
Bachelor's Thesis

Tiny Constraint Modelling Language

Marco Kuhlmann

4th lune 2003

Universität des Saarlandes

Fachrichtung 6.2 - Informatik

Vorbemerkung und Erklärung

Diese Arbeit entstand als AbscWussbericht zu meinem im Sommersemester 2001

am LehrstuW von Prof. Gert Smolka an der Universität des Saarlandes in Saarbrücken

durchgeführten Fortgeschrittenenpraktikum; Betreuer war Dr. Christian Schulte.

Hiermit erkläre ich, Marco Kuhlmann, an Eides statt, dass ich die vorliegende Arbeit

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmit

tel verwendet habe.

Saarbrücken, den 4. Juni 2003

Abstract

Compared to the proprietary programming languages of systems like ILOG Solver,

SICStus Prolog and Mozart Oz, constraint modelling languages offer a lot of bene

fits, such as usability and portability. This report presents the design and a proto

type implementation of the "Tiny Constraint Modelling Language" (TCML). The data

types and control structures of TCML have been designed to make the modelling of

constraint problems intuitive and declarative; they include powerful iterators and

arrays of dynamic size. The prototype implementation currently includes backends

for Mozart Oz and ILOG solver.

Contents

Introduction 5

2 language design 7

2.1 Data types and operations · 7

2.2 Control structures · 10

2.3 Metaphors for constraint problems · 11

3 Implementation 13

3.1 The preprocessor 13

3.2 The constraint analyser . 15

4 Evaluation 17

5 Conclusion and outlook 19

4

1 Introduction

This report presents TCML, the "Tiny Constraint Modelling Language". TCML aims

at providing a common interface language to constraint programming systems such

as ILOG Solver, SICStus Prolog, or Mozart Oz. Why should one use a constraint

modelling language, rather than the proprietary language that comes with a certain

system, for constraint programming?

People just starting to leam constraint programming will have to spend quite some

time to understand the new concepts (e. g., propagation, distribution, and search);

they should not have to worry about design-specific issues. A modelling-language

(like OPL, see [2]) can abstract away most of such things. Also, often constraint pro

gramming systems make use of languages that are relatively "exotic" to many users.

But learning constraint programming and learning a new programming language

at the same time is quite hard; it could be substantially simplified by the use of a

modelling language which looks as familiar as possible to as many users as possible.

But constraint modelling languages also offer benefits to the experienced constraint

programmer. Looking for the best combination of constraints for a given problem,

one will often want to compare the performance of different development environ

ments. Using a modelling language, the program in question only needs to be written

once, and can then be tested on several systems. And also as an experienced pro

grammer, one will welcome the possibility to focus on the essentials of constraint

programming, and to be able to implement a constraint problem as declaratively as

possible. That is what modelling languages are good for.

Finally, constraint modelling languages appear to be ideally suited for the applic

ation of automatic program analysis. If the language is kept relatively compact

and simple, it should be easy to implement a static analyser for it - on the other

hand, for many full-fledged programming languages, no analysis tools exist. Con

5

straint programs written in the modelling language could then be type-checked even
if their translation into the target language cannot. Even more interesting, one could

aim at implementing a constraint analyser for the modelling language, which could

for example analyse the propagation behaviour of constraints, suggesting better

propagators, or detect obvious deficiencies.

As a modelling language, TCML was designed to make constraint programming as

simple as possible: The syntax should quickly be familiar to anyone who has pro

gramming experience in any modern programming language. The data types and

the control structures provided were chosen to make it straightforward to imple
ment problem specifications in a declarative manner with minimal overhead. For
example, TCML includes multi-dimensional dynamic arrays, which allow it to declare
new variables "on the fly", avoiding tedious setups. Such arrays can be traversed

using powerful iterators like fora11, where in many proprietary programming lan

guage, an iteration over all elements of a multi-dimensional array would require
manual conversion code.

This report is organised as folIows: The next chapter introduces the central con

cepts and the overall design of the language. Chapter 3 elaborates on the prototype

implementation of a small system translating TCML into the languages of two target

constraint programming systems. The language design and the implementation are

evaluated in chapter 4. Finally, chapter 5 gives abrief conclusion and outlook.

6

2 Language design

The starting point for TCML has been the study of a collection of common constraint

problems in different languages and the identification of essential concepts of con

straint programming languages that provide sufficient expressiveness. This section

shall present the most important of these concepts.

Figure 2 shows the well-known "Send More Money" problem, as it can be stated in

TCML From the source code, one can already get a first glimpse of some of the fea

tures provided in the language. Uke every other constraint language, TCML has to

solve the following tasks: (a) represent problem-specific knowledge, (b) post con

straints, (c) search the space of solutions that are obtained by constraint propaga

tion. The successful achievement of task (a) depends on the availability of data types

and their operations. For the task (b), control structures are important. Finally, the

way one can search for solutions (task c) crucially depends on how the constraint

problem as a whole is represented in the modelling language, the metaphor that is

used for constraint satisfaction problems. In the following subsections, these topics

are addressed successively.

2.1 Data types and operations

The main aim of TCML is to enable the user to concentrate on the essentials of

constraint programming. Therefore, the number of data types is kept small but rich

enough to provide a sufficient expressivity. The data types considered are integers

(type i nt) and arrays (type array(t)), including nested arrays.

Integers come in two flavours: they can either have a fixed value, or be finite-domain

integer variables. In the latter case, upon declaration, one has to specify a value

domain for them (see line 2 of figure 2). Arrays can be nested; a two-dimensional

7

i nt [] money 0 {
int s,e,n,d,m,o,r,y in {0 .. 9};
int[8] solution = [s,e,n,d,m,o,r,y];
allDifferent(solution);
s :!= 0;
m :!= 0;

1000*s + 100*e + 10*n + d
+ 1000*m + 100*0 + 10*r + e

10000*m + 1000*0 + 100*n + 10*e + y;

distribute(ff,solution);

return solution;

}

void mainO {
search(all,money);

}

Figure 2.1: Send More Money

array of integers for example has the type array(array(i nt». In the simple case,

the dimensions of an array, that is, its depth and width at each level, are known upon

initialisation; the one-dimensional array sol uti on in figure 2 is a typical example.

Complex problems require more elaborate arrays.

2.1.1 Dynamic arrays

The basic idea behind dynamic arrays is to free the programmer from the explicit

and tedious setup of array sizes, as it often is needed to model constraint problems.

In dynamic arrays, the array size is computed automatically as computation pro

ceeds. A typical application of dynamic arrays is given in figure 2.2, which shows

the famous Golomb Ruler problem [6] for a mler of grade 5. In this example, the

array d is used to store an upper triangular matrix of values dij = k j - k i (lines

10-14). Then, the allDifferent constraint is applied to this matrix (line 15). What

is the semantics of this constraint? Note that we cannot want it to enforce all the

entries of the array d to be different, as that would include even those entries d ij

on the "empry half" of the matrix, which have not explicitly been assigned a value.

It is here where dynamic arrays show their strengths.

8

int[][] golombS() {
int n = 5;
int nn = n*n;
int[n] k in {O .. nn};
int[][] d in {O .. nn};
k[O] := 0;
foreach i in {0 .. n-2} {

k[i+l] :> k[i];

}

foreach i in {0 .. n-2} {

foreach j in {i+l .. n-l} {

dei] [j] := k[j]-k[i];

}

}

allDifferent(d);

distribute(naive,d);

return d;

}

Figure 2.2: Golomb rulers of grade 5

The semantics of dynamic arrays is as follows:

• A new dynamic	 array is initialised by giving the number of its dimensions n

and the element type t. For example, in figure 2.2 (line 5), the array d is

initialised with n = 2 (the number of pairs of brackets after the i nt and t =

i nt). In this special case, the array is going to store finite-domain integer

variables of a particular domain, which also has to be given at initialisation. In

the following, this will be referred to as the "init-domain". After initialisation,

a dynamic array contains nothing but the information about the type of entries

that eventually will be included in it.

• Writing a value	 x to position i of the array will store x at that position and

enforce x to be within the init-domain. Notice that if this was omitted, we

would loose Important information: Consider an array of finite-domain integer

variables v E {l, 2}. If we store a new variable x > 1 at some position of

that array, and do not post the init-domain constraint, x would still have the

domain {n In> 1 }, whereas it should be x = 2.

• Reading position i will store a fresh variable x of the init-domain at that posi

tion and return it, or return x, in case position i has been assigned this value

previously.

9

With these semantics of dynarnic arrays, all Di fferent in the "Go10mb" example
can be made to affect only those positions i of the array d, which actually have been

initialised in lines 10-14. In many other programming languages, one would have to

precompute the number of variables that eventually will receive values, initialise a
vector of the appropriate width, and map each matrix position (i, j) onto a position

on that vector to post the constraints.

2.1.2 Linearisation

Compare the applications of the all Di fferent eonstraint in figure 2 and figure 2.2.

Whereas in the "Send More Money" problem, it is applied to a vector of finite-domain
integer variables, in the "Go10mb" problem its input is a two-dimensional array of
such variables. This reveals the fact that the all Di fferent constraint in TCML is

polymorphie. However, fuH type polymorphism is only rnirnicked by introducing a

special meta-type 1i n (t) for "linearisable types". For example, all Di ffe rent has
the input type 1in(array(int)), which means that it accepts inputs that can be

linearised to a vector of integers. Implicit linearisation is an important coneept in a
language like TCML, where one has both static types and arbitrarily nested arrays. It

is not only employed for constraints like all Di fferent and di stri bute, but also
for the various iteration statements (see below).

2.2 Control structures

One of the major motivations and design goals for TCML is a farniliar-looking syntax.

This is most obviously realised in the selection of control structures, which makes
TCML look a lot like Java: there are assignments, procedure calls, a retu rn state

ment, and conditionals. To post constraints, TCML extends the Java syntax. Basic

constraints are issued by prefixing a Boolean test operator (=, ! =, : < etc.) with a
colon (e. g., in line 5 of figure 2, the variable 5 is constrained to be different from
zero). More complex constraints, like all Di fferent and di stri bute, are repres
ented by bllilt-in procedures.

10

2.2.1 Iterators

Another extension of TCML are the different iteration statements. Iterators are very

important in modelling constraint problems; a typical usage is the construction of

the already discussed matrix d in figure 2.2.

TCML supports four different iteration constructs:

•	 for is like in Java or c.

•	 foreach x in X iterates over the elements of X (i. e., x is successively bound
to each element of X).

•	 foreach @i in X iterates over the indices of X (i. e., for each element x E X,

i is bound to a natural number, representing the index of x in X. In arrays,

the iteration index will be the same as the real index of x in the array, so we
could also iterate over natural numbers between 0 and the size of the array.

However, if X was a set rather than an array, then there would be no "natural"

indexation.

•	 foreach x@i 1 n Xis the obvious combination of the latter two.

In all iterations, X has to be (bound to) a value that can be linearised into a vector
of values of type t; x will then have type t.

2.3 Metaphors for constraint problems

Different constraint programrning systems use different metaphors to represent

constraint problems.

For example, ILOG Solver, being based on C++, has objects for the value environment

to which constraints are posted, the distribution goal, and the search space. To

add a constraint or determine a distribution or search strategy, one calls member

functions of these objects. User-defined constraints are facilitated by functions that
for example take a value environment as input, modify it by posting some additional
elementary constraints, and return it as their value.

On the other hand, in Mozart Oz, constraint propagation and distribution are provided

on the top-level as calls to procedures in the constraint library. Users can define

11

new constraints by procedures ("scripts") that produce as output the constrained
variables. Search then is performed by applying these procedures to clones of the

current system state (the "search space"), one for each choice point for a yet un

determined variable, which eventually builds up a search tree with search spaces

that are either determined (i. e., all variables have been assigned a value) or failed as

its leaves. For more on search in Mozart, see [4].

TCML employs the latter metaphor: As can be seen from figure 2 and figure 2.2,

the constraint problem is encapsulated in a procedure returning an array of con

strained variables. This procedure is then called from the mai n procedure by means
of search. Although this requires first-class procedures, it seems to me the most

natural because most declarative way of modelling constraint problems.

12

3 Implementation

To evaluate the expressiveness of TCML, a small prototype compiler for the language

has been implemented, together with two backends that generate target language
code for Mozart Oz and ILOG Solver. The architecture of this compiler can be seen
in figure 3.1; it is a fairly standard separation into front-end (scanner and parser),

middle-end (static and constraint analysis), and back-ends. The implementation will

not be discussed in much detail here, as the source code comes with extensive doc
urnentation in the literate programming style. Rather, the focus will be on two

components that have shown to be especially interesting.

3.1 The preprocessor

The main task of the preprocessor is the static analysis of a TCML program. Besides

that, it also performs normalising transformations on the constraints. This is both

needed for the constraint analyser, which relies on a constraint classification (see
below), and is also useful in code generation, as different target systems often use
different syntax for different types of constraints. Even more important, for some

classes of constraints, there may exist more powerful propagators in the target sys

tem than for others.

The arithmetic constraints that we consider in TCML have the form el op e2, where el

and e2 are arithmetic expressions, and op is a constraint operator. This can be re

written as el - e2 op O. The left hand side of that formula is an arithmetic expression

itself, so it can be brought into the form Ir=l d i n~\ x~F, where the d i are integers
and the Xij are (distinct) variables. The constant factors of this term can be summed
up to yield one constant d, which can be transferred to the right hand side of the

13

TCML Source Code

~

FRONTEND

Scanner ParserI I I I

~

MIDDLEEND

I
Preprocessor (static analysis)

I

I Constraint Analyser
I

~ ~

BACKEND BACKEND

Mozart Oz ILOG Solver

~ ~

Source Code of the Destination Language

Figure 3.1: Architecture of the prototype implementation

14

equation. Finally, the scalars ean be extraeted, yielding the normal form

n mi

L '" d i nXijPi} opd.
i=l }=1

Among the problems associated with constraint normalisation is the task to deeide

when two variables are distinet - the more identieal variables one ean identify in a

eonstraint expression, the more simple it will beeome, and the more effeetive eon

straint propagation will be. However, the problem eannot be solved in the general

ease. Consider for example the variable expressions foo [42J, faa [2*21J, faa [barJ

and boo. To find out that the first two are equal requires partial program exeeution;

the preproeessor has to know that the expressions 42 and 2*21 denote the same

value. When the variable bar is bound to the value 42, the first three variables be

eome equal- but this is even harder to keep track of. Finally, boo might be apointer

to foo [42J, but how to tell? Here, one has to make a trade-off between the strength

of propagation and the strength of the analysis teehniques employed. A very inter

esting alternative would be to perform the normalisation at runtime, as then, all the

variable equalities would be known.

After normalisation, several dasses of eonstraints ean be identified:

• linear eonstraints: If=l diXi op d

• linear eonstraints with unitary eoeffieients: If=l ±Xi op d

• simple produets: Xl = Xz . x3

• squares: Xl = X~

These eonstraints, tagged with their dass, form the input to the eonstraint analyser.

3.2 The constraint analyser

The basic idea behind the constraint analyser eomponent is to extend statie ana

lysis to statements involving eonstraints. Like one ean eolleet type information by

annotating the atomie expressions of a program with types, and propagating this

information up the parse tree, one should also be able to do something similar

15

with constraints: annotate the atomic constraints with information about their ef

fect or behaviour, and project this information onto more complex, user-defined

constraints.

As a first application of this idea, in the TCML project, propagator analysis was ex

plored, which tries to answer the question if a certain constraint allows for different

kinds of propagation. More specifically, [5] have shown that in some contexts, do

main propagation without loss in propagation strength can be replaced by the com

putationally simpler bounds propagation. To obtain the relevant information from

a given constraint program, methods of abstract interpretation on the constraint

domains are employed.

For the prototype implementation of TCML, this analysis has been implemented as

a module, that annotates the parse tree with the relevant information. During code

generation, this information can be used to choose a source language command

to post the constraint in question with just the right propagation strength. (Many

constraint prograrnming systems provide different implementations of a given con

straint for different forms of propagation.)

The constraint analyser component has to face with a number of severe problems.

For example, to apply the analysis methods that [5] suggest, it is necessary to know

about the status of the variables that take part in a given constraint. But when it

comes to constraints like all Di ffe rent, which can be applied to dynamic arrays, it

is not really clear how one can obtain this information - how does one find out what

variables are currently stored in the array, and what domains they have? Another

problem arises with the possibility to build user-defined constraints through proced

ures and loops. To guarantee a satisfactory analysis in these cases, one would have

to apply methods of multi-variant analysis. Due to these problems, the constraint

analyser has not yet been integrated into the system.

16

4 Evaluation

The implementation has been tested with a set of constraint problems, most of them

from the Finite Domain Constraint Programming Tutorial found on the Mozart Oz

web site [3]: The constraint problems were manually translated into TCML and then

compiled to get code that could be evaluated in Mozart Oz and ILOG Solver. This

caused no problems, and although the testing data was quite limited, TCML can

be considered powerful enough to model a large dass of constraint problems, and

produce executable code for both target systems. As an example for a successful

translation, see figure 4.1.

The effort that had to be put into the back-ends depended very much on the target

language. For Mozart Oz, quite sophisticated support libraries were needed that im

plemented data structures (i. e., dynamic arrays) and provided auxiliary procedures

(i. e., linearisation), while with these libraries available, the code generation was fairly

straightforward. In contrast, for ILOG Solver, multi-dimensional arrays were already

available as a data structure, but the code generation was much more involved

for example, a two-dimensional array in ILOG Solver is a one-dimensional array of

one-dimensional-arrays; therefore, static information has to be used in much greater

extent in that back-end than for (dynamically typed) Oz.

17

Mozart Oz

{TCML.allDifferent Osolution}
Os \=: 0
Om \=: 0
{FD.sumC

[1 91 -9000 -90 -900 10 1000 -1] [Od Oe Om On 00 Or Os Oy]
'=:' O}

{TCML.distribute ff Osolution}

ILOG Solver

model.add(IloAllDiff(env,Isolution));

model.add(Is!=O);

model.add(Im!=O);

model.add(

1*Id+91*Ie+(-9000)*Im+(-90)*In+(-900)*Io+10*Ir+1000*Is+(-l)*Iy
== 0);

IloGoal goal = IloGenerate(env,Isolution,IlcChooseMinSizelnt);

Figure 4.1: Translation of the constraints from figure 2

18

5 Conclusion and outlook

This report presented a basic design for a constraint modelling language, and dis

cussed several issues that had to be considered during its design and implement
ation. TCML enables its users to implement constraint problem specifications in a

declarative fashion. It provides data types especially well-suited to constraint pro

gramming, like dynamic arrays, and powerful control structures to operate on them,

like iterators with implicit linearisation. This reduces the programming overhead to
aminimum. The prototype implementation contains an analyser component and
backends for two widely-used constraint programming systems, and has been suc

cessfully applied to a number of example constraint problems.

Developing a language like TCML is a non-trivial task, and many interesting aspects

could not be explored in the limited amount of time that was available for this

project. However, it provided a much better understanding of how a constraint

modelling language could look like, of the obstacles on the way towards it, and of

possible solutions for these. This final section presents some ideas on the further
development of TCML.

The next step certainly would be to more thoroughly test both the language design

and the implementation. More and more complex constraint problems should be
re-formulated in TCML, and the suitability of the language for modelling these prob
lems should be evaluated. Although a modelling language cannot possibly be expec

ted to provide all of the often very implementation-specific expressive power of a
single constraint prograrnming system, its coverage should be as broad as possible.

Therefore, it should also be considered how to extend TCML. The most obvious of

such extensions probably is to add support for more data types; for example, aiming

at declarative programming, sets would be very useful. Also, more backends have

to be written, supporting constraint programming systems like SICStus Prolog and
Alice [1].

19

The single most interesting unH of the current implementation is the constraint

analyser. When the TCML project was started, not much was known about propag

ator analysis and the programming techniques that were needed to implement this.

The theoretical progress made since then gives raise to the hope that the constraint

analyser eventually can be extended to form one of the core components of TCML,

in which the advantages of a modelling language can fulfil their complete poten

tial. The development of a working constraint analyser and Hs integration into the

modelling language seems to need a complete research project on Hs own.

To live up to the aims of being a language for beginners in constraint programming,

but even for everyday usage in development and benchmarking, a user-friendly in

terface to TCML is desirable. Such an interface could not only provide an accessible

front-end for compilation, but also give feedback from the constraint analyser to

,the user, allowing him to develop and possibly enhance constraint programs inter

actively. One could even imagine an extension of the analyser to a tutoring system

for constraint programming.

The prototype implementation of TCML developed during this project has been made

publicly available as open source [7]. It is hoped that both the language design and

the current implementation will proof flexible enough to facilitate many of the ex

tensions suggested here, as it is most obvious that expressiveness and accessibility

are the two major criteria that will determine the success of the language.

Acknowledgements

TCML is the result of my "Fortgeschrittenenpraktikum", carried out at the Program

ming Systems Lab of Saarland University in summer/autumn 2001 under the super

vision of Christian Schulte. I would like to thank him for his guidance and patience,

and the staff at the lab for such friendly and stimulating an atmosphere.

20

Bibliography

[1)	 The Alice Programming Language, http://WWIN.ps.uni-sb.de/a1i ce/.

[2)	 Pascal van Hentenryck. The OPL Optimization Programming Language. The :MIT

Press, Cambridge, Mass., 1999.

[3)	 The Mozart Programming System, http;//WWIN . mozart-oz. org/.

[4)	 Christian Schulte. Programming Constraint Services. Doctoral dissertation, Uni

versität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrich

tung Informatik, Saarbrücken, Germany, 2000. To appear in Lecture Notes in

Artificial Intelligence, Springer-Verlag.

[5)	 Christian Schulte and Peter]. Stuckey. When do bounds and domain propagation

lead to the same search space. In Harald Slimdergaard, editor, Third International

Conference on Principles and Practice ofDeclarative Programming, Firenze, Italy,

September 2001. ACM Press.

[6)	 Barbara M. Smith, Kostas Stergiou, and Toby Walsh. Modelling the Golomb Ruler

Problem. In Sixteenth International Joint Conference on Artificial Intelligence (I]

CA! 99), 1999.

[7)	 TCML, http://WWIN.ps.uni-sb.derkuhlmann/projects/tcml.html.

21

