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Abstract 

Compared to the proprietary programming languages of systems like ILOG Solver, 

SICStus Prolog and Mozart Oz, constraint modelling languages offer a lot of bene

fits, such as usability and portability. This report presents the design and a proto

type implementation of the "Tiny Constraint Modelling Language" (TCML). The data 

types and control structures of TCML have been designed to make the modelling of 

constraint problems intuitive and declarative; they include powerful iterators and 

arrays of dynamic size. The prototype implementation currently includes backends 

for Mozart Oz and ILOG solver. 
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1 Introduction 

This report presents TCML, the "Tiny Constraint Modelling Language". TCML aims 

at providing a common interface language to constraint programming systems such 

as ILOG Solver, SICStus Prolog, or Mozart Oz. Why should one use a constraint 

modelling language, rather than the proprietary language that comes with a certain 

system, for constraint programming? 

People just starting to leam constraint programming will have to spend quite some 

time to understand the new concepts (e. g., propagation, distribution, and search); 

they should not have to worry about design-specific issues. A modelling-language 

(like OPL, see [2]) can abstract away most of such things. Also, often constraint pro

gramming systems make use of languages that are relatively "exotic" to many users. 

But learning constraint programming and learning a new programming language 

at the same time is quite hard; it could be substantially simplified by the use of a 

modelling language which looks as familiar as possible to as many users as possible. 

But constraint modelling languages also offer benefits to the experienced constraint 

programmer. Looking for the best combination of constraints for a given problem, 

one will often want to compare the performance of different development environ

ments. Using a modelling language, the program in question only needs to be written 

once, and can then be tested on several systems. And also as an experienced pro

grammer, one will welcome the possibility to focus on the essentials of constraint 

programming, and to be able to implement a constraint problem as declaratively as 

possible. That is what modelling languages are good for. 

Finally, constraint modelling languages appear to be ideally suited for the applic

ation of automatic program analysis. If the language is kept relatively compact 

and simple, it should be easy to implement a static analyser for it - on the other 

hand, for many full-fledged programming languages, no analysis tools exist. Con
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straint programs written in the modelling language could then be type-checked even 
if their translation into the target language cannot. Even more interesting, one could 

aim at implementing a constraint analyser for the modelling language, which could 

for example analyse the propagation behaviour of constraints, suggesting better 

propagators, or detect obvious deficiencies. 

As a modelling language, TCML was designed to make constraint programming as 

simple as possible: The syntax should quickly be familiar to anyone who has pro

gramming experience in any modern programming language. The data types and 

the control structures provided were chosen to make it straightforward to imple
ment problem specifications in a declarative manner with minimal overhead. For 
example, TCML includes multi-dimensional dynamic arrays, which allow it to declare 
new variables "on the fly", avoiding tedious setups. Such arrays can be traversed 

using powerful iterators like fora11, where in many proprietary programming lan

guage, an iteration over all elements of a multi-dimensional array would require 
manual conversion code. 

This report is organised as folIows: The next chapter introduces the central con

cepts and the overall design of the language. Chapter 3 elaborates on the prototype 

implementation of a small system translating TCML into the languages of two target 

constraint programming systems. The language design and the implementation are 

evaluated in chapter 4. Finally, chapter 5 gives abrief conclusion and outlook. 
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2 Language design 

The starting point for TCML has been the study of a collection of common constraint 

problems in different languages and the identification of essential concepts of con

straint programming languages that provide sufficient expressiveness. This section 

shall present the most important of these concepts. 

Figure 2 shows the well-known "Send More Money" problem, as it can be stated in 

TCML From the source code, one can already get a first glimpse of some of the fea

tures provided in the language. Uke every other constraint language, TCML has to 

solve the following tasks: (a) represent problem-specific knowledge, (b) post con

straints, (c) search the space of solutions that are obtained by constraint propaga

tion. The successful achievement of task (a) depends on the availability of data types 

and their operations. For the task (b), control structures are important. Finally, the 

way one can search for solutions (task c) crucially depends on how the constraint 

problem as a whole is represented in the modelling language, the metaphor that is 

used for constraint satisfaction problems. In the following subsections, these topics 

are addressed successively. 

2.1 Data types and operations 

The main aim of TCML is to enable the user to concentrate on the essentials of 

constraint programming. Therefore, the number of data types is kept small but rich 

enough to provide a sufficient expressivity. The data types considered are integers 

(type i nt) and arrays (type array(t)), including nested arrays. 

Integers come in two flavours: they can either have a fixed value, or be finite-domain 

integer variables. In the latter case, upon declaration, one has to specify a value 

domain for them (see line 2 of figure 2). Arrays can be nested; a two-dimensional 
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i nt [] money 0 { 
int s,e,n,d,m,o,r,y in {0 .. 9}; 
int[8] solution = [s,e,n,d,m,o,r,y]; 
allDifferent(solution); 
s :!= 0; 
m :!= 0; 

1000*s + 100*e + 10*n + d 
+ 1000*m + 100*0 + 10*r + e 

10000*m + 1000*0 + 100*n + 10*e + y;
 
distribute(ff,solution);
 
return solution;
 

} 

void mainO { 
search(all,money); 

} 

Figure 2.1: Send More Money 

array of integers for example has the type array(array(i nt». In the simple case, 

the dimensions of an array, that is, its depth and width at each level, are known upon 

initialisation; the one-dimensional array sol uti on in figure 2 is a typical example. 

Complex problems require more elaborate arrays. 

2.1.1 Dynamic arrays 

The basic idea behind dynamic arrays is to free the programmer from the explicit 

and tedious setup of array sizes, as it often is needed to model constraint problems. 

In dynamic arrays, the array size is computed automatically as computation pro

ceeds. A typical application of dynamic arrays is given in figure 2.2, which shows 

the famous Golomb Ruler problem [6] for a mler of grade 5. In this example, the 

array d is used to store an upper triangular matrix of values dij = k j - k i (lines 

10-14). Then, the allDifferent constraint is applied to this matrix (line 15). What 

is the semantics of this constraint? Note that we cannot want it to enforce all the 

entries of the array d to be different, as that would include even those entries d ij 

on the "empry half" of the matrix, which have not explicitly been assigned a value. 

It is here where dynamic arrays show their strengths. 
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int[][] golombS() { 
int n = 5; 
int nn = n*n; 
int[n] k in {O .. nn}; 
int[][] d in {O .. nn}; 
k[O] := 0; 
foreach i in {0 .. n-2} { 

k[i+l] :> k[i];
 
}
 

foreach i in {0 .. n-2} {
 
foreach j in {i+l .. n-l} {
 

dei] [j] := k[j]-k[i];
 
}
 

}
 

allDifferent(d);
 
distribute(naive,d);
 
return d;
 

} 

Figure 2.2: Golomb rulers of grade 5 

The semantics of dynamic arrays is as follows: 

• A new dynamic	 array is initialised by giving the number of its dimensions n 

and the element type t. For example, in figure 2.2 (line 5), the array d is 

initialised with n = 2 (the number of pairs of brackets after the i nt and t = 

i nt). In this special case, the array is going to store finite-domain integer 

variables of a particular domain, which also has to be given at initialisation. In 

the following, this will be referred to as the "init-domain". After initialisation, 

a dynamic array contains nothing but the information about the type of entries 

that eventually will be included in it. 

• Writing a value	 x to position i of the array will store x at that position and 

enforce x to be within the init-domain. Notice that if this was omitted, we 

would loose Important information: Consider an array of finite-domain integer 

variables v E {l, 2}. If we store a new variable x > 1 at some position of 

that array, and do not post the init-domain constraint, x would still have the 

domain {n In> 1 }, whereas it should be x = 2. 

• Reading position i will store a fresh variable x of the init-domain at that posi

tion and return it, or return x, in case position i has been assigned this value 

previously. 
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With these semantics of dynarnic arrays, all Di fferent in the "Go10mb" example 
can be made to affect only those positions i of the array d, which actually have been 

initialised in lines 10-14. In many other programming languages, one would have to 

precompute the number of variables that eventually will receive values, initialise a 
vector of the appropriate width, and map each matrix position (i, j) onto a position 

on that vector to post the constraints. 

2.1.2 Linearisation 

Compare the applications of the all Di fferent eonstraint in figure 2 and figure 2.2. 

Whereas in the "Send More Money" problem, it is applied to a vector of finite-domain 
integer variables, in the "Go10mb" problem its input is a two-dimensional array of 
such variables. This reveals the fact that the all Di fferent constraint in TCML is 

polymorphie. However, fuH type polymorphism is only rnirnicked by introducing a 

special meta-type 1i n (t) for "linearisable types". For example, all Di ffe rent has 
the input type 1in(array(int)), which means that it accepts inputs that can be 

linearised to a vector of integers. Implicit linearisation is an important coneept in a 
language like TCML, where one has both static types and arbitrarily nested arrays. It 

is not only employed for constraints like all Di fferent and di stri bute, but also 
for the various iteration statements (see below). 

2.2 Control structures 

One of the major motivations and design goals for TCML is a farniliar-looking syntax. 

This is most obviously realised in the selection of control structures, which makes 
TCML look a lot like Java: there are assignments, procedure calls, a retu rn state

ment, and conditionals. To post constraints, TCML extends the Java syntax. Basic 

constraints are issued by prefixing a Boolean test operator (=, ! =, : < etc.) with a 
colon (e. g., in line 5 of figure 2, the variable 5 is constrained to be different from 
zero). More complex constraints, like all Di fferent and di stri bute, are repres
ented by bllilt-in procedures. 
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2.2.1 Iterators 

Another extension of TCML are the different iteration statements. Iterators are very 

important in modelling constraint problems; a typical usage is the construction of 

the already discussed matrix d in figure 2.2. 

TCML supports four different iteration constructs: 

•	 for is like in Java or c. 

•	 foreach x in X iterates over the elements of X (i. e., x is successively bound 
to each element of X). 

•	 foreach @i in X iterates over the indices of X (i. e., for each element x E X, 

i is bound to a natural number, representing the index of x in X. In arrays, 

the iteration index will be the same as the real index of x in the array, so we 
could also iterate over natural numbers between 0 and the size of the array. 

However, if X was a set rather than an array, then there would be no "natural" 

indexation. 

•	 foreach x@i 1 n Xis the obvious combination of the latter two. 

In all iterations, X has to be (bound to) a value that can be linearised into a vector 
of values of type t; x will then have type t. 

2.3 Metaphors for constraint problems 

Different constraint programrning systems use different metaphors to represent 

constraint problems. 

For example, ILOG Solver, being based on C++, has objects for the value environment 

to which constraints are posted, the distribution goal, and the search space. To 

add a constraint or determine a distribution or search strategy, one calls member 

functions of these objects. User-defined constraints are facilitated by functions that 
for example take a value environment as input, modify it by posting some additional 
elementary constraints, and return it as their value. 

On the other hand, in Mozart Oz, constraint propagation and distribution are provided 

on the top-level as calls to procedures in the constraint library. Users can define 
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new constraints by procedures ("scripts") that produce as output the constrained 
variables. Search then is performed by applying these procedures to clones of the 

current system state (the "search space"), one for each choice point for a yet un

determined variable, which eventually builds up a search tree with search spaces 

that are either determined (i. e., all variables have been assigned a value) or failed as 

its leaves. For more on search in Mozart, see [4]. 

TCML employs the latter metaphor: As can be seen from figure 2 and figure 2.2, 

the constraint problem is encapsulated in a procedure returning an array of con

strained variables. This procedure is then called from the mai n procedure by means 
of search. Although this requires first-class procedures, it seems to me the most 

natural because most declarative way of modelling constraint problems. 
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3 Implementation 

To evaluate the expressiveness of TCML, a small prototype compiler for the language 

has been implemented, together with two backends that generate target language 
code for Mozart Oz and ILOG Solver. The architecture of this compiler can be seen 
in figure 3.1; it is a fairly standard separation into front-end (scanner and parser), 

middle-end (static and constraint analysis), and back-ends. The implementation will 

not be discussed in much detail here, as the source code comes with extensive doc
urnentation in the literate programming style. Rather, the focus will be on two 

components that have shown to be especially interesting. 

3.1 The preprocessor 

The main task of the preprocessor is the static analysis of a TCML program. Besides 

that, it also performs normalising transformations on the constraints. This is both 

needed for the constraint analyser, which relies on a constraint classification (see 
below), and is also useful in code generation, as different target systems often use 
different syntax for different types of constraints. Even more important, for some 

classes of constraints, there may exist more powerful propagators in the target sys

tem than for others. 

The arithmetic constraints that we consider in TCML have the form el op e2, where el 

and e2 are arithmetic expressions, and op is a constraint operator. This can be re

written as el - e2 op O. The left hand side of that formula is an arithmetic expression 

itself, so it can be brought into the form Ir=l d i n~\ x~F, where the d i are integers 
and the Xij are (distinct) variables. The constant factors of this term can be summed 
up to yield one constant d, which can be transferred to the right hand side of the 
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TCML Source Code 

~
 
FRONTEND 

Scanner ParserI I I I 

~
 
MIDDLEEND 

I 
Preprocessor (static analysis) 

I 

I Constraint Analyser 
I 

~ ~
 
BACKEND BACKEND 

Mozart Oz ILOG Solver 

~ ~
 
Source Code of the Destination Language 

Figure 3.1: Architecture of the prototype implementation 
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equation. Finally, the scalars ean be extraeted, yielding the normal form 

n mi 

L '" d i nXijPi} opd. 
i=l }=1 

Among the problems associated with constraint normalisation is the task to deeide 

when two variables are distinet - the more identieal variables one ean identify in a 

eonstraint expression, the more simple it will beeome, and the more effeetive eon

straint propagation will be. However, the problem eannot be solved in the general 

ease. Consider for example the variable expressions foo [42J, faa [2*21J, faa [barJ 

and boo. To find out that the first two are equal requires partial program exeeution; 

the preproeessor has to know that the expressions 42 and 2*21 denote the same 

value. When the variable bar is bound to the value 42, the first three variables be

eome equal- but this is even harder to keep track of. Finally, boo might be apointer 

to foo [42J, but how to tell? Here, one has to make a trade-off between the strength 

of propagation and the strength of the analysis teehniques employed. A very inter

esting alternative would be to perform the normalisation at runtime, as then, all the 

variable equalities would be known. 

After normalisation, several dasses of eonstraints ean be identified: 

• linear eonstraints: If=l diXi op d 

• linear eonstraints with unitary eoeffieients: If=l ±Xi op d 

• simple produets: Xl = Xz . x3 

• squares: Xl = X~ 

These eonstraints, tagged with their dass, form the input to the eonstraint analyser. 

3.2 The constraint analyser 

The basic idea behind the constraint analyser eomponent is to extend statie ana

lysis to statements involving eonstraints. Like one ean eolleet type information by 

annotating the atomie expressions of a program with types, and propagating this 

information up the parse tree, one should also be able to do something similar 
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with constraints: annotate the atomic constraints with information about their ef

fect or behaviour, and project this information onto more complex, user-defined 

constraints. 

As a first application of this idea, in the TCML project, propagator analysis was ex

plored, which tries to answer the question if a certain constraint allows for different 

kinds of propagation. More specifically, [5] have shown that in some contexts, do

main propagation without loss in propagation strength can be replaced by the com

putationally simpler bounds propagation. To obtain the relevant information from 

a given constraint program, methods of abstract interpretation on the constraint 

domains are employed. 

For the prototype implementation of TCML, this analysis has been implemented as 

a module, that annotates the parse tree with the relevant information. During code 

generation, this information can be used to choose a source language command 

to post the constraint in question with just the right propagation strength. (Many 

constraint prograrnming systems provide different implementations of a given con

straint for different forms of propagation.) 

The constraint analyser component has to face with a number of severe problems. 

For example, to apply the analysis methods that [5] suggest, it is necessary to know 

about the status of the variables that take part in a given constraint. But when it 

comes to constraints like all Di ffe rent, which can be applied to dynamic arrays, it 

is not really clear how one can obtain this information - how does one find out what 

variables are currently stored in the array, and what domains they have? Another 

problem arises with the possibility to build user-defined constraints through proced

ures and loops. To guarantee a satisfactory analysis in these cases, one would have 

to apply methods of multi-variant analysis. Due to these problems, the constraint 

analyser has not yet been integrated into the system. 
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4 Evaluation 

The implementation has been tested with a set of constraint problems, most of them 

from the Finite Domain Constraint Programming Tutorial found on the Mozart Oz 

web site [3]: The constraint problems were manually translated into TCML and then 

compiled to get code that could be evaluated in Mozart Oz and ILOG Solver. This 

caused no problems, and although the testing data was quite limited, TCML can 

be considered powerful enough to model a large dass of constraint problems, and 

produce executable code for both target systems. As an example for a successful 

translation, see figure 4.1. 

The effort that had to be put into the back-ends depended very much on the target 

language. For Mozart Oz, quite sophisticated support libraries were needed that im

plemented data structures (i. e., dynamic arrays) and provided auxiliary procedures 

(i. e., linearisation), while with these libraries available, the code generation was fairly 

straightforward. In contrast, for ILOG Solver, multi-dimensional arrays were already 

available as a data structure, but the code generation was much more involved 

for example, a two-dimensional array in ILOG Solver is a one-dimensional array of 

one-dimensional-arrays; therefore, static information has to be used in much greater 

extent in that back-end than for (dynamically typed) Oz. 
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Mozart Oz 

{TCML.allDifferent Osolution} 
Os \=: 0 
Om \=: 0 
{FD.sumC 

[1 91 -9000 -90 -900 10 1000 -1] [Od Oe Om On 00 Or Os Oy] 
'=:' O} 

{TCML.distribute ff Osolution} 

ILOG Solver 

model.add(IloAllDiff(env,Isolution));
 
model.add(Is!=O);
 
model.add(Im!=O);
 
model.add(
 

1*Id+91*Ie+(-9000)*Im+(-90)*In+(-900)*Io+10*Ir+1000*Is+(-l)*Iy 
== 0); 

IloGoal goal = IloGenerate(env,Isolution,IlcChooseMinSizelnt); 

Figure 4.1: Translation of the constraints from figure 2 
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5 Conclusion and outlook 

This report presented a basic design for a constraint modelling language, and dis

cussed several issues that had to be considered during its design and implement
ation. TCML enables its users to implement constraint problem specifications in a 

declarative fashion. It provides data types especially well-suited to constraint pro

gramming, like dynamic arrays, and powerful control structures to operate on them, 

like iterators with implicit linearisation. This reduces the programming overhead to 
aminimum. The prototype implementation contains an analyser component and 
backends for two widely-used constraint programming systems, and has been suc

cessfully applied to a number of example constraint problems. 

Developing a language like TCML is a non-trivial task, and many interesting aspects 

could not be explored in the limited amount of time that was available for this 

project. However, it provided a much better understanding of how a constraint 

modelling language could look like, of the obstacles on the way towards it, and of 

possible solutions for these. This final section presents some ideas on the further 
development of TCML. 

The next step certainly would be to more thoroughly test both the language design 

and the implementation. More and more complex constraint problems should be 
re-formulated in TCML, and the suitability of the language for modelling these prob
lems should be evaluated. Although a modelling language cannot possibly be expec

ted to provide all of the often very implementation-specific expressive power of a 
single constraint prograrnming system, its coverage should be as broad as possible. 

Therefore, it should also be considered how to extend TCML. The most obvious of 

such extensions probably is to add support for more data types; for example, aiming 

at declarative programming, sets would be very useful. Also, more backends have 

to be written, supporting constraint programming systems like SICStus Prolog and 
Alice [1]. 
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The single most interesting unH of the current implementation is the constraint 

analyser. When the TCML project was started, not much was known about propag

ator analysis and the programming techniques that were needed to implement this. 

The theoretical progress made since then gives raise to the hope that the constraint 

analyser eventually can be extended to form one of the core components of TCML, 

in which the advantages of a modelling language can fulfil their complete poten

tial. The development of a working constraint analyser and Hs integration into the 

modelling language seems to need a complete research project on Hs own. 

To live up to the aims of being a language for beginners in constraint programming, 

but even for everyday usage in development and benchmarking, a user-friendly in

terface to TCML is desirable. Such an interface could not only provide an accessible 

front-end for compilation, but also give feedback from the constraint analyser to 

,the user, allowing him to develop and possibly enhance constraint programs inter

actively. One could even imagine an extension of the analyser to a tutoring system 

for constraint programming. 

The prototype implementation of TCML developed during this project has been made 

publicly available as open source [7]. It is hoped that both the language design and 

the current implementation will proof flexible enough to facilitate many of the ex

tensions suggested here, as it is most obvious that expressiveness and accessibility 

are the two major criteria that will determine the success of the language. 
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