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Abstract

Exploration is an important aspect of robotics, whether it is for mapping, rescue

missions or path planning in an unknown environment. Frontier Exploration planning

(FEP) and Receding Horizon Next-Best-View planning (RH-NBVP) are two different

approaches with different strengths and weaknesses. FEP explores a large environ-

ment consisting of separate regions with ease, but is slow at reaching full exploration

due to moving back and forth between regions. RH-NBVP shows great potential and

efficiently explores individual regions, but has the disadvantage that it can get stuck in

large environments not exploring all regions. In this work we present a method that

combines both approaches, with FEP as a global exploration planner andRH-NBVP for

local exploration. We also present techniques to estimate potential information gain

faster, to cache previously estimated gains and to exploit these to efficiently estimate

new queries.

Overview
The Autonomous Exploration Planner (AEP) is a further devel-

opment from the Receding Horizon Next Best View Planner (RH-

NBVP). When developing AEP, we looked at the shortcomings of

RH-NBPV:

• RH-NBVP does not scale well with map resolution.

• RH-NBVP can get stuck in already explored dead ends.

AEP solves these problems with sparse ray-casting to esti-

mate the potential information gain, caching and re-usage of

already calculated information gains and frontier explo-

ration as a global exploration strategy, while using RH-

NBVP for local exploration.
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Figure 1: Overview of AEPlanner

Figure 1 shows an overview of the AEP. AEP grows an RRT out-

wards from the agent’s current position. In every node in the

RRT the potential information gain is estimated. The score for

every node is the score of the parent node plus the gain of the

node weighted with the travel cost to reach it. When the tree has

reachedNmax nodes, the best branch is extracted and the first ac-

tion executed. The remainder of the best branch is saved and used

for the next iteration. If there are nonodeswith high enough score

the global exploration planner takes over.

The potential information gain function g

The potential gain function (g) describes how much information

that could potentially be gained in a point. It is defined as the

volume of all unmapped space that would be covered by a sensor

placed in that point, concidering the field of view and range of the

sensor.

(a) Potential information gain function g (b) Weighted g, s = g exp(−λc)

Figure 2: Both figures show a map of a partially explored envi-

ronment. Black is occupied (walls) and gray unmapped. Every-

thing else is free space. The agent is located at the blue arrow.

The left figure shows the potential information gain function for

every position ”pixel”. The right figure shows the score function,

which also takes the travel cost c into account. λ is a parameter
which controls how much travelling should be punished.

Sparse ray casting
The estimation of g given a position x is efficiently done by per-
forming sparse ray tracing. We look at small volume elements dV

in spherical coordinates, which are defined as:
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Figure 3: Volume

element dV
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Rays are cast, in the field of view,

outwards from the sensor until they

hit an obstacle or the max range is

reached. Every part of a ray that

passes through unmapped space,

will contribute with dV to the poten-

tial information gain.

gdV (r, θ, φ) =

{
dV (r, θ, φ) if unmapped

0 otherwise

For a given yaw direction ϕ, the potential information gain is
the sum of the potential information gain of all volume elements
inside the field of view.

gϕ(ϕ) =

ϕ+fovθ/2∑
θ=ϕ−fovθ/2

fovφ/2∑
φ=−fovφ/2

maxr or obstacle hit∑
r=0

gdV (r, θ, φ)
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(a) Apartment
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(b) Results for apartment scenario

Figure 4: The apartment scenario is used for benchmarking of

AEP againstNBVP. Results are also provided forNBVPwithmod-

ified ray tracing and collision detection.

Calculating the information gain this way greatly reduces the

computational time. In figure 4b our method AEP is compared

against RH-NBVP. We can see that our method manages to ex-

plore the entire environment within 200 seconds independent of

the map resolution. RH-NBVP on the other side performs de-

cently for map resolution 0.4 m, but when the resolution is in-

creased to 0.1 m the time taken for gain estimation is so long that

RH-NBVP cannot finish exploration within 1200 seconds. Af-

ter substituting both the gain estimation and collision detection

methods (NBVP+RC), the entire environment is explored within

the time limit.

Best yaw calculation
The sample space for new queries is reduced from four dimen-

sions (x, y, z, ϕ) to three (x, y, z) by sampling only the position
and optimizing for the best yaw. This is done by performing ray-

casting 360◦ around the agent and using window summation to

find the best yaw.

Gaussian process interpolation of g
Wecache calculated information gains from earlier iterations (Fig

5a). These are used as data points in a Gaussian process (Fig. 5b).

Whenever a new point x in g is queried, we first check the result of
the Gaussian process. If the posterior variance is low enough, we

accept the interpolated data, otherwise we calculate it explicitly

and add it to the cache.

Table 1 shows that we save time by querying the Gaussian pro-

cess instead of calculating the values explicitly. We can also see

that the time for explicit gain estimation grows quickly when the

rays are denser, while for theGP the timenaturally stays the same.

(a) Cached points, black low gain, orange high (b) Gaussian process over the cached points

Figure 5

∆φ, ∆θ [deg] 30 10 5 2

calculation [ms] 11.3 23.2 63.2 340

interpolation [ms] 1.52 1.13 1.11 1.13

Table 1: Calculation times for explicit calculation vs. GP interpo-

lation of the potential information gain in one node.

Frontier exploration
When testing RH-NBVP, we saw the behavior that it sometimes

got stuck in dead ends. We have tackled this problem by combin-

ing RH-NBVPwith frontier exploration. RH-NBVPworks as a lo-

cal exploration strategy and frontier exploration takes over when

there is no new information to be gained nearby.
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(a) Maze, with two paths drawn.
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(b) Results for maze scenario

Figure 6: The blue line shows AEP with frontier exploration en-

abled and the red with frontier exploration disabled.

Figure 7a shows the paths for AEP with frontier exploration en-

abled (blue) and disabled (red). We can see how both paths start

off exploring the right side. When the right side has been com-

pletely explored, the blue path switches to frontier exploration

and goes out directly, which is indicated by the dashed line. The

red path gets stuck and goes back and forth a lot before finally

finding its way out. The blue path also terminates directly while

the red path goes around for quite some time before terminating.

Results in office environment
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(a) Office
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(b) Results for office scenario
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