our design includes optimized prefetching
policies that we derive under a simple optimization frame-
work, effective buffer management of prefetched data, and
the use of parallel TCP connections to achieve efficient buffer
workahead. Through performance evaluation under a wide
range of scenarios, we show that our optimized policies can
effectively prefetch data of carefully selected qualities along
multiple alternative paths such as to ensure seamless play-
back, offering users a pleasant viewing experience without
playback interruptions.

Categories and Subject Descriptors

C.4 [Information Systems Organization]: Performance
of Systems; C.2.2 [Network Protocols]: Applications; H.5.1
[Multimedia Information Systems]: Video

Keywords

HTTP-based adaptive streaming (HAS); Branched video;
Multipath/nonlinear streaming; Seamless playback

1. INTRODUCTION
On-demand video streaming has gained tremendous pop-

ularity and currently accounts for a large fraction of Internet
traffic [24]. In contrast to the original UDP-based services,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MM’14, November 03 - 07, 2014, Orlando, FL, USA

Copyright 2014 ACM 978-1-4503-3063-3/14/11 ...$15.00.

http://dx.doi.org/10.1145/2647868.2654951.

most of today’s on-demand video streaming services are us-
ing HTTP over TCP. The use of HTTP-based streaming
simplifies caching and facilitates simple traversal of NATs
and firewalls. With the introduction of HTTP-based adap-
tive streaming (HAS) protocols, the player can now also eas-
ily adapt the streaming quality based on the user’s current
bandwidth conditions [3, 5].

Another important development has been the increased
level of personalization on the Web. As companies and users
become increasingly used to personalized services, we expect
increasing personalization of video. For example, a viewer
may find a movie too sad, too violent, or too scary. What
if the content provider could customize the video playback
sequence based on the taste of each user?

Interactive branched video (previously also called “nonlin-
ear” and “multipath” video) that allow users to traverse dif-
ferent plot sequences, depending on their interactions with
the video (e.g., by pushing a button on a keyboard, TV
remote, or with the help of a mouse click) have been pro-
posed in the research literature [11,12,17,27], and explored
through clever (but non-trivial) use of navigation captions
in YouTube videos. Recently, Interlude1 even launched a
Web-based service that offers content creators an easy way
to create interactive videos hosted by the company.

While these types of media provide many advantages and
opportunities, they also present new challenges. For exam-
ple, with the user playback experience (at least of linear
video) being dominated by the number and durations of any
potential playback interruptions [9], branched video presents
a unique challenge as the player may not know in advance
which of the potential paths a user will take. Therefore,
video must be prefetched along multiple paths to ensure that
playback is seamless, without playback interruptions, even
when users defer their choices to the last possible moment.

We argue that HTTP-based Adaptive Streaming (HAS)
provides an excellent framework for implementing interac-
tive branched video streaming (Section 2). Using HAS to-
gether with a simple media description and path tracking
mechanism (i) provides the creator with full flexibility when
designing personalized content, (ii) does not add any ad-
ditional overhead on the content servers storing the media
files compared to delivery of regular linear non-interactive
media, and (iii) ensures that the solution is TCP friendly,
easily traverses firewalls/NATs, and can leverage all of the
benefits of content replication and proxy caches.

In this paper, we describe a design and full implementa-
tion of such a HAS-based interactive branched video stream-

1Interlude, http://www.interlude.fm, Mar. 2014.

∗This is the authors’ version of the work. It is posted here by permission of ACM for your personal use, not for redistribution.

The definite version was published in ACM Multimedia (MM) ’14, Orlando, FL, Nov. 2014. http://dx.doi.org/10.1145/2647868.2654951

ing system. Using a relatively simple model and this im-
plementation, we explore the key question of what policy
a branched video player should use when deciding which
video chunks to download when. Such a policy is analogous
to the rate adaptation policy in HAS, but is made greatly
more complex by uncertainty regarding future user path se-
lections. The contributions of this paper are as follows.

We first develop a simple analytic model that allows defi-
nition of the basic prefetch problem as an optimization prob-
lem in which the expected playback quality is maximized,
while avoiding playback interruptions. Within this frame-
work we argue that it is optimal to download back-to-back
video chunks in a round-robin manner, and that there ex-
ists a natural tradeoff between playback quality and the use
of additional parallel TCP connections to build up buffer
workahead and ensure seamless playback.

Second, based on these findings, we design optimized poli-
cies that determine (i) when different chunks of the video
should be downloaded, (ii) at what quality level each such
chunk should be encoded with, and (iii) how to manage
playback buffers and TCP connections such as to ensure
a smooth playback experience without excessive workahead.
By extending the existing buffer management policies used
for HAS our policies carefully balance the buffer workahead
needed to ensure seamless playback against potential wasted
bandwidth from prefetching data along non-used paths or
for an early terminated session.

Finally, we present the design, implementation (Section 4)
and experimental evaluation (Section 5) of our framework.
In addition to providing concrete evidence that the opti-
mized policies perform well under a wide range of scenarios,
our experiments provide insights into the importance of care-
ful adaptive policies. For example, it is shown that the use of
parallel connections can be particularly valuable when build-
ing workahead in environments with much competing traf-
fic, and our optimized prefetching policies together with a
capped workahead policy is shown to provide a good tradeoff
between ensuring a smooth playback experience and avoid-
ing excessive workahead.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our general HAS-based branched video frame-
work. Section 3 defines our system model, problem formula-
tion, and optimized prefetching policies. Section 4 describes
our system design implementation. Our experimental eval-
uation is presented in Section 5. Section 6 discusses related
work, and Section 7 concludes the paper.

2. PERSONALIZED CONTENT DELIVERY

2.1 Chunks, Segments, and Branch Points
HAS players typically either use byte-range requests or

split the video file into chunks, each addressable with a
unique URL. While the general design in this paper is appli-
cable to both types, we will present a chunk-based solution.
A manifest file providing URLs for individual chunks is used
to bootstrap the player. Each chunk is typically 2-5 seconds
long, and chunk boundaries coincide for the different encod-
ings, allowing the client to switch to any available encoding
at chunk boundaries.

Branched video, as we define it here, generalizes tradi-
tional linear HAS video in that it allows (i) the video de-
signer to define arbitrary playback sequences through the
underlying linear video, and (ii) the users to select among

Figure 1: Illustration of terminology

multiple alternative playback sequences. In order to allow
for such customization and interactivity, the designer can
define both linear and nonlinear segments. These are linked
together using branch points at which the user can chose
among multiple path options [17].

Figure 1 illustrates our terminology. Here, as with regular
HAS video, a chunk contains a small fixed duration of the
video and is defined within the video manifest file. Each seg-
ment (linear or nonlinear) consists of a sequence of chunks
that are played in the specified order without the need for
any user interaction. Branch points are used to give users
the option of alternative video playback paths. While play-
ing the segment leading up to an applicable branch point,
the user is given the option of which of several possible next
segments the player should play next.

2.2 Branched Video Structure
Our client-driven design does not add any client tracking

or additional processing overhead to the HAS servers. The
designer simply specifies segments and branch point rules
in a potentially-personalizable, text-based metafile, sepa-
rate from the manifest file that comes with the underlying
HAS media. The player is responsible for determining which
branch points to consider and chunks to download.

Segments can be specified as any arbitrary sequence of
chunks and the applicable branch points can be defined using
rich branch point rules that specify (i) the playback path
that the client must have taken for the branch point rule
to be applied, (ii) the options for what path to follow after
the branch point, (iii) the weight associated with each path
choice, and (iv) the message to be displayed to the user
whenever that branch point is in play. When playing the
video, our player keeps track of the playback sequence of
the user and checks the applicability of each of the branch
point rules associated with the next upcoming branch point.
Among all matching branch point rules, the player picks the
one with the longest match. In the remainder of this paper
we will focus on how the player performs prefetching, given
the outcome from applying this rule.

Consider a branched video that consists of E = |E| seg-
ments and B = |B| branch points. Here, each segment e ∈ E
is of playback length Le and consists of ne chunks each with
playback duration le,i, where 1 ≤ i ≤ ne. Each chunk can

Table 1: Notation for branched video
Symbol Definition

E Set of all segments e (linear or nonlinear)
Le Media playback duration in segment e

ne Total number of chunks in segment e

le,i Total media playback length of chunk i in seg-
ment e

Q Set of quality encodings
qe,i The quality encoding of chunk i in segment e

B Set of all branch points b

Eb Set of branch edges e associated with branch
point b

wb
e Relative weight for branch-point edge e of branch

point b

∆u Protocol threshold time used by client u

tsi Start of download of chunk i

tci Download completion of chunk i

tdi Playback deadline of chunk i

li Total media playback duration of the ith chunk
among those in segment e and those immediately
following branch point b

qi The quality encoding of the ith chunk among
those in segment e and those immediately follow-
ing branch point b

ri Estimated per-connection download rate between
download initiation times tsi and tsi+1

ci Number of parallel connections between down-
load initiation times tsi−1 and tsi

Ri(c) Estimated total download rate between the initi-
ations of the ith and (i + 1)st chunk downloads,
when using c connections

be downloaded in one of Q = |Q| qualities, where Q is the
set of qualities, each corresponding to a particular video bi-
trate. We use qe,i to denote the quality (bitrate) of chunk i
of segment e, and hence the size of this chunk is qe,ile,i.

We denote by Eb the set of branch options (in particular,
possible choices for the next segment to play) available to
a particular client reaching branch point b ∈ B. Each is
given a weight wb

e. In the following, we will assume that all
weights are normalized, such that

P

e∈Eb wb
e = 1, and the

weights reflect relative priorities (e.g., the probability that
a path is selected). Table 1 summarizes our notation.

3. PLAYER MANAGEMENT

3.1 Problem Description
We design optimized prefetching policies and buffer man-

agement schemes that (i) provide uninterrupted playback
with seamless switches from one segment to another, and (ii)
given such uninterrupted playback, maximize the playback
quality. Our HAS-based solution takes advantage of paral-
lel TCP connections to build up a workahead buffer to keep
unnecessary stalls at a minimum, but must also make care-
ful tradeoffs among workahead, playback quality, and the
potentially wasted bandwidth associated with downloading
chunks the client later does not use.

As an illustration of these design choices, consider first
Figure 1. Assume that the player is currently playing seg-
ment 1. To ensure seamless playback when reaching the
branch point, the first chunk of each path choice (i.e., chunks
4 and 7) must have been retrieved before reaching the branch
point. To make good prefetch decisions, the client must keep
track of how much time there is until the branch point, and

Figure 2: Round-robin parallel downloading

how much bandwidth is available, so as to determine when
and at what quality each chunk should be downloaded.

Figure 2 illustrates a more complex branched video struc-
ture in which the client must make multiple path decisions
(bottom half of the figure), the download schedule (middle)
and the playback schedule (top) for an example player im-
plementing a basic policy. Note how all chunks along the
selected (solid lines) playback path are obtained in time of
their playback deadlines (i.e., the time by which the player
needs that chunk for it to be played without a stall), how
up to three parallel connections are used to build up worka-
head and prefetch the first chunk of each potential path
choice (chunks 4, 7, and 10 for the first branch point, and
then chunks 13 and 16 for the second branch point) before
reaching the branch points, as well as how different quali-
ties are selected for the different chunks depending on how
much workahead is available before each (potential) play-
back deadline. In this scenario a simple round-robin sched-
ule is used for determining which chunk to download next.

This example illustrates the importance of careful prefetch-
ing. More generally, important design considerations in de-
termining a good download schedule include:

• Download ordering and playback quality. With
different chunks being associated with paths of dif-
ferent likelihood and with different delay constraints,
both the order of downloads and the chosen quality for
each chunk play an important role in ensuring seamless
playback at the highest possible playback quality.

• Concurrent downloads. To allow improved down-
load speeds and prefetching we allow multiple parallel
connections. However, when doing so, we must con-
sider the tradeoff between improving the overall down-
load rate and meeting individual playback deadlines.

• Capped workahead. To avoid excessive workahead
and wasted bandwidth usage when a user terminates
a session early, most HAS players use on-off control
and do not allow the buffer to fill up beyond a certain

threshold. In the context of branched video this con-
cept must be extended to take into account the number
of path options at each encountered branch point. De-
pending on the underlying structure, our player sets
the target buffer size dynamically.

The player must determine when chunks should be down-
loaded, at what qualities, and how much parallelism should
be utilized, such as to maximize the playback quality and
meet playback deadlines. Given a network constraint on how
much data can be downloaded over a given time period,
there is a tradeoff between quality (higher quality implies
larger chunks) and the number of chunks that can be down-
loaded. The stall probability depends on network conditions
and the prefetching policy (such as concerning prefetching
of chunks from after a branch point).

3.2 Objectives and Constraints
In this section we formulate the prefetching problem as an

optimization problem. Without loss of generality, we con-
sider a client downloading a single segment e that has been
determined to have an upcoming branch point b. We want to
maximize the playback quality of the chunks of the current
segment e and the first chunk of each of the |Eb| different
path choices, conditioned on each chunk, including the first
chunk of each potential segment following the branch point,
being downloaded prior to its (potential) playback deadline.

Objective function: Assuming that a client picks path
e′ ∈ Eb at branch point b with a probability wb

e′ , we can
formulate our objective function as:

maximize

ne
X

i=1

qe,ile,i +
X

e′∈Eb

wb
e′qe′,1le′,1. (1)

Round-robin ordering: Without loss of generality, we
enumerate the chunks associated with a segment e and the
first chunk in all potential following segments as follows: (i)
the chunks of segment e are enumerated from 1 to ne, and
(ii) the first chunk from all of the segments following the
branch point b are enumerated from ne +1 to ne + |Eb| with
chunk ne +1 having the highest weight wb

e′ and ne + |Eb| the
lowest. With this numbering, let qi and li be the quality and
chunk length, respectively, of the ith chunk of the combined
segment-branch-point pair {e, b}.

Clearly, the downloads of the chunks in segment e should
be initiated before those for chunks following the branch
point. Furthermore, to avoid stalls, in the case where all of
the probabilities wb

e′ are significant, it is optimal to use a
round-robin ordering for workahead from after the branch
point; i.e., the downloads for the first chunk from all of the
possible following segments should be initiated, prior to ini-
tiating downloads of any subsequent chunks. These “first
chunk” downloads should be initiated in order of the respec-
tive weights wb

e′ . Therefore, workahead downloads should
be initiated in the same order as in our enumeration. Fi-
nally, for similar reasons, it may be desirable to choose non-
increasing quality levels for successive workahead downloads.

Motivated by the above observations, in the following we
only consider round-robin schedules following the above or-
der. In fact, in the case that additional workahead is possi-
ble after downloading all the |Eb| chunks and our workahead
rule (Section 3.4) allows for greater workahead beyond the
branch point, we again use round-robin among the second
chunk of the candidate segments.

With our chunk order and notation, we can rewrite the
objective function as:

maximize

ne
X

i=1

qili +

ne+|Eb|
X

i=ne+1

qili. (2)

Playback deadlines: Let tc
i and td

i represent the time
at which the client completes download of chunk i and the
playback deadline of chunk i, respectively.

Our optimization problem has the constraint that the
download completion time tc

i of each chunk (1 ≤ i ≤ ne +
|Eb|) must be before the playback deadline of that chunk:

tc
i ≤ td

i =

(

τ +
Pi−1

j=1 lj , if 1 ≤ i ≤ ne

τ +
Pne

j=1 lj , if ne < i ≤ ne + |Eb|
(3)

Here, τ is used to denote the time at which the first chunk of
segment e begins playback. If time is measured relative to
the time at which video download is initiated, then for the
first segment on a client’s playback path, τ corresponds to
the startup delay. For subsequent segments, τ is given by the
value of τ for the preceding segment on the client’s playback
path, plus the total playback duration of that segment.

Startup delays: For simplicity, we calculate the startup
delay considering only the first segment e on a client’s play-
back path, and the subsequent branch point b. Further,
we use the minimum possible startup delay when all down-
loaded chunks are downloaded sequentially at some mini-
mum desired quality q∗. The startup delay τ can then be cal-

culated as the maximum of max1≤i≤ne [
Pi

j=1

q∗lj

R(1)
−

Pi−1
j=1 lj]

and
Pne+|Eb|

j=1

q∗lj

R(1)
−

Pne

j=1 lj , where R(1) is the download

rate when using a single TCP connection. Here, the first
expression uses the tightest download completion time con-
straint over all of the chunks of segment e (typically yielding
a startup delay equal to the download time of the first chunk,
tc
1) and the second expression uses the constraint of obtain-

ing the first chunk of each branch choice in time for play-
back. The same method is used again anytime that there is
a playback interruption and τ must be re-calculated.

Download times: Constraint (3) is on download com-
pletion times. Here we relate these completion times to total
download rate and the policy variables (number of parallel
connections, prefetching policy decisions). We restrict at-
tention to policies that only initiate new chunk downloads
and open new TCP connections at the time of a download
completion. Such policies simplify connection management.

With a measured total download rate of Ri(ci) between
the initiations of the ith and (i + 1)st chunk downloads,
the average download rate per connection is equal to ri =
Ri(ci)/ci, where ci is the number of active parallel connec-
tions during this time period. Letting ts

i denote the time
at which the download of chunk i is initiated, and assuming
that the per-connection rates ri are known, we can formulate
the following conservation equation:

i+k
X

j=i

rj(t
s
j+1 − ts

j) = qili, (4)

where we have assumed that k new chunk downloads are
initiated over the download time of the ith chunk; i.e., tc

i =
ts
i+k. Here, the left-hand side gives the total amount of

data downloaded on a single connection during the download
time of chunk i, recognizing that the download rate on that

connection will change with the number of active parallel
connections. The right-hand side gives the chunk size.

Download rates: In practice, neither the rates rj nor
any of the future download completion times are known at
the time of a download completion, when the player must
determine (i) how many parallel connections to use until the
next completion, and (ii) at what quality any new chunk
should be downloaded. At one extreme the client has no
competition on the network bottleneck link. In this case
Ri(ci) is independent of ci and ri+1 = ci

ci+1
ri. At the other

extreme, the client has very many competing flows, Ri(ci)
is approximately proportional to ci, and ri can be assumed
to be independent of ci.

To help ensure that delay constraints are satisfied even
under uncertainty, our policies use the conservative assump-
tion that there will be no additional bandwidth gains from
using additional TCP connections, but prioritize parallelism
when possible without violating these delay constraints.

3.3 Prefetching Policies
The player initially opens one connection to the server,

and subsequently opens additional connections at download
completion time instants, depending on the policy. Idle con-
nections are reused, and, as shown in Figure 2, HTTP GETs
for different paths can share a single connection.

To determine the number of new chunks to request next,
and the quality at which each of these chunks should be
downloaded, we use our optimization problem formulation.
At the completion of a chunk download, we pick the qual-
ity and number of parallel new downloads that maximizes
the expected weighted playback quality, as defined by the
objective function (2), and that satisfies all constraints.

We consider two policies that both restrict the number of
candidate schedules to consider, but differ in their complex-
ity and how aggressive they are. The first policy, called Op-

timized non-increasing quality, considers all possible candi-
date schedules that (i) do not exceed the maximum number
of parallel connections allowed C, (ii) do not count on open-
ing additional connections in future steps, and (iii) in which
the qualities of consecutive chunks are non-increasing. This
policy reduces the number of possible schedules per number
of parallel connections from QM , where M = ne + |Eb|−m is
the number of remaining chunks, m is the number of already
requested chunks, and Q is the number of possible quality
levels for each remaining chunk, down to

`

M+Q−1
Q−1

´

.

As condition (iii) can still allow for a large number of can-
didate schedules, we also consider a more conservative policy
that modifies condition (iii) so as to require the quality of the
requested chunks to be sustainable for the remaining chunks.
This policy, called Optimized maintainable quality, requires
only Q candidate schedules to be considered per number of
parallel connections. Both policies pick the highest feasible
quality for the next chunk, and open up additional parallel
connections only if this quality can still be sustained.

To explore the tradeoff between aggressively picking high
quality segments and prioritizing opening up additional par-
allel connections, we also consider two additional policies.
Both these policies use the same three schedule constraints
used with Optimized maintainable quality. In the first pol-
icy, called Single connection, we only allow a single connec-
tion to be open at each point in time. The second policy,
called Greedy bandwidth, is much more bandwidth aggres-
sive, and chooses chunk quality and the number of parallel

new downloads so as to maximize the number of requested
bytes

Pj+m

i=j
qili, when chunks j through j+m are requested

at this time instance. Table 2 summarizes our policies.

3.4 Capped Workahead
A common on-off control strategy used by HAS players

is to stop requesting chunks whenever the buffer occupancy
exceeds a threshold Tmax, until the buffer occupancy drops
below another threshold Tmin [1, 3].

We generalize this idea to the context of branched video.
Consider a player that is currently playing a segment e ∈ E
and is approaching branch point b with |Eb| path choices. We
define a minimum buffer threshold Tmin = Tsingle|E

b|, where
Tsingle is the amount of data that should be buffered for each
path choice to be confident that a stall will not occur, but
such as to avoid excessive buffering along that path, in the
case that path was not selected. Using the minimum buffer
threshold, we then simply set the maximum buffer threshold
Tmax = (Tmin +∆), where ∆ is an additional buffer margin.

4. IMPLEMENTATION DESCRIPTION
Our client is implemented using the Open Source Media

Framework (OSMF v2.0) libraries and the front-end player
is built from Strobe Media Playback (SMP). While most
modifications are focused on the classes under the http-

streaming directory, responsible for HAS, some modifica-
tions to the files under the StrobeMediaPlayback directory
were needed to implement user interaction2.

4.1 High-level System Overview
After having downloaded the HAS manifest file (that de-

scribes the HAS media file and the different encodings at
which the chunks are available) and the metafile for the
branched video (that describes the branched video struc-
ture), the client bootstraps the player using the information
from the two files.

Our modified HAS player can open parallel TCP connec-
tions, and request and download multiple chunks in paral-
lel. The chunks belonging to the segment currently being
played back are delivered in-order to the playback buffer,
whereas prefetched chunks from past an upcoming branch
point are downloaded into the browser cache, from which
they can be very quickly retrieved when the client makes a
path decision. This design has been tested and compared
against in-player memory solutions such as those presented
by Krishnamoorthi et al. [17], showing significant reductions
in in-player memory requirements and most importantly in
the time that it takes to load a new path. This is important
when masking the load times from cache to player, so as to
ensure that users do not observe any playback interruptions.

Finally, to minimize fetch times from the cache, our cur-
rent implementation uses the browser RAM cache (of our
Mozilla Firefox version 25.0.1 browser), and requests from
the player are checked against the index of cache content
before placing a request to the server. While we have found
benefits to using a RAM cache, relative to the use of a disk
cache, these differences are negligible compared to the over-
all benefits of prefetching to cache in general.

2Our data files and source code for our software framework
are available at http://www.ida.liu.se/~nikca/papers/
mm14.html

Table 2: Summary of prefetching policies.
Policy Connections Schedules considered Objective

Optimized non-increasing quality 1 ≤ ci ≤ Cmax
`

M+Q−1
Q−1

´

, where M = ne + |Eb| − m Equation (2)

Optimized maintainable quality 1 ≤ ci ≤ Cmax Q Equation (2)
Single connection 1 Q Equation (2)

Greedy bandwidth 1 ≤ ci ≤ Cmax Q
Pj+m

i=j qili

4.2 Interactive Playback
Once playback is close to a branch point, a message is dis-

played to the user requesting selection of the desired path
option. The player reads the user input and this informa-
tion is communicated to the class that handles branch-point
transitions. The player also maintains a record of chunks
and segments it has played previously. This information is
used whenever the player has to use the longest matching
rule (Section 2.2).

Once playback reaches a branch point, a branch-point
event is triggered. Using the time associated with the branch
point, the player calculates the chunk that should be played
first following the branch point. Using this chunk number,
our modified player checks if the chunk has been requested
(at any quality level), and if so, determines its URL. Hav-
ing determined the cached URL, the player can now quickly
retrieve the content and move it into the playback buffer.

The likelihood of a stall event at a branch point is strongly
impacted by the BufferTime parameter. This gives the min-
imum amount of data (in seconds) the player needs to have
in the playback buffer before resuming playback after a stall
or avoid a stall event at a branch-point event. Whenever our
download manager triggers a branch-point event, we there-
fore set BufferTime to a small value so that there is no inter-
ruption in playback. As soon as playback is resumed after
a branch point event, BufferTime is reset to the player’s
default value and additional requests are placed so as to
fetch all the prefetched content for the new segment from
the cache. The request module then resumes its normal op-
eration and continues prefetching of the remaining chunks
in the new segment and the first chunks following the next
branch point.

4.3 Parallel Connections
An important aspect of allowing seamless playback is ef-

fective workahead prefetching. Researchers have found that
HAS players often experience a large degradation in perfor-
mance when exposed to competing flows [1, 13, 14]. Based
on initial experiments and related literature (e.g., [4]) we
conjecture that multiple parallel TCP connections will help
ensure stable throughput in such scenarios.

We schedule new chunk downloads and open new TCP
connections based on our workahead prefetching policies, as
described in Section 3, which take into account playback
deadlines, current download rate estimates, and the priority
order of the chunks. Our policies are conservative, in that
when calculating expected download completion times it is
assumed that an additional TCP connection will not increase
the total achieved download rate (and so would correspond-
ingly reduce the rate achieved by each of the existing con-
nections). At the end of each chunk download, new parallel
connections are initiated only if this is not expected to lead
to violations of the playback deadlines of chunks currently
being downloaded or chunks yet to be downloaded.

4.4 Rate Estimation
Rate estimation is a critical component of any HAS player.

Typically, rate estimates of the available bandwidth are gen-
erated based on the download rates observed during previous
downloads. To avoid placing too much weight on the most
recent chunk download, most HAS players make use of a
weighted average of past download times/rates.

With our branched video player, we must also account for
the fact that a chunk may have been downloaded in parallel
with other chunks. For this reason, each new rate mea-
surement is scaled up accordingly, using the conservative
approximation that the number of such parallel connections
was constant and equal to the minimum number of parallel
connections during the chunk download. As with the de-
fault player, these measurements are then used to update
an exponentially weighted moving average with weight 0.4.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
To validate our general system design and evaluate the

performance of different prefetching policies, we use a basic
experimental testbed, in which a client and the server are
connected over a high-speed LAN. To emulate a wide range
of network conditions the client machine runs dummynet [23],
allowing us to control the available bandwidth and round-
trip-times (RTTs) observed between the two machines.

The server runs Flash Media Server (FMS) version 4.5,
and hosts a HAS video encoded at four bit rates (250Kb/s,
500Kb/s, 850Kb/s, and 1300Kb/s), which we refer to as
quality levels 0, 1, 2, and 3, respectively. The chunk size is 4
seconds. This HAS video was generated from the Big Buck
Bunny video using Adobe’s encoding and HAS packaging
suite. Different numbers of segments and branch points were
defined from the base video for different experiments.

The player is instrumented to continually write its inter-
nal state and actions to a log file, which we later process to
evaluate the performance experienced by the client. Of par-
ticular interest is the buffer occupancy, the frequency and
duration of stall events, as well as the general playback rate
and quality experienced by the client.

The performance of our system design, is evaluated un-
der each of the four prefetching policies Optimized non-

increasing quality, Optimized maintainable quality, Single

connection, and Greedy bandwidth, all defined in Section 3.3,
as well as a Näıve player that is capable of handling interac-
tive branched video, but that does not perform prefetching
along the different alternative paths, but simply downloads
chunks only along the current default path. Naturally, this
policy stalls at each branch point that the default path is
not selected and simply serves as a baseline for comparison.

By comparing the two optimized policies, Optimized non-

increasing quality and Optimized maintainable quality, we
can evaluate the value of being conservative, as the second

policy should be considerably more conservative in its qual-
ity selection for the next segment. By comparing the perfor-
mance of this policy with the Single connection policy, we
can assess the value of using parallel connections. Finally,
Greedy bandwidth helps further capture the tradeoffs associ-
ated with aggressively opening up parallel connections.

In the following subsections we present experiments in
which we vary one parameter at a time. Starting from a
default scenario, we give initial insights into the impact that
factors such as the available bandwidth, end-to-end RTTs,
number of chunks per segment, number of branches, and
amount of competing traffic have on the playback perfor-
mance. Results are presented both for the first branch point
and for later branch points. For Sections 5.2-5.4 we use
Tsingle = 8, but do not place any workahead (buffer size)
limitations (Section 4.4). This limitation is instead sepa-
rately validated in Section 5.5. The focus of the evalua-
tion is on client playback performance (as measured by stall
probability and playback rate3) and we only consider a single
player (possibly competing against other TCP flows, but not
other similar players). Interesting directions for future work
include multi-factor experiments, experiments with compet-
ing players, and experiments with more dynamic bandwidth
conditions (e.g., as seen by mobile users).

5.2 Single-branch Experiments
Consider first a scenario in which the client views a ba-

sic branched video (e.g., as shown in Figure 1) with a sin-
gle initial segment e with ne chunks, and a single branch
point b, with |Eb| branch options. In our default scenario
we let ne = 5 and |Eb| = 4. Furthermore, we use a default
end-to-end bandwidth of 2,500Kb/s, RTT of 150ms, and no
competing traffic. The use of an RTT of 150ms is motivated
by typical values observed on our networks. For example,
trace route measurements to the top million websites on the
Web, according to www.alexa.com on June 12, 2012, sug-
gests that a client within our campus would see an average
RTT of 177.4ms to these sites.

To evaluate the impact that each of the above experiment
parameters has on performance, we use a “one-factor-at-a-
time” approach in which we run multiple series of experi-
ments. In each series we vary one parameter at a time, and
for each configuration in that series, we perform 30 experi-
ments per policy, and report averages and standard devia-
tions for the average video quality and stall probabilities.

In our experiments, we consider a worst-case scenario in
which the client always picks the least likely branch, which
is the last branch that our prefetching policies prefetch.

Figure 3 shows the video quality distribution for our de-
fault scenario, based on which we perform our one-factor ex-
periments. Figure 4 shows the impact of the available band-
width on the average video playback rate and stall proba-
bility. Here, the data points for 2500 Kb/s corresponds to
our default scenario, and the average quality simply corre-
sponds to the weighted sum of the quality distributions in
Figure 3. As expected, the Näıve policy, which does not
perform prefetching, always results in the most stall events.
Clearly, the high playback rate of this policy is misleading
when evaluating the playback quality. All of the prefetch-
ing policies successfully employ some of the bandwidth that
the Näıve policy uses for downloading the current segment,

3Startup delay is another important metric, but this is small
in our experiments and does not differ among the policies.

for prefetching instead, so as to avoid stalls. The most suc-
cessful tradeoff is achieved by the Optimized maintainable

quality policy, which adapts its quality entirely based on our
optimization formulation. In contrast to the Optimized non-

increasing quality policy, this policy is conservative in that
it does not schedule high quality downloads unless it ex-
pects this quality to be sustainable. The success of a more
conservative policy is particularly evident when comparing
against the Greedy bandwidth policy, which sees both higher
stall probability and lower playback rate than the Optimized

maintainable quality policy.
We next take a closer look at the impact of the end-to-

end RTTs, number of chunks ne in the initial segment, and
the number of branch options |Eb|. Figures 5 and 6 show
the playback rate and stall probability as a function of these
variables. As expected, the average quality observed by the
quality-aware policies increase with (i) decreasing RTTs, (ii)
increasing number of chunks ne in the initial segment, and
(iii) decreasing number of branch options |Eb|. In the case
of decreasing RTTs, the TCP throughput quickly ramps up.
In the case of increasing number of chunks ne, the policies
have more time to build a workahead before reaching the
branch point, and finally, in the case of decreasing number
of branch options, less data must be downloaded ahead of
the branch point, leaving bandwidth which instead can be
used to download higher quality chunks.

As when comparing across different bandwidth conditions,
the quality-aware policies consistently outperform the Greedy

bandwidth policy. Under challenging conditions, the Opti-

mized maintainable quality policy is the clear winner, and
consistently sees the lowest stall probabilities.

5.3 Multiple Branch Point Scenarios
In general, we assume that the distance between succes-

sive branch points is long enough that it is never worth-
while to prefetch beyond more than a single branch point.
We have also performed experiments in which the branched
video structure has multiple branch points, to assess how
the performance differs at the later branch points. In these
experiments we have used symmetric structures in which all
segments have the same number of chunks ne and all branch
points have the same number of branch options |Eb|.

Figures 7 and 8 show the average playback rate and stall
probabilities for the later segments and branch points for
experiments with a symmetric tree structure with depth
three. While these results are consistent with those observed
for the first branch point, we observe slightly higher over-
all playback rate for these later segments, especially for the
prefetching policies with multiple parallel connections. This
can be explained by the fact that these policies can continue
to utilize any initiated parallel connections after passing the
first branch point. However, in a few cases we also observe
higher stall probabilities than for the first branch point. This
is particularly apparent where there are only two chunks per
segment. In this case, segments are too short to allow suf-
ficient time for prefetching chunks from beyond the next
branch point, before it is reached.

5.4 Competing Flows
We compare performance in scenarios with different num-

bers of competing TCP flows, and a total available band-
width of 5Mb/s. Each competing flow was generated by
downloading a large file from the same server.

 0

 20

 40

 60

 80

 100

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

ct
io

n
 o

f
tim

e
 (

%
)

Quality level

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

Figure 3: Playback qualities in de-

fault scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1500 2000 2500 3000 3500

A
v
e

ra
g

e
 p

la
y
b

a
c
k
 r

a
te

 (
M

b
it
/s

)

Available bandwidth (Kb/s)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

 0

 20

 40

 60

 80

 100

1500 2000 2500 3000 3500

S
ta

ll
p

ro
b

a
b

ili
ty

 (
%

)

Available bandwidth (Kb/s)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(a) Playback rate (b) Stall probability

Figure 4: Impact of the available bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

50 100 150 200 300

A
v
e
ra

g
e
 p

la
y
b
a
c
k
 r

a
te

 (
M

b
it
/s

)

Round Trip Times (ms)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(a) End-to-end RTTs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 10

A
v
e
ra

g
e
 p

la
y
b
a
c
k
 r

a
te

 (
M

b
it
/s

)

Segment length

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(b) Chunks ne

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 6 8

A
v
e
ra

g
e
 p

la
y
b
a
c
k
 r

a
te

 (
M

b
it
/s

)

Number of branch options

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(c) Branch options |Eb|

Figure 5: The average playback rate under different end-to-end RTTs, number of chunks ne in the initial

segment, and the number of branch options |Eb|.

As seen from the results shown in Figure 9, there is a clear
overall performance degradation as the number of compet-
ing flows increases. This is to be expected, as in these cases,
the fair share of bandwidth available to the player quickly
decreases, and the player must adapt the playback quality
accordingly. However, in these cases, we can also see signif-
icant advantages to our prefetching policies that open mul-
tiple parallel connections, compared to the baseline Single

connection policy.

5.5 Capped Workahead
The policies used in Sections 5.2-5.4 do not consider work-

ahead (buffer size) limitations. While much of our analy-
sis and that evaluation is focused on seamless playback, we
have found that our capped workahead policy (Section 3.4)
can save substantial bandwidth. To illustrate its operation,
we include example results for a high-bandwidth scenario in
which a client with 6Mb/s connection is playing a branched
video with maximum rate encoding at 1.3Mb/s.

Figure 10 shows the variation in the buffer occupancy over
time. In this scenario, we use the Optimized maintainable

quality policy and the next upcoming branch point has 4
branch alternatives. With our default settings of Tsingle = 8
and ∆ = 4, this gives us Tmin = 32 and Tmax = 36.

It may appear unintuitive that we reach a buffer occu-
pancy much higher than Tmax. However, this can be ex-
plained by the use of many parallel connections. With a
high available bandwidth, the player can be fairly aggres-
sive in opening new parallel connections, especially initially
when building up the initial buffer to Tmax. With the buffer
only accounting for completed in-order chunk downloads,
the buffer occupancy can therefore easily overshoot. How-
ever, when reaching (and exceeding) Tmax some connections

are terminated. With less parallel connections being able to
accumulate during the later on periods, as we can see in the
figure, the later peaks in buffer occupancy are significantly
smaller than the original peak.

6. RELATED WORK
Much research on on-demand streaming of branched video,

sometimes referred to as nonlinear media, has focused on
server-side optimizations for popular content [7, 11, 27], in-
cluding the development of multicast-based solutions [7,27].
Other works have designed authoring and media represen-
tation tools for the development of interactive media [21,25,
26], or tag-based systems that allow tagged parts of differ-
ent videos to be automatically stitched together into a single
playback sequence [16].

Recently, Krishnamoorthi et al. [17] proposed the idea
of using HTTP-based Adaptive Streaming (HAS) together
with branched video. HAS provides an excellent framework
for delivering interactive branched video. While they pro-
vide a basic proof-of-concept implementation, the focus is
on the general flexibility the framework enables, both for
the content designer (of the interactive branched video) and
the player (which can select to prefetch chunks of differ-
ent qualities). This paper substantially extends this prior
work by addressing the key policy question of how the player
should decide what chunks to download when. This includes
optimized policies, improved connection/data management,
and a detailed evaluation. Meixner et al. [20] have also
considered download and caching strategies for playback of
branched video, but do not consider HAS.

Motivated by their widespread usage [10, 24], linear HAS
players have been widely studied. For example, Akhskabi et
al. [3] present an experimental evaluation of HAS players,
and the impact their different quality adaption algorithms,

 0

 20

 40

 60

 80

 100

50 100 150 200 300

S
ta

ll
p
ro

b
a
b
ili

ty
 (

%
)

Round Trip Times (ms)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(a) End-to-end RTTs

 0

 20

 40

 60

 80

 100

2 4 8 10

S
ta

ll
p
ro

b
a
b
ili

ty
 (

%
)

Segment length

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(b) Chunks ne

 0

 20

 40

 60

 80

 100

2 4 6 8

S
ta

ll
p
ro

b
a
b
ili

ty
 (

%
)

Number of branch options

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(c) Branch options |Eb|

Figure 6: The stall probability under different end-to-end RTTs, number of chunks ne in the initial segment,

and the number of branch options |Eb|.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1500 2000 2500 3000 3500

A
v
e

ra
g

e
 p

la
y
b

a
c
k
 r

a
te

 (
M

b
it
/s

)

Available bandwidth (Kb/s)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(a) Available bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

50 100 150 200 300

A
v
e

ra
g

e
 p

la
y
b

a
c
k
 r

a
te

 (
M

b
it
/s

)

Round Trip Times (ms)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(b) End-to-end RTT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 10

A
v
e

ra
g

e
 p

la
y
b

a
c
k
 r

a
te

 (
M

b
it
/s

)

Segment length

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(c) Chunks ne

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 6 8

A
v
e

ra
g

e
 p

la
y
b

a
c
k
 r

a
te

 (
M

b
it
/s

)

Number of branch options

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(d) Branch options |Eb|

Figure 7: Average playback rate in scenario with multiple branch points, under different conditions.

buffer management policies, and other design choices have
on the users’ playback quality. Huang et al. present a de-
tailed analysis on rate estimation at the HTTP layer and
different factors that contribute to instability and unfairness
in HAS players [13], and propose a buffer occupancy based
solution for rate adaptation [14]. De Cicco et al. [8] pro-
pose an alternative buffer occupancy based solution, which
generates a long-lived TCP flow instead of an on-off flow.

For the purpose of addressing oscillations and instability
in quality choices made by the player, Akhshabi et al. [2]
propose using a server-based traffic shaper, while Jiang et
al. [15] develop an algorithm for chunk scheduling, quality
selection and bit-rate estimation that improves fairness, ef-
ficiency and stability in HAS players. HAS performance is
also influenced by player interaction with caches and other
middle boxes [6, 18]. Both competing HAS traffic and reg-
ular TCP flows have an effect on the rate estimation and
quality adaptation of the player [1, 13].

Other works have considered the impact of quality switch-
ing on the Quality of Experience (QoE) [19, 22], typically
suggesting that QoE is improved with less quality switch-
ing. While our policies by design select rates such as to
avoid future down switches in playback quality, we note that
the least weighted branches (which are more likely to be ob-
tained at a lower quality) are more likely to see a temporal
quality degradation. Future work could investigate potential
quality oscillations in the context of branched video.

7. CONCLUSIONS
Playback interruptions and stall times can greatly impact

the users’ playback experience. In this paper we present the
implementation of a branched video streaming player that
achieves seamless transition between segments in a branched
video structure without playback interruptions. Using a sim-
ple optimization framework, we design optimized prefetch-
ing policies that maximize the playback quality while ensur-

ing sufficient workahead to avoid stall events. To achieve
these goals, our policies (i) adjust the quality levels of the
prefetched chunks based on the bandwidth conditions that
the client experiences, and (ii) determine the appropriate
number of parallel connections to ensure good download
speeds and improved workahead buffering. Our results show
that our solution is able to achieve rate adaptive streaming
and buffer management, such as to ensure seamless play-
back. We also show that the proposed solution effectively
adapts the quality selection and number of parallel connec-
tions so as to provide the user with the best possible video
quality under scenarios with different bandwidths, RTTs,
segment lengths leading to a branch point, number of branch
options after a branch point, and number of competing TCP
flows. While our current system is entirely client-driven, fu-
ture work includes server-side optimizations.

8. ACKNOWLEDGEMENTS
The authors are thankful to our shepherd Carsten Gri-

wodz and the anonymous reviewers for their feedback, which
helped improve the clarity of the paper. This work was sup-
ported by funding from Center for Industrial Information
Technology (CENIIT) and the Swedish National Graduate
School in Computer Science (CUGS) at Linköping Univer-
sity, the Natural Sciences and Engineering Research Council
(NSERC) of Canada, and National ICT Australia (NICTA).

9. REFERENCES
[1] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and

C. Dovrolis. What happens when HTTP adaptive
streaming players compete for bandwidth? In Proc. ACM
NOSSDAV, Feb. 2012.

[2] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C.
Begen. Server-based traffic shaping for stabilizing
oscillating adaptive streaming players. In Proc. ACM
NOSSDAV, Feb. 2013.

 0

 20

 40

 60

 80

 100

1500 2000 2500 3000 3500

S
ta

ll
p

ro
b

a
b

ili
ty

 (
%

)

Available bandwidth (Kb/s)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(a) Available bandwidth

 0

 20

 40

 60

 80

 100

50 100 150 200 300

S
ta

ll
p

ro
b

a
b

ili
ty

 (
%

)

Round Trip Times (ms)

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(b) End-to-end RTT

 0

 20

 40

 60

 80

 100

2 4 8 10

S
ta

ll
p

ro
b

a
b

ili
ty

 (
%

)

Segment length

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(c) Chunks ne

 0

 20

 40

 60

 80

 100

2 4 6 8

S
ta

ll
p

ro
b

a
b

ili
ty

 (
%

)

Number of branch options

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(d) Branch options |Eb|

Figure 8: Stall probability at the second branch point under different conditions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 1 2 3 4

A
v
e
ra

g
e
 p

la
y
b
a
c
k
 r

a
te

 (
M

b
it
/s

)

Number of competing flows

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

 0

 20

 40

 60

 80

 100

0 1 2 3 4

S
ta

ll
p
ro

b
a
b
ili

ty
 (

%
)

Number of competing flows

Optimized non−increasing quality
Optimized maintainable quality

Single connection
Greedy bandwidth

Naïve

(a) Playback rate (b) Stall probability

Figure 9: The average video playback rate and stall

events for different numbers of competing flows.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

B
u

ff
e

r
o

c
c
u

p
a

n
c
y
 (

s
)

Time (s)

Figure 10: Buffer occupancy over time

[3] S. Akhshabi, A. C. Begen, and C. Dovrolis. An
experimental evaluation of rate-adaptation algorithms in
adaptive streaming over HTTP. In Proc. ACM MMSys,
Feb. 2011.

[4] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic.
Parallel TCP sockets: Simple model, throughput and
validation. In Proc. IEEE INFOCOM, Apr. 2006.

[5] A. C. Begen, T. Akgul, and M. Baugher. Watching video
over the web: Part 1: Streaming protocols. IEEE Internet
Computing, (15):54–63, 2011.

[6] S. Benno, J. O. Esteban, and I. Rimac. Adaptive
streaming: The network HAS to help. Bell Lab. Tech.
Journal, 16(2):101–114, Sep. 2011.

[7] N. Carlsson, A. Mahanti, Z. Li, and D. L. Eager. Optimized
periodic broadcast of nonlinear media. IEEE Trans. on
Multimedia, 10(5):871–884, 2008.

[8] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo.
ELASTIC: A client-side controller for dynamic adaptive
streaming over HTTP (DASH). In Proc. IEEE Packet
Video Workshop, Dec. 2013.

[9] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph,
A. Ganjam, J. Zhan, and H. Zhang. Understanding the
impact of video quality on user engagement. In Proc. ACM
SIGCOMM, Aug. 2011.

[10] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen, and
O. Spatscheck. Over the top video: The gorilla in cellular
networks. In Proc. ACM IMC, Nov. 2011.

[11] D. Gotz. Scalable and adaptive streaming for non-linear
media. In Proc. ACM MM, Oct. 2006.

[12] C. Griwodz, F. T. Johnsen, S. Rekkedal, and P. Halvorsen.
Caching of interactive multiple choice MPEG-4
presentations. In Proc. IEEE IPCCC, Apr. 2006.

[13] T. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari. Confused, timid, and unstable: Picking a video
streaming rate is hard. In Proc. ACM IMC, Nov. 2012.

[14] T. Huang, R. Johari, and N. McKeown. Downton abbey
without the hiccups: Buffer-based rate adaptation for
HTTP video streaming. In Proc. ACM SIGCOMM FhMN
Workshop, Aug. 2013.

[15] J. Jiang, V. Sekar, and H. Zhang. Improving fairness,
efficiency, and stability in HTTP-based adaptive video
streaming with FESTIVE. In Proc. ACM CoNEXT, Dec.
2012.

[16] D. Johansen, P. Halvorsen, H. D. Johansen, H. Riiser,

C. Gurrin, B. Olstad, C. Griwodz, Å. Kvalnes, J. Hurley,
and T. Kupka. Search-based composition, streaming and
playback of video archive content. Multimedia Tools and
Applications, 61:419–445, 2012.

[17] V. Krishnamoorthi, P. Bergström, N. Carlsson, D. Eager,
A. Mahanti, and N. Shahmehri. Empowering the creative
user: Personalized HTTP-based adaptive streaming of
multi-path nonlinear video. In Proc. ACM SIGCOMM
FhMN Workshop, Aug. 2013 (Also ACM SIGCOMM CCR,
43(4):591-596, Oct. 2013.).

[18] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti,
and N. Shahmehri. Helping hand or hidden hurdle:
Proxy-assisted HTTP-based adaptive streaming
performance. In Proc. IEEE MASCOTS, Aug. 2013.

[19] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and
D. Oran. Probe and adapt: Rate adaptation for http video
streaming at scale. IEEE Journal on Selected Areas in
Communications, 2014.

[20] B. Meixner and J. Hoffmann. Intelligent download and
cache management for interactive non-linear video.
Multimedia Tools and Applications, pages 1–44, June. 2012.

[21] B. Meixner and H. Kosch. Interactive non-linear video:
Definition and XML structure. In Proc. ACM DocEng, Sep.
2012.

[22] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C.
Chang. Qdash: A QoE-aware DASH system. In Proc.
MMSys, Feb. 2012.

[23] L. Rizzo. Dummynet: A simple approach to the evaluation
of network protocols. ACM CCR, 27:31–41, 1997.

[24] Sandvine. Global Internet phenomena report- 2H 2013,
Technical report, Nov. 2013.

[25] A. Sobe, L. Böszörmenyi, and M. Taschwer. Video Notation
(ViNo): A Formalism for Describing and Evaluating
Non-sequential Multimedia Access. International Journal
on Advances in Software, 3(1 and 2):19–30, Sep 2010.

[26] U. Spierling, S. A. Weiß, and W. Müller. Towards accessible
authoring tools for interactive storytelling. In Proc. ACM
TIDSE, Dec. 2006.

[27] Y. Zhao, D. L. Eager, and M. K. Vernon. Scalable
on-demand streaming of nonlinear media. IEEE/ACM
Trans. on Networking, 15(5):1149–1162, Oct 2007.

