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Abstract
We propose a regime aware learning algorithm to learn a sequence of Bayesian networks (BNs) that
model a system that undergoes regime changes. The last BN in the sequence represents the system’s
current regime, and should be used for BN inference. To explore the feasibility of the algorithm, we
create baseline tests against learning a singe BN, and show that our proposed algorithm outperforms
the single BN approach. We also apply the learning algorithm on real world data from the financial
domain, where it is evident that the algorithm is able to produce BNs that have adapted to the
regime changes during the most recent global financial crisis of 2007-08.
Keywords: Regime changes; Bayesian networks; financial application.

1. Introduction

Many tasks performed by practitioners involve observing a system over time, and then making pre-
dictions and decisions based on the observed data. As long as the probabilistic relationships and
distributions of the variables that make up the system stay the same, we can define a joint probability
distribution over the variables and estimate the parameters from the data we have observed. For in-
stance, a medical practitioner may monitor a patient’s vital signs and create a model for the patient’s
overall health. However, for tasks such as spam detection, crime prediction, financial planning, as
well as patient monitoring, it may be incorrect to assume that the probabilistic relationships and dis-
tributions among the modelled variables are stable. Estimating a single joint probability distribution
over a set of variables that undergoes changes may lead to poor results.

The phenomenon of regime changes has been studied extensively in the fields of ecology (Schef-
fer et al., 2001; Andersen et al., 2009), economy and finance (Hamilton, 1989; May et al., 2008),
and biology (Pal et al., 2013). Given the diversity of fields studying regimes, there is no general
consensus of what a regime entails, nor its length or the abruptness of a regime change. However,
a non-conflicting definition is to say that a regime is a steady state of some system under observa-
tion. We define this steady state as one where all probabilistic relationships and distributions of the
variables in a system stay the same. The system can exhibit several regimes, between which the
probabilistic relationships and distributions may change.

We also consider it possible for a system to return to a previous regime, thereby allowing regimes
to reoccur. If no regimes reoccur, then a system’s regime transition structure is a chain of regimes:
R1 → R2 → · · · → Rk. However, if a system does exhibit regimes that reoccur, then the regime
transition structure will contain cycles, e.g. R1 → R2 � R3 → · · · → Rk. We have
previously shown how these regime transition structures can accurately be recovered from batch
data (Bendtsen and Peña, 2016c,b), thereby gaining important insight into the individual regimes of
a system, as well as how these regimes transition into one another. While the aim of our previous
work was to uncover these regime transition structures in a given dataset, the aim of this paper is
to discover the best model for the regime a system currently is in, and then update this model in
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a regime aware fashion each time a new data point is made available. The model that we will use
to represent a system that undergoes regimes is a sequence of Bayesian networks (BNs), where the
last BN in the sequence represents the current regime.

1.1 Bayesian Networks

Introduced by Pearl (1988), BNs consists of two major components: a qualitative representation
of independencies among random variables through a directed acyclic graph (DAG), and a quan-
tification of certain marginal and conditional probability distributions, so as to define a full joint
probability distribution. A feature of BNs, known as the local Markov property, implies that a
variable is independent of all other non-descendant variables given its parent variables, where the
relationships are defined with respect to the DAG of the BN. Let X be a set of random variables
in a BN, and let Π(Xi) be the set of variables that consists of the parents of variable Xi ∈ X,
then the local Markov property allows us to factorise the joint probability distribution according to
Equation 1.

p(X) =
∏
Xi∈X

p(Xi|Π(Xi)) (1)

From Equation 1, it is evident that the independencies represented by the DAG allow for a repre-
sentation of the full joint distribution via smaller marginal and conditional probability distributions,
thus making it easier to elicit the necessary parameters, and allowing for efficient computation of
posterior probabilities. For a full treatment of BNs please see Pearl (1988); Korb and Nicholson
(2011); Jensen and Nielsen (2007).

While a BN has advantages when representing a single independence model, it lacks the ability
to represent several independence models simultaneously, i.e. it lacks the ability to model several
regimes. Therefore, the learning algorithm that we will propose will generate a sequence of BNs,
each one representing a regime of the system under observation, where the last BN represents the
current regime and should therefore be used for BN inference.

1.2 Related Work

Refining or updating the structure and conditional distributions of a BN in response to new data has
been studied for some time (Buntine, 1991; Lam and Bacchus, 1994; Friedman and Goldszmidt,
1997; Lam, 1998). However, these approaches assume that data is received from a stationary distri-
bution, i.e. a system that does not undergo regime changes.

Nielsen and Nielsen (2008) approach the problem of having a stream of observations which they
say is piecewise stationary, i.e. observations within a section of the stream come from the same
distribution, but changes may occur into a new stationary section. Their goal is to incrementally
learn the structure of a BN, adapting the structure as new observations are made available. They
achieve this by monitoring local changes among the variables in the current network, and when a
conflict occurs between what is currently learnt and what is observed, they refine the structure of
the BN. Focusing only on local changes allows them to reuse all previous observations for parts of
the BN that have not changed.

We do not make the assumption of local change between regimes, but allow for the structure of a
BN to change arbitrarily between regimes. As we shall see in Section 2, this allows us to plug in any
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BN structure learning algorithm into our proposed algorithm. Furthermore, we base the decision of
identifying a regime shift on the posterior of the entire model, rather than a conflict in one variable.

Other approaches to adaptation exists, including using latent variables to model the changes
explicitly (Borchani et al., 2015), and placing a probability distribution over the location of the most
recent drift point (Bach and Maloof, 2010). We refer the interested reader to a survey on concept
drift adaptation by Gama et al. (2014).

1.3 Outline

The rest of the paper is structured as follows. In Section 2 we will introduce the proposed regime
aware learning algorithm. In Section 3 we will run a set of baseline experiments on synthetic data
to show the feasibility of the proposed algorithm. In Section 4 we will show how the algorithm
performs on real world data from the financial domain. Finally, in Section 5 we will summarise our
current work and give some final remarks.

2. Learning Algorithm

In this section we will describe the proposed learning algorithm. The aim is to supply a model to the
investigator, and to update this model each time there is new data available. We begin by accounting
for the steps that the algorithm takes each time new data is available, and then explain the details of
each step in the subsequent sections.

Let D represent an ordered dataset, and let a hypothesis H be a division of D = {d1, ..., dn}
into subsets. Let A represent an algorithm for learning the structure and parameters of a BN, and
let A({dl}) mean that A has been used to learn a BN using the data point dl. A model M is then
created by using A to learn a BN for each subset defined by a hypothesis H . For instance, given
five data points, the hypothesis H{2, 4} splits the data at position 2 and 4, resulting in a model M
with the three BNs A({d1}), A({d2, d3}) and A({d4, d5}). Notation wise, we will always let a
hypothesis with a specific subscript define a model with the same subscript, i.e. the hypothesis Hk

defines the model Mk.
Each iteration of the algorithm will result in one hypothesis that defines the current model, we

denote the current hypothesis byHC and the current model byMC . The learning algorithm consists
of the following five steps, which are run each time a new data point di is made available. Before
the first iteration, set HC = ∅ and D = ∅.

1. Add di to the end of D.

2. Create a set of hypotheses H by calling PROPOSE(HC ,D).

3. Find Hmax such that Hmax = arg maxHj∈H p(Mj |D).

4. Set HC = Hmax if p(Mmax|D) > p(MC |D).

5. Return to the investigator MC = MERGE(HC ,D). The BN inMC which was learnt using the
subset of D containing di represents the current regime.

The algorithm creates a set of hypotheses by calling PROPOSE, and then finds the hypoth-
esis Hmax that defines the model Mmax with the highest posterior probability p(Mmax|D). If
p(Mmax|D) > p(MC |D), i.e. if the posterior odds is greater than one in favour of the hypothesised
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HC = ∅
H{2}

d1 d2 d3 d4

H{3}

d1 d2 d3 d4

H{4}

d1 d2 d3 d4

HC = H{3}
H{3, 4}

d1 d2 d3 d4

Figure 1: Effect of constraint on hypothesis generation

model, then HC is replaced by Hmax. The MERGE procedure then exhaustively combines the sub-
sets defined by HC , in order to identify reoccurring regimes, and the final model MC is returned
to the investigator. In the following sections we will begin by explaining the procedure PROPOSE,
followed by how the posterior p(M |D) is calculated, and finally the MERGE procedure. We note
here that the algorithm does not assume that any splits exists in the data, as the initial HC is the
empty set, and splits are only added to HC if the posterior odds are in favour of such an addition.

2.1 Proposing Hypotheses

In step 2 of the algorithm, PROPOSE creates a set of hypotheses H, which becomes a search space
in step 3. If every possible hypothesis was to be proposed, then the search space would expand
beyond computational feasibility as D grows. We therefore introduce the following constraint, and
give two examples that highlight where this constraint plays a role in the procedure:

Each hypothesis in H has the splits in HC , plus a new one that is after the last split in HC .

Figure 1 depicts two different outcomes of using PROPOSE when a dataset containing four
points is available. The top example in the figure depicts the case whereHC contains no splits. This
situation has been reached by rejection of all hypotheses when d1, d2 and d3 were collected. In this
case there are three possible hypotheses, illustrated by dashed lines in the figure. Note that due to
the constraint we cannot add two splits, e.g. the hypothesis H{2, 3} is not generated since it has
two more splits than HC . In the bottom example in the figure, HC contains one split at data point
three (illustrated by a solid line). The only hypothesis generated in this case is H{3, 4}, since due
to the constraint, we cannot propose splits before the existing split at data point three.

2.2 Posterior of a Model

As we have seen from the discussion regarding the PROPOSE procedure, the number of hypotheses
that are proposed is n − dlast, where dlast is the last split in HC (or 1 if HC = φ). Therefore we
must be able to choose one of these, and then compare this hypothesis with the current hypothesis
in order to decide if it should be replaced. We do this by finding the hypothesis with the highest
posterior p(M |D) ∝ p(D|M)p(M).

Let H be a hypothesis with k > 0 splits δ1, ..., δk, then the model M that H defines consists of
k+1 BNs. Also letD contain n data points, and letDjl represent the subset {dl, ..., dj} (l ≤ j). We
calculate the marginal likelihood of the data D given the model M by the product of the marginal
likelihoods of its k + 1 BNs. When k > 1 we therefore have:
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19

Figure 2: Stylistic view of the probabilities of the left and right subset sizes

p(D|M) = p(Dδ1−1
1 |A(Dδ1−1

1 ))p(Dnδk |A(Dnδk))
k−1∏
i=1

p(Dδi+1−1
δi

|A(Dδi+1−1
δi

)) (2)

When k = 1 only the first two factors of Equation 2 apply, and when k = 0 we have p(D|M) =
p(D|A(D)). Notice that the first k − 1 BNs are equal among all hypotheses (since they share the
splits in HC), thus the marginal likelihoods for these BNs need only to be calculated once, and can
be reused in all following iterations.

The PROPOSE procedure will generate hypotheses where some or all of the subsets contain very
few data points. There is therefore a risk that single values that are considered extreme given the
current model will suggest that the current model be replaced. To avoid situations where many single
point regimes are identified, we define a prior p(M) over the models induced by the hypotheses,
such that small regimes are less probable. We first conclude that all hypotheses share the splits
from HC , thus the prior over this part of the model is equal among hypotheses. The hypotheses do
however differ with respect to the two new subsets that are created on either side of the added split,
one to the left and one to the right. If a hypothesis was to replace HC , then the subset to the left of
the added split would be locked in as a regime, however the right subset will continue to increase in
size as new data points become available. We therefore define p(M) such that the probability of a
specific subset size on the left side is smaller than the equivalent on the right side.

Let Gcdf represent the cumulative distribution of a geometric distribution, and let Gcdf (m, q)
represent the probability of a regime with m data points, when the geometric distribution is pa-
rameterised with 0 < q ≤ 1. We then define p(M) by Equation 3, where p(MC) is equal among
all hypotheses and therefore set to unity, and Gcdf is taken to the n:th power to scale against the
unnormalised p(D|M).

p(M) = p(MC)Gcdf (δk − δk−1, q(left))
nGcdf (n− δk + 1, q(right))

n (3)

We offer a stylistic view of p(M) in Figure 2. In the figure, HC = H{4, 8}, and the proposed
hypothesis is H{4, 8, 13}. The black dot over d12 indicates the probability of a regime with five
data points (D12

8 ) given a geometric distribution parameterised with q(left), while the black dot over
d19 indicates the probability of a regime with seven data points (D19

13) given a geometric distribution
parameterised with q(right). As we can see, the probabilities grow as the size of the subsets increase,
and q(left) < q(right) following the previous discussion.

2.3 Merging Subsets

The final step of the algorithm is to return the model implied by HC to the investigator. However,
before doing so we perform one more task to improve upon the contained BNs. Naı̈vely assuming
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Structure 1 R1 R2 R3 R4

Structure 2 R1 R2 R1 R3

Structure 3 R1 R2 R1 R2

R1 R2 R3 R4

R1 R2 R3

R1 R2

1 2 3 4

Figure 3: Example of merging subsets

that each split identifies a new regime would lead to a chain of regimes, i.e. if there were two splits
in HC we would have R1 → R2 → R3. We would then return this model to the investigator and
tell them to use the BN representing R3 as a model for the current regime. While it may be entirely
possible for a system to exhibit this type of regime structure, it is also possible that R2 transitioned
back to R1, and not into a new regime R3. Therefore we must try each possible recursive merging
of nonadjacent subsets, as defined by the splits in HC , and score a new model based on these new
subsets. Next follows an explanation and example of this merging.

In the example in Figure 3 we have identified three splits, resulting in four subsets of the data
(labeled 1, 2, 3 and 4). The first possible structure requires no merging at all; it suggests that each
subset identifies a new regime (depicted to the left) and the regime transition structure is therefore
a chain of four regimes (depicted to the right). From the first structure we cannot merge subsets 1
and 2, since they are adjacent and we would not have a split here if the two subsets belonged to the
same regime. A new structure can however be constructed by merging subsets 1 and 3, resulting in
the second structure in the figure. Note that we have now labelled subset 3 with R1 and subset 4
with R3, as we now only have three regimes rather than four in the previous structure. The implied
regime transition structure now contains cycles. From the second structure the only merging that
can be done is to merge subsets 2 and 4, resulting in the third structure. Note that the example is
not complete, as we should go back to the first structure and start the recursive procedure again, but
this time by merging subsets 1 and 4 (and similarly so for 2 and 4).

In order to choose which structure that should be returned from one iteration of the proposed
algorithm, we start with the chain of regimes that is given directly from the splits, and then continue
to score each possible recursive merging. The merged subsets are scored using a simple rephrasing
of Equation 2, and the structure giving the highest score represents the final model returned to the
investigator.

3. Experiments

In order to investigate the benefit of using the proposed learning algorithm, we set up a series of
experiments to create a baseline comparison against learning a single BN. We considered datasets
containing between zero and three regimes shifts. Since regimes may reoccur, a dataset containing
more than one shift may be a sample from one of several regime transition structures. When consid-
ering datasets with i shifts, coming from the j:th possible transition structure, we will denote such
a pair with Si,j . Please see Table 1 for all pairs used throughout the experiments.

We ran two separate experiments, which we will refer to as exp-c (c for calm) and exp-v (v for
volatile). For each experiment we set up a set of four BNs to represent the regimes. In the first set
of BNs (set-c), we only added or removed one edge between regimes, thus there is still similarity
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Pair Shifts Structure Pair Shifts Structure

S0,1 0 R1 S3,1 3 R1 R2 R3 R4

S1,1 1 R1 R2 S3,2 3 R1 R2 R3

S2,1 2 R1 R2 R3 S3,3 3 R1 R2 R3

S2,2 2 R1 R2 S3,4 3 R1 R2 R3

S3,5 3 R1 R2

Table 1: The number of shifts and transition structures under consideration

A B

CD

R1

A ∼ N(1, 0.5)

B ∼ N(−1, 0.5)

C ∼ N(sin(2A+ 2B), 0.1)

D ∼ N(2A2, 0.1)

A B

CD

R2

A ∼ N(1, 0.5)

B ∼ N(−1, 0.5)

C ∼ N(sin(2A), 0.1)

D ∼ N(2A2, 0.1)

A B

CD

R3

A ∼ N(1, 0.5)

B ∼ N(−1, 0.5)

C ∼ N(sin(2A), 0.1)

D ∼ N(−2, 0.5)

A B

CD

R4

A ∼ N(1, 0.5)

B ∼ N(2A2, 0.1)

C ∼ N(sin(2A), 0.1)

D ∼ N(−2, 0.5)

Figure 4: BNs in set-c

A B

CD

R1

A ∼ N(1, 0.5)

B ∼ N(−1, 0.5)

C ∼ N(sin(2A+ 2B), 0.1)

D ∼ N(2A2, 0.1)

A B

CD

R2

A ∼ N(1, 0.5)

B ∼ N(2A2, 0.5)

C ∼ N(sin(2A), 0.1)

D ∼ N(−2, 0.5)

A B

CD

R3

A ∼ N(sin(2B + 2D), 0.1)

B ∼ N(−1, 0.5)

C ∼ N(2, 0.5)

D ∼ N(−2, 0.5)

A B

CD

R4

A ∼ N(sin(2D), 0.1)

B ∼ N(C2, 0.1)

C ∼ N(2, 0.5)

D ∼ N(sin(C2), 0.1)

Figure 5: BNs in set-v

between the BNs that make up the regimes. The BNs in set-c are depicted in Figure 4, along with the
individual variables’ distributions. In the second set of BNs (set-v), we used the four BNs depicted
in Figure 5, where there are more edge removals and additions between BNs, thus the similarity
between regimes is drastically reduced.

3.1 BN Structure Learning and Priors

For all experiments we used a greedy thick thinning algorithm (Heckerman, 1995) for learning the
structures of the individual BNs, where the marginal likelihood was the target to improve, thus
this is a Bayesian approach that entails regularisation of the structure. Since we were dealing with
continuous data with non-linear relationships between variables, we used Gaussian process priors
for variables with parents during the learning (using the radial basis kernel). Variables without
parents were assigned a normal-inverse-gamma prior.
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The prior p(M) in Equation 3 was parameterised with q(left) = 0.05 and q(right) = 0.5, thus
it is less probable that small subsets will be accepted on the left side of a proposed split, as per the
discussion in Section 2.2.

3.2 Sampling

For each experiment (exp-c and exp-v), we drew samples for each pair Si,j by sampling the appro-
priate BNs. For instance, for S2,2 and exp-c we first drew a number of samples from R1 in Figure 4,
then a number of samples from R2, and finally another number of samples from R1. The number of
samples drawn for each regime was picked at random from a uniform distribution between 50 and
70.

3.3 Methodology

Given a sample, we processed each data point from the sample in turn and ran the proposed al-
gorithm. Each time a new data point di was made available for the algorithm, we calculated the
log-likelihood of this data point given the current regime BN in MC , and then incorporated di into
D and ran the rest of the algorithm. In parallel, we also calculated the log-likelihood of di given a
single BN learnt using all previous data, as well as the log-likelihood of di using the proposed algo-
rithm, but without the MERGE procedure. Thus for each sample we had three sets of log-likelihoods:
Ls, Lnm, Lm (single, no merge and merge), along with the mean values of these sets: L̄s, L̄nm,
L̄m. The following analysis was done for each experiment and pair Si,j :

• 50 samples were drawn from Si,j , resulting in three sets of means: {L̄s}50
1 , {L̄nm}50

1 and
{L̄m}50

1 .

• Two null hypotheses were stated:

– H1
0: The differences between pairs of means in {L̄s}50

1 and {L̄nm}50
1 follow a symmetric

distribution centred at zero.

– H2
0: The differences between pairs of means in {L̄nm}50

1 and {L̄m}50
1 follow a symmet-

ric distribution centred at zero.

• The Wilcoxon signed-rank test was used to test each null hypothesis. Two-tailed p-values
below 0.01 were required to reject the null hypothesis.

3.4 Results and Discussion

In Table 2 we present the results from the exp-c experiment. The first column gives the pair Si,j
under consideration, and the following three columns represent the median of the three sets {L̄s}50

1 ,
{L̄nm}50

1 and {L̄m}50
1 . The final two columns gives the p-values for the two Wilcoxon signed-rank

tests. Table 3 gives the same values for the exp-v experiment.
In both experiments, when there were no regime shifts (S0,1), learning a single BN was sig-

nificantly better than using the proposed learning algorithm. It is possible that a series of closely
located outliers may result in the algorithm deciding to introduce a split in the dataset. However,
the single BN never introduces this split, and it therefore has more data to estimate the parameters
of the joint distribution of the single regime.
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Pair Median {L̄s}501 Median {L̄nm}501 Median {L̄m}501 p-valueH1
0 p-valueH2

0
S0,1 -3.350 -3.487 -3.487 < 0.001∗ 1.0
S1,1 -3.792 -3.220 -3.220 < 0.001∗ 1.0
S2,1 -4.063 -3.155 -3.160 < 0.001∗ 0.955
S2,2 -3.699 -3.390 -3.323 < 0.001∗ < 0.001∗∗

S3,1 -5.484 -3.296 -3.299 < 0.001∗ 0.7865
S3,2 -3.987 -3.482 -3.298 < 0.001∗ < 0.001∗∗

S3,3 -4.020 -3.212 -3.060 < 0.001∗ < 0.001∗∗

S3,4 -4.095 -3.477 -3.196 < 0.001∗ < 0.001∗∗

S3,5 -3.717 -3.214 -3.083 < 0.001∗ < 0.001∗∗

∗ rejection ofH1
0, ∗∗ rejection ofH2

0

Table 2: Results from the exp-c experiment

Pair Median {L̄s}501 Median {L̄nm}501 Median {L̄m}501 p-valueH1
0 p-valueH2

0
S0,1 -3.350 -3.487 -3.487 < 0.001∗ 1.0
S1,1 -3.840 -3.516 -3.524 < 0.001∗ 0.1003
S2,1 -5.100 -3.939 -3.933 < 0.001∗ 0.0267
S2,2 -3.935 -3.561 -3.465 < 0.001∗ < 0.001∗∗

S3,1 -5.399 -3.861 -3.967 < 0.001∗ 0.1231
S3,2 -4.790 -3.691 -3.609 < 0.001∗ < 0.001∗∗

S3,3 -5.084 -3.943 -3.895 < 0.001∗ < 0.001∗∗

S3,4 -5.051 -4.129 -3.939 < 0.001∗ < 0.001∗∗

S3,5 -3.838 -3.407 -3.155 < 0.001∗ < 0.001∗∗

∗ rejection ofH1
0, ∗∗ rejection ofH2

0

Table 3: Results from the exp-v experiment

However, for all systems that exhibit regime changes, the proposed algorithm was significantly
better than using a single BN. This was even true in the exp-c experiment, where the BNs of the
different regimes retained more similarity. This result is very encouraging, as in a real world setting
we would not be able to test how much the BNs change between regimes, however as we have
shown here, the proposed algorithm is sensitive to large as well as small changes.

The transition structures for S1,1, S2,1 and S3,1 are all chains of regimes. As expected, in both
the exp-c and exp-v experiments there was no significant difference between using the proposed
algorithm with or without the MERGE procedure for these pairs. However, for all other pairs the dif-
ference was significant, with a lower median when including the MERGE procedure. When regimes
reoccur, we can get better estimates of the BNs’ parameters by using all data belonging to a specific
regime, as is evident from the increased performance when using the MERGE procedure.

All in all, these baseline results confirms that the algorithm works as intended, adapting to
regime shifts, and thereby suppling a BN which better represents the current regime than a BN
learnt using all the available data.

4. Real World Application

The baseline results from the experiments in Section 3 are very promising, as they confirm that the
proposed algorithm performs as expected. This prompted us to investigate the performance of the
algorithm on real world data. To this end we created two datasets, US and EU , with data from the
financial domain. Each dataset contained five variables which represented the daily price volatility
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Figure 6: Cumulative log-likelihood and splits
for the US dataset
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Figure 7: Cumulative log-likelihood and splits
for the EU dataset

of financial assets. We will omit the full specification and calculation of the price volatility, and
instead refer the interested reader to Bendtsen and Peña (2016c). It will suffice to understand the
price volatility as a measure for the span over which the price of an asset ranges on a specific day,
thus a large span means an increased price volatility. The variables in the two datasets represented
the daily price volatility of the following assets:

• US: short-term US debt, long-term US debt, stocks of US companies, gold and stocks of
companies related to oil and gas.

• EU : stocks of French companies, stocks of German companies, stocks of UK companies,
gold and stocks of companies related to oil and gas.

For each dataset we ran the proposed learning algorithm and calculated the log-likelihood for
each new datapoint (similar to the procedure described in Section 3.3). We then calculated the
cumulative sum of these log-likelihoods. The series are plotted in Figure 6 for US and Figure 7
for EU . In the figures, the solid line represents the proposed algorithm and the dotted line a single
BN. Below the cumulative log-likelihoods we have plotted the data for each variable, along with
the splits introduced by the algorithm. In this setting, data is made available on a daily basis,
thus one iteration of the algorithm needs to be run each day, given the previous day’s model. In
our experiments, the average time to complete one iteration was approximately two minutes, thus
giving the algorithm ample time to complete during the day. However, if working in a domain where
data is more frequent than the time that the algorithm needs to complete, then a mini-batch mode
framework or similar solution needs to be considered.

It is clear that up until September 2008, the performance of the two approaches are approx-
imately equal, however past this date the single BN’s performance deteriorates compared to the
proposed algorithm. During the spring of 2007 it was becoming evident that some of the mort-
gage backed securities that were being traded, and used as collateral, were not as safe as previously
thought. Bear Stearns liquidated two of its hedge funds in late July, and BNP Paribas froze three
of their funds in August, as they were unable to price them. These issues escalated in 2008, and in
September two major events occurred in the US financial system: first on 2008-09-07 the US gov-
ernment decided to bail out Fannie Mae and Freddie Mac, two firms that were guaranteeing a large
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part of the notorious sub-prime mortgage market, and then Lehman Brothers filed for bankruptcy
on 2008-09-15. It was after these two events that the growing US financial crisis became a full
blown global financial crisis. Figure 6 and Figure 7 suggest that there were regime shifts among
the price volatilities measured during this period, and that the proposed algorithm is able to adapt
to these shifts, since the cumulative log-likelihood does not dramatically change but rather seems to
decrease at the same rate.

5. Conclusions and Summary

We have proposed a regime aware learning algorithm for learning a sequence of BNs in order to
adapt to regime changes in the underlying system being modelled. In order to evaluate the feasibility
of the algorithm, we created a baseline test against learning a single BN. Our experiments show
that the proposed algorithm significantly outperforms the single BN, even in cases where there are
similarities between the BNs of the different regimes. We have also shown that by exploiting the fact
that regimes may reoccur, the algorithm’s performance can be further improved. Our experiments
on real world data suggest that the algorithm is able to adapt to regime changes in financial data,
allowing the investigator to have a BN at their disposal that better reflects the current regime of the
modelled system.

In this paper we have only concerned ourselves with determining that the proposed algorithm
works as expected. From here there are several important aspects that will require further investi-
gation. For instance, a comparison of our proposed algorithm with other approaches, e.g. that of
Nielsen and Nielsen (2008), would inform us of cases where the approaches may outperform each
other. Furthermore, while in this paper we have focused on the BN of the current regime, the entire
sequence of BNs that is generated can be informative, and may be combined into a gated Bayesian
network (Bendtsen and Peña, 2016a) in such a way that it may be possible to predict which regime
the underlying system may transition into next, and how long it will take for this transition to hap-
pen. We are also interested in attempting to remove any uncertainty about the effect of the BN
structure learning algorithm, potentially using exact structure learning (Yuan and Malone, 2013;
Sonntag et al., 2015).
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