
The motion planner in [2] plans safe (collision free) trajectories with respect to both static and dynamic obstacles. That the 
plans are indeed safe to execute depends on how well-calibrated the safety margins are. A safety margin can be divided into 
three main parts, reflecting the uncertainties from the robot’s perspective of:

• the state of the world
• the control execution 
• the behavior of others

Lattice-based motion planning use graph search to find full trajectories made up of local trajectories (motion primitives).
Motion primitives are optimized offline using numerical optimal control. We consider 104 different motion primitives in total.
For every motion primitive , we collect all trajectories consisting of three motion primitives, where is the middle one.
Using methodology from probabilistic machine learning, we estimate a unimodal model that spans the variability of .

Efficiency, effectiveness and safety are competing qualities, and in safety-
critical applications the required degree of safety makes it very challenging
to reach useful levels of efficiency and effectiveness. To this end we
investigate a holistic perspective on agent motion in complex and dynamic
environments. The perception-action loop of an intelligent agent can be
deconstructed into different components in several ways. In our long-term
endeavour we take a holistic perspective of motion and motion patterns -
Verification.

With increased autonomy of cyber-physical systems, the need for integrated introspection capabilities is of growing importance.
Such capabilities allow a robot to self-monitor and to react to unexpected changes to circumstances in the environment. This is
paramount if robots are supposed to operate safely in unstructured, dynamic and complex environments.

We present an integrated approach for learning and monitoring the execution of motion actions, motion primitives, within the
lattice-based motion planning paradigm. Interesting future works is robust online learning of motion primitive execution
models, as well as learning such models for different situations e.g. windy and non-windy conditions for multi-modal operations.

mostly in terms of trajectories - and have made contributions within Perception & Anticipation, Decision Making & Control and
Runtime Verification. An important contribution is an integrated whole, made possible by compatible mathematical languages
and models from logic, probability theory and machine learning. We use extensive simulation as a valuable - and necessary -
complement to field robotics experimentation. Below is an overview of our AI-Robotics stack in ROS (Robot Operating System).
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The standard approach in the literature is to use a sphere for 𝒪safety 𝑡 , capturing the aggregation of 𝒪perception 𝑡 ,

𝒪control 𝑡 , 𝒪others 𝑡 , with a single radius parameter invariant to time. We use this baseline, 𝑅, and construct two more

with tighter bounds, 𝑅𝑖 (different for each primitive) and 𝑅𝑖 𝜏 (also varying over time). For a meaningful comparison with our
proposed variability model, we probabilistically ground the baselines by assuming a Gaussian likelihood over the observations
centered on the primitive reference trajectory (i.e. relative translation is zero).

Safety margin components are defined as centered p-Probability Regions (p-PR).
Abnormality detection: Model the rate of leaving the p-PR as a random variable. Monitor that failure rate < p is likely.
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One of the challenges in such environments is varying uncertainty over time, which can be decomposed into three factors:

• Dynamic perception uncertainty (e.g. occlusion, GPS shadowing) Estimation/prediction uncertainty may vary

• Dynamic action stochasticity (e.g. wind or actuator degradation) Action execution uncertainty may vary

• Dynamic environment unknowns (e.g. new personal transports) Rules and distributions may change
(the environment evolves)

⚫ What is normal behavior? Learn models of execution variations from action sequences

⚫ Is the robot behaving normally? Monitor executions with respect to models during deployment

⚫ Safe, but not task effective? Use models with explicit uncertainty quantification for tight safety-bounds

⚫ Are learned models safe to use? Monitor models with respect to executions during deployment

We present a general approach for enhancing lattice-based motion planning methods with (1) learning models of normal
motion primitive execution, (2) using the learned models to improve collision checking effectiveness during planning and to (3)
efficiently monitor the motion primitive execution for abnormalities.

Since both collision checking and abnormality detection are safety-critical the learning is performed using machine learning
techniques with explicit uncertainty quantification from probabilistic machine learning. The monitoring for abnormalities also
verifies at runtime that the learned models remain valid for collision checking use in the motion planner.
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