
OpenModelica Eclipse
Plugin and

MetaModelica Exercises
Adrian Pop

adrian.pop@liu.se
PELAB/IDA/LIU, 2007-03-29

Last Updated 2011-09-15
by Peter Fritzson and Martin Sjölund

2

OpenModelica MDT – Eclipse Plugin

 Browsing of packages, classes, functions
 Automatic building of executables;

separate compilation
 Syntax highlighting
 Code completion,

Code query support for developers
 Automatic Indentation
 Debugger

(Prel. version for algorithmic subset)

3

Outline
 Eclipse and Exercise Setup
 All Exercises

 00_simplesim
 01_experiment
 02a_exp1, 02b_exp2
 03_symbolicderivative
 04_assignment
 05a_assigntwotype
 05b_modassigntwotype
 06_advanced
 07_OMCAndCorba
 08-11 – as samples of Prog. Lang. modeling

4

Selected Exercises in this Course

 00_simplesim
 01_experiment
 02a_exp1, (02b_exp2 optional)
 03_symbolicderivative
 04_assignment (optional)

5

Eclipse Setup – Switching Workspace

Use a clean workspace
We need to import many projects

Import Projects

 File Import→
 General Existing projects into workspace→

7

Select and Open all projects

8

Don't build projects automatically

9

Refresh all projects

10

Close all projects

11

Switch to Modelica Perspective

12

Show the OpenModelica Console View

13

Exercises - 00_simplesim

 See README.txt in the Eclipse project
 In this exercise you perform a simple

simulation in the MDT Eclipse environment
 Assignment

 Type or copy a simple model into an Eclipse
project

 Open the Eclipse view “OpenModelica console”
 simulate with the simulate command
 plot with the plot command.

 Note: In the following exercises you will no
longer use the “OpenModelica console”

14

Exercises 01 - 04

 01_experiment
 02a_exp1, (02b_exp2 optional)
 03_symbolicderivative
 04_assignment (optional)

15

Open the first project

16

Build the first project

Always use Rebuild Project or the button
(Build Project only works if you modify a source file)
After having pressed the button once, Alt+B can be used

17

Eclipse – Building a project

clean – cleans the project
run – runs the program

syntax problems are updated
on save in the problems view. the build and run results

are displayed in the console

18

OMC Debugging

00_simplesim
 01_experiment
 02a_exp1, (02b_exp2 optional)
 03_symbolicderivative
 04_assignment (optional)

19

Debugging using OMC
 Very recent work

 Run target “deps” to build dependencies
 Then run the debug target
 Note: Programs that require stdin do not

work yet (Eclipse does not send EOF)
 You can print data structures using printAny(x)

20

Setting the debug configuration

21

Setup the debugger

The location where you
installed OpenModelica

The project directory

The GNU debugger (not Microsoft/Apple-provided)

22

Set breakpoints in .mo file

Double click on the
ruler to set breakpoints

23

Run the debug configuration to start debugging

Click and select the
debug configuration.
The debugging will start.

24

Eclipse will ask to switch to debugging perspective

25

Debugging perspective

Use the buttons to step.
Browse variables here.
Also there is a tab with
breakpoints.

26

Switching perspectives

Switch between Debug and
Modelica Perspective

27

Eclipse Setup – Creating the projects

 repeat the procedure for all exercises
 01_experiment
 02a_exp1, 02b_exp2
 03_symbolicderivative
 04_assignment
 05a_assigntwotype
 05b_modassigntwotype
 06_advanced
 07_OMCAndCorba

 leave open only the project you are
working on! close all the others

28

Eclipse – Building a project

29

Eclipse – Opening views

To open additional views:
Window->ShowView->Other

30

Exercises

 Each exercise is in a different Eclipse project
 All exercises have :

 README.txt - information about the exercise
 SOLUTION.txt – the solution of the exercise (if the

exercise has some implementation assignment)
 program.txt – input program to the exercise, edit if

needed (for the exercises which have an input)

 Consult the MetaModelica Programming Guide
(1.0 Draft or 2.0) and the slides if you need
additional information during the exercises.

 Of course, feel free to ask us any type of questions,
it is faster and better!

31

Exercises - 01_experiment

 See README.txt in the Eclipse project
 In this exercise you experiment with

 Types
 Constants
 Functions

 Assignment
 Write functions in Functions.mo to display the

constants defined in Types.mo.
 Search for // your code here in Main.mo and
Functions.mo

 Compare your solution with the SOLUTION.txt
you find in the Eclipse project

32

Exercises – 02a_exp1

 See README.txt in the Eclipse project
 In this exercise you will add new constructs to the

exp1 language and deal with their evaluation.
 Assignment - add new constructs to the language

 a power operator (^)
 a factorial operator (!)
 search for // your code here within Exp1.mo

 Note
 The parser/lexer are ready, but give parser errors for

the new operators until they are added in Exp1.mo

 Compare your solution with the SOLUTION.txt
you find in the Eclipse project

33

Exercises – 02b_exp2

 See README.txt in the Eclipse project

 In this exercise you will explore a different
way to model the exp1 language using
different Exp trees.

 Explore the Exp2.mo file and compare it
with Exp1.mo file.

34

Exercises – 03_symbolicderivative

 See README.txt in the Eclipse project
 Assignment:

 add rules to derive ‘-’, ‘*’, sine, cosine and
power expressions

 add rules to simplify ‘-’, sine, cosine and power
expressions

 search for // your code here within
SymbolicDerivative.mo

 Compare your solution with the SOLUTION.txt you
find in the Eclipse project

35

Exercises – 04_assignment

 See README.txt in the Eclipse project
 Assignment - add functions to print:

 the assignments present in the current program
before the actual evaluation

 the environment after it was augmented with the
assignments

 search for // your code here within
Assignment.mo

 Compare your solution with the SOLUTION.txt you
find in the Eclipse project

36

Exercises – 05a_assigntwotype

 See README.txt in the Eclipse project
 Assignment - add functions to print:

 add a new String type which can hold only integers as
strings to the current Exp node

 add cases to evaluate expressions/assignments of the
form "2" + 1 + "1" + 1.0 in the eval function

 search for // your code here within
AssignTwoType.mo

 Compare your solution with the SOLUTION.txt you find in
the Eclipse project

37

Exercises – 05b_modassigntwotype

 See README.txt in the Eclipse project
 In this exercise you will explore a different

way to structure your code within different
packages.

 The code from 05a_assigntwotype is now
split over 4 packages.

 Compare the 05a/b projects.

38

Exercises – 06_advanced (I)

 See README.txt in the Eclipse project
 In this exercise you experiment with

 polymorphic types
 constants
 higher order functions

 Assignment 1
 Write a polymorphic function that orders a list of any

type.
 The function has as input a list and a compare function

between the objects of that list.
 Write the comparison functions for Integers,
Strings and Reals.

 Test your function on the Types.intList

39

Exercises – 06_advanced (II)

 See README.txt in the Eclipse project
 Assignment 2

 Write a polymorphic map function that applies a function
over a list and returns a new list with the result.

 Write three functions that transform from:
 integer to real
 integer to string
 real to string

 Use your map function and the two transformation
functions to transform the Types.intList to a list of
reals and a list of string, then apply the ordering function
from Assignment 1 on the newly created lists

40

Exercises – 06_advanced (III)

 See README.txt in the Eclipse project
 Assignment 3

 Write a polymorphic map function that applies a
print function over a list (of Strings) and prints
the it.

 Use the transformer functions from real->string
and integer->string from Assignment 2 to
transform the real list or the integer list to a
string list for printing.

 Compare your solution with the SOLUTION.txt you
find in the Eclipse project

41

OMC Overview

We are Switching to OMC Overview now!

42

OpenModelica Development Toolkit (OMDev)

 OMDev is a pre-packaged pre-compiled kit containing all tools needed
for OpenModelica development.

 Just unpack and set some environment variables. (Windows)
 apt-get build-dep openmodelica (Ubuntu/Debian Linux)
 port install depends:openmodelica

 MetaModelica Compiler (MMC) – for developing OMC
 OpenModelica Compiler (OMC) – for browsing support
 Eclipse plugin MDT – (Modelica Development Tooling), e.g. for

compiler (OMC) development
 Pre-compiled Corba (MICO or omniORB) for tool communication
 Packaged Gnu compiler (GCC; Mingw version for Windows)
 Emacs mode
 Online (web) Subversion for version handling
 Online (web) Codebeamer for bug reporting and management
 Automatic regression testing using a test suite
 Unit testing using the bootstrapped OpenModelica Compiler
 Interactive MetaModelica debugger

43

OpenModelica Environment Architecture

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
OMNoteBook
Model Editor

Eclipse Plugin
Editor/Browser

44

OpenModelica Client-Server Architecture

Parse

Client: Eclipse
Plugin MDT

Corba

Client: OMShell
Interactive

Session Handler

Server: Main Program
Including Compiler,

Interpreter, etc.

Interactive

SCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

45

Released in OpenModelica 1.7.0

 OpenModelica Compiler/Interpreter – OMC
 Interactive session handler – OMShell
 OpenModelica Notebook with DrModelica

and DrControl – OMNotebook
 OpenModelica Eclipse plugin MDT
 OMEdit connection editor
 MetaModelica Debugger

 New version in OpenModelica 1.8.0

46

OpenModelica Compiler/Interpreter

 OpenModelica 1.7.1
 Currently implemented in 194 000 lines of

MetaModelica (excl. generated code, external
C)

 Includes code generation, BLT-transformation,
index reduction, connection to DASSL, etc.

 Most of the Modelica 3.1 language including
classes, functions, inheritance, modifications,
import, etc.

 Hybrid/Discrete event support

47

Corba Client-Server API

 Simple text-based (string)
communication in Modelica Syntax

 API supporting model structure query and
update

Example Calls:
Calls fulfill the normal Modelica function call syntax.:

saveModel("MyResistorFile.mo",MyResistor)

will save the model MyResistor into the file “MyResistorFile.mo”.

For creating new models it is most practical to send a model, e.g.:

model Foo end Foo;
or, e.g.,
connector Port end Port;

48

Some of the Corba API functions

saveModel(A1<string>,A2<cref>) Saves the model (A2) in a file given by a string (A1). This call is also in typed
API.

loadFile(A1<string>) Loads all models in the file. Also in typed API. Returns list of names of top level
classes in the loaded files.

loadModel(A1<cref>) Loads the model (A1) by looking up the correct file to load in $MODELICAPATH.
Loads all models in that file into the symbol table.

deleteClass(A1<cref>) Deletes the class from the symbol table.

addComponent(A1<ident>,A2<cref>,
A3<cref>,annotate=<expr>) Adds a component with name (A1), type (A2), and class (A3) as arguments.

Optional annotations are given with the named argument annotate.

deleteComponent(A1<ident>,
A2<cref>) Deletes a component (A1) within a class (A2).

updateComponent(A1<ident>,
A2<cref>,
A3<cref>,annotate=<expr>)

Updates an already existing component with name (A1), type (A2), and class (A3)
as arguments. Optional annotations are given with the named argument
annotate.

addClassAnnotation(A1<cref>,
annotate=<expr>) Adds annotation given by A2(in the form annotate= classmod(...)) to the

model definition referenced by A1. Should be used to add Icon Diagram and
Documentation annotations.

getComponents(A1<cref>) Returns a list of the component declarations within class A1:
{{Atype,varidA,”commentA”},{Btype,varidB,”commentB”}, {...}}

getComponentAnnotations(A1<cref>) Returns a list {...} of all annotations of all components in A1, in the same order
as the components, one annotation per component.

getComponentCount(A1<cref>) Returns the number (as a string) of components in a class, e.g return “2” if there
are 2 components.

getNthComponent(A1<cref>,A2<int>) Returns the belonging class, component name and type name of the nth component
of a class, e.g. “A.B.C,R2,Resistor”, where the first component is numbered
1.

getNthComponentAnnotation(
A1<cref>,A2<int>) Returns the flattened annotation record of the nth component (A2) (the first is has

no 1) within class/component A1. Consists of a comma separated string of 15
values, see Annotations in Section 2.4.4 below, e.g “false,10,30,...”

getNthComponentModification(
A1<cref>,A2<int>)?? Returns the modification of the nth component (A2) where the first has no 1) of

class/component A1.

getInheritanceCount(A1<cref>) Returns the number (as a string) of inherited classes of a class.

getNthInheritedClass(A1<cref>,
A2<int>) Returns the type name of the nth inherited class of a class. The first class has

number 1.

getConnectionCount(A1<cref>) Returns the number (as a string) of connections in the model.

getNthConnection(A1<cref>,
A2<int>) Returns the nth connection, as a comma separated pair of connectors, e.g.

“R1.n,R2.p”. The first has number 1.

getNthConnectionAnnotation(
A1<cref>,A2<int>) Returns the nth connection annotation as comma separated list of values of a

flattened record, see Annotations in Section 2.4.4 below.

addConnection(A1<cref>,A2<cref>,
A3<cref>, annotate=<expr>) Adds connection connect(A1,A2) to model A3, with annotation given by the

named argument annotate.

updateConnection(A1<cref>,
A2<cref>,A3<cref>,
annotate=<expr>)

Updates an already existing connection.

deleteConnection(A1<cref>,
A2<cref>,A3<cref>) Deletes the connection connect(A1,A2) in class given by A3.

addEquation(A1<cref>,A2<expr>,
A3<expr>)(NotYetImplemented) Adds the equation A2=A3 to the model named by A1.

getEquationCount(A1<cref>)
(NotYetImplemented) Returns the number of equations (as a string) in the model named A1. (This

includes connections)

getNthEquation(A1<cref>,A2<int>)
(NotYetImplemented) Returns the nth (A2) equation of the model named by A1. e.g. “der(x)=-1” or

“connect(A.b,C.a)”. The first has number 1.

deleteNthEquation(A1<cref>,
A2<int>)(NotYetImplemented) Deletes the nth (A2) equation in the model named by A1. The first has number 1.

getConnectorCount(A1<cref>) Returns the number of connectors (as a string) of a class A1. NOTE: partial code
instantiation of inheritance is performed before investigating the connector
count, in order also to get the inherited connectors.

getNthConnector(A1<cref>,A2<int>) Returns the name of the nth connector, e.g “n”. The first connector has number 1.

getNthConnectorIconAnnotation(
A1<cref>,A2<int>) Returns the nth connector icon layer annotation as comma separated list of values

of a flat record, see Annotation below. NOTE: Since connectors can be
inherited, a partial instantiation of the inheritance structure is performed. The
first has number 1.

getNthConnectorDiagramAnnotation(A1<cref
>,A2<int>)

(NotYetImplemented)
Returns the nth connector diagram layer annotation as comma separated list of

values of a flat record, see Annotation below. NOTE: Since connectors can be
inherited, a partial instantiation of the inheritance structure is performed. The
first has number 1.

getIconAnnotation(A1<cref>) Returns the Icon Annotation of the class named by A1.

getDiagramAnnotation(A1<cref>) Returns the Diagram annotation of the class named by A1. NOTE: Since the
Diagram annotations can be found in base classes a partial code instantiation
is performed that flattens the inheritance hierarchy in order to find all
annotations.

getPackages(A1<cref>) Returns the names of all Packages in a class/package named by A1 as a list, e.g.:
{Electrical,Blocks,Mechanics, Constants,Math,SIunits}

getPackages() Returns the names of all package definitions in the global scope.

getClassNames(A1<cref>) Returns the names of all class defintions in a class/package.

getClassNames() Returns the names of all class definitions in the global scope.

getClassRestriction(A1<cref>) Returns the kind of restricted class of <cref>, e.g. "model", "connector",
"function", "package", etc.

isType(A1<cref>) Returns "true" if class is a type, otherwise "false".

isPrimitive(A1<cref>) Returns "true" if class is of primitive type, otherwise "false".

isConnector(A1<cref>) Returns "true" if class is a connector, otherwise "false".

isModel(A1<cref>) Returns "true" if class is a model, otherwise "false".

isRecord(A1<cref>) Returns "true" if class is a record, otherwise "false".

isBlock(A1<cref>) Returns "true" if class is a block, otherwise "false".

isFunction(A1<cref>) Returns "true" if class is a function, otherwise "false".

isPackage(A1<cref>) Returns "true" if class is a package, otherwise "false".

isClass(A1<cref>) Returns "true" if A1 is a class, otherwise "false".

isParameter(A1<cref>) Returns "true" if A1 is a parameter, otherwise "false".

isConstant(A1<cref>) Returns "true" if A1 is a constant, otherwise "false".

isProtected(A1<cref>) Returns "true" if A1 is protected, otherwise "false".

existClass(A1<cref) Returns "true" if class exists in symbolTable, otherwise "false".

existModel(A1<cref>) Returns "true" if class exists in symbol table and has restriction model, otherwise
"false".

existPackage(A1<cref>) Returns "true" if class exists in symbol table and has restriction package,
otherwise "false".

49

Platforms

 All OpenModelica GUI tools (OMShell,
OMNotebook, ...) are developed on top of
the Qt4 GUI library, portable between
Windows, Linux, Mac

 Both compilers (OMC, MMC) are portable
between the three platforms and compiled
nightly
– Windows – main release platform
– Linux – main development platform
– Mac – available

50

Eclipse – Switching to Java Perspective

51

Exercises – 07_OMCAndCorba

 See README.txt in the Eclipse project
 In this exercise you will send commands to

the OMC Compiler (omc.exe) via CORBA
 OMCProxy.java has functionality for

 starting the omc process if is not already started
 the starting is a bit different for Windows/Linux

 sending commands to OMC
 logging facilities

 If you need clients in C++ or Python check
 http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html
 developer pages

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html

52

Eclipse Setup – Creating the projects

53

End

Thank you!

Administrative Question:
What would you like to implement tomorrow

in the OpenModelica Compiler?

