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Abstract

This paper proposes the use of estimation of distribution algorithms for unsupervised
learning of Bayesian networks. The empirical results reported for one of the simplest es-
timation of distribution algorithms confirm the ability of this approach to induce models
that show (i) similar fitness of the learning data to that of the original models, (ii) satis-
factory generalization of the learning data to previously unseen data, and (iii) closeness
to the original models in terms of conditional (in)dependence statements encoded.

1 Introduction

One of the main problems that arises in a great
variety of fields, including artificial intelligence
and statistics, is the so-called data clustering
problem. Given some data in the form of a set
of instances with an underlying group-structure,
data clustering may be roughly defined as find-
ing the best description of the underlying group-
structure according to a certain criterion, when
the true group membership of every instance is
unknown. Each of the groups is called a cluster.

Among the different interpretations and ex-
pectations that the term data clustering gives
rise to, this paper is limited to those data clus-
tering problems defined basically by the follow-
ing assumptions:

• A database d containing N instances or
cases, i.e., d = {x1, . . . ,xN}, is available.
Furthermore, the l-th case of d is repre-
sented by an (n + 1)-dimensional vector
xl = (xl1, . . . , xln+1) = (cl, yl1, . . . , yln),
where cl is the unknown cluster member-
ship of xl, and yl = (yl1, . . . , yln) is the
n-dimensional discrete vector of observa-
tions or predictive attributes of xl for all l.

• The number of clusters in the underlying
group-structure of d, in the forthcoming re-
ferred to as K, is known.

• Each of the K underlying clusters in d
corresponds to a physical process defined
by an unknown joint probability distribu-
tion. Then, every case of d may be seen as
sampled from exactly one of these K un-
known joint probability distributions. Con-
sequently, it is assumed the existence of an
(n + 1)-dimensional random variable X =
(X1, . . . , Xn+1) partitioned as X = (C, Y )
into a unidimensional discrete random vari-
able C, i.e., the cluster random variable,
that represents the cluster membership,
and an n-dimensional discrete random vari-
able Y = (Y1, . . . , Yn), i.e., the predictive
random variable, that represents the set of
predictive attributes. Moreover, it is usual
to assume that the mechanism that gener-
ated d works in two stages: First, one of
the physical processes associated with the
K clusters that exist in d is somehow se-
lected according to a probability distribu-
tion for C and, then, an instance is some-
how generated according to the joint prob-
ability distribution for Y that the selected
physical process defines.

• The parametric forms of the joint proba-
bility distributions that govern the mecha-
nism that generated d are all multinomial.

Under these assumptions, data clustering is



usually approached from the probabilistic or
model-based perspective: The description of
the K underlying clusters of d is accomplished
through the probabilistic modelling of the mech-
anism that generated d. Consequently, solving
a data clustering problem reduces to learning
a joint probability distribution for X from d.
This paper approaches this task by learning a
Bayesian network for data clustering for X from
d. In the forthcoming, unsupervised learning is
used as a synonym of data clustering.

A Bayesian network (BN) for data clustering
for X is a graphical factorization of a joint prob-
ability distribution for X, p(x). A BN for data
clustering for X consists of (i) a directed acyclic
graph (DAG) s, whose nodes correspond to
the unidimensional random variables of X, de-
termining the conditional (in)dependencies be-
tween the random variables of X, i.e., the model
structure, and (ii) a set of local probability dis-
tributions for s. Moreover, it is common to
constraint s so that every Yi is a child of C.
This structural constraint is somehow imposed
by the assumption about how the mechanism
that generated d works.

The joint probability distribution for X en-
coded by a BN for data clustering for X graph-
ically factorizes as follows:

p(x | θs, sh) = p(c | θs, sh)p(y | c, θs, sh)

= p(c | θC , sh)
n∏

i=1

p(yi | c,pa(sY )i,θi, s
h) (1)

where pa(sY )i, with sY the subgraph of s in-
duced by Y , denotes the state of those parents
of Yi that correspond to predictive random vari-
ables, Pa(sY )i, for all i. The local probability
distributions of the BN for data clustering for X
are those induced by the terms in Equation 1,
and they depend on a finite set of parameters
θs = (θC ,θ1, . . . , θn), i.e., the model parame-
ters. Moreover, sh denotes the hypothesis that
the true joint probability distribution for X can
be graphically factorized according to the con-
ditional independencies encoded in s.

Typically, the local probability distributions
of a BN for data clustering for X are univari-
ate multinomial distributions. As K clusters

exist, C can take K distinct values denoted by
c1, . . . , cK . Then, p(c | θC , sh) consists of a set
of probabilities of the form p(cg | θC , sh) =
θg > 0 for all g. Furthermore,

∑K
g=1 θg = 1

and θC = (θ1, . . . , θK). Besides, let us assume
that Yi can take ri distinct values denoted by
y1

i , . . . , y
ri
i , and that Pa(sY )i can have qi dis-

tinct states denoted by pa(sY )1i , . . . , pa(sY )qi
i

with qi =
∏

Ye∈Pa(sY )i
re for all i. Then,

p(yi | cg, pa(sY )j
i , θi, s

h) for all g, i, and j
consist of a set of probabilities of the form
p(yk

i | cg,pa(sY )j
i , θi, s

h) = θgjk
i > 0 for all

k. Moreover,
∑ri

k=1 θgjk
i = 1, and θi = (θg

i )
K
g=1

with θg
i = (θgj

i )qi
j=1 and θgj

i = (θgjk
i )ri

k=1 for all
g, i, and j. Figure 1 shows an example of a BN
for data clustering.

As seen in Equation 1, the description of
the K clusters in d encoded by a BN for data
clustering for X induced from d consists of
(i) p(c | θs, sh) which represents a probability
distribution for C modelling how one of the clus-
ters was selected by the mechanism that gener-
ated d, and (ii) p(y | cg, θs, s

h) for all g which
represent a set of conditional joint probability
distributions for Y given a state of C modelling
how the mechanism caused every instance sum-
marized in d, after a cluster was selected. Note
that p(y | cg, θs, s

h) for all g graphically factor-
ize further according to the conditional indepen-
dencies encoded in s (see Equation 1). There-
fore, once a BN for data clustering for X has
been induced from d, it constitutes an effective
device for reasoning under uncertainty. How-
ever, learning such a model is challenging in
most cases. Among the different approaches to
this task, this paper is concerned with the inter-
pretation of unsupervised learning of BNs as an
optimization problem, where the search space
is the space of structures of BNs for data clus-
tering, and the objective function assesses the
quality of every solution in the search space with
respect to the learning database d and, possi-
bly, some prior knowledge. Note that the search
space can be restricted to the space of DAGs
for Y , due to the structural constraint imposed
on BNs for data clustering, i.e., every Yi is a
child of C. As the result reported by Chicker-
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Figure 1: Model structure (left), model parameters (middle), and local probability distributions
(right) of a BN for data clustering for X = (C, Y ) = (C, Y1, Y2, Y3). It is assumed that two clusters
exist and that all the unidimensional predictive random variables are binary.

ing (1996a) applies, this approach to unsuper-
vised learning of BNs constitutes an NP-hard
optimization problem, when the objective func-
tion is the Bayesian Dirichlet equivalent score.
Moreover, it is assumed that this hardness holds
for other common scores as well, though there
is not yet a formal proof. These results jus-
tify the heuristic nature of the majority of algo-
rithms for unsupervised learning BNs. To our
knowledge, only deterministic heuristic search
strategies have received attention for this task
(e.g., (Peña et al., 1999; Peña et al., 2002)),
mainly inspired by the Bayesian structural EM
(BSEM) algorithm (Friedman, 1998). However,
the complexity of unsupervised learning of BNs
calls for the consideration of randomness in or-
der to overcome some drawbacks of determinis-
tic heuristic search strategies, such as local op-
timality and dependence on the initial solution.

The remainder of this paper is structured
as follows. Section 2 introduces the class of
stochastic heuristic search strategies that this
paper proposes for unsupervised learning of
BNs: A relatively novel family of evolutionary
algorithms called estimation of distribution al-
gorithms. Section 3 compiles some experimen-
tal results that confirm the effectiveness of one

of the simplest estimation of distribution algo-
rithms for unsupervised learning of BNs. Fi-
nally, some conclusions are drawn in Section 4.

2 Estimation of Distribution
Algorithms

The evolutionary algorithm (EA) paradigm
groups a set of stochastic heuristic search strate-
gies for problem optimization whose main fea-
ture is that of being inspired by natural evolu-
tion of species. That is why much of the nomen-
clature of EAs is borrowed from the field of nat-
ural evolution: A population refers to a set of so-
lutions, each solution is called an individual, and
each basic component of an individual is named
a gene. The main elements of most EAs are: An
initial population, a selection method over indi-
viduals, a set of random operators over individu-
als, and a replacement method over individuals.
Basically, all the EAs work in the same iterative
way: At each iteration or generation some in-
dividuals of the current population are selected
according to the selection method and modified
by the random operators in order to create new
individuals and, consequently, a new population
through the replacement method. The objective
of this iterative process is to evolve the popula-



tion towards promising zones of the search space
of the optimization problem at hand.

The main advantages of EAs for problem op-
timization are their wide applicability and good
performance. Unfortunately, EAs are not ex-
empt of drawbacks. For instance, some opti-
mization problems may require the design of
specific random operators. However, the worst
characteristic of most EAs is probably their de-
pendence on a set of parameters (number of gen-
erations, size of the population, probabilities for
applying the random operators, etc.) that have
to be experimentally tuned for the optimization
problem and the particular EA at hand. With
the aim of overcoming some of these drawbacks,
a novel family of EAs, known as estimation of
distribution algorithms (EDAs), has been re-
cently proposed. EDAs do so by replacing the
application of random operators at each itera-
tion by learning and, subsequently, simulating
a joint probability distribution for a database
conformed with those individuals selected from
the current population by means of the selec-
tion method. The generic EDA iterates between
three main steps, after the individuals of the
initial population po1 have been generated and
evaluated. The iterative process ends when the
stopping criterion is met. This causes the best
solution found so far to be returned. The three
main steps are as follows for the u-th iteration
for all u. First, M of the Q individuals of the
current population pou are selected according
to the selection method. Then, these individ-
uals are used to construct a learning database
du from which a joint probability distribution
for Z, pu(z), is induced. Z = (Z1, . . . , Zm) de-
notes an m-dimensional discrete random vari-
able, where each Zi is associated with one of
the m genes of every individual in du. It should
be noticed that Z is limited to be discrete due
to the combinatorial nature of the optimization
problem that this paper addresses, i.e., unsu-
pervised induction of BNs. However, this can
be fully generalized to deal with continuous op-
timization problems. Finally, R individuals are
sampled from pu(z) and evaluated in order to
create the offspring population ofu which, then,
is used to generate the new population pou+1

1. Create po1 by randomly generating Q individuals
2. Evaluate the individuals in po1
3. u=1
4. while the stopping criterion is not met do
5. Create du by selecting M individuals from pou
6. Learn pu(z) from du

7. Create ofu by sampling R instances from pu(z)
8. Evaluate the individuals in ofu
9. Create pou+1 by merging pou and ofu

10. u++

11. Return the best individual found so far

Figure 2: Pseudocode of the generic EDA.

by replacing some individuals of pou according
to the replacement method. See Figure 2 for a
schematic of the generic EDA.

Learning pu(z) from du constitutes the main
bottleneck of the u-th iteration of the generic
EDA for all u. Obviously, the computation of
all the parameters needed to completely specify
this joint probability distribution in the stan-
dard representation is often impractical. There-
fore, several families of EDAs have arisen where
pu(z) is assumed to factorize according to a cer-
tain class of probabilistic models for all u. The
reader is referred to the book by Larrañaga and
Lozano (2001) for a review of EDAs for combi-
natorial and continuous problem optimization.

3 Empirical Evaluation

3.1 Evaluation Setup

The empirical evaluation of the approach pro-
posed in this paper involves one of the simplest
EDAs known as the univariate marginal distri-
bution algorithm (UMDA) (Mühlenbein, 1997).
The generic UMDA is based on the assumption
that pu(z) =

∏m
i=1 pu(zi) for all u. Moreover,

pu(zi) is restricted to be a univariate multi-
nomial distribution whose parameters are esti-
mated from du according to the maximum like-
lihood criterion for all i and u. In the forth-
coming, the term UMDA refers to the problem
specific instance of the generic UMDA employed
in the evaluation.

The representation considered in the UMDA
for every solution sY in the search space uses
an n × n adjacency matrix a = (aij), such
that (i) aij = 2 if Yj ∈ Pa(sY )i, (ii) aij = 1
if Yi ∈ Pa(sY )j , and (iii) aij = 0 other-



wise for all i and j. Therefore, every solu-
tion in the search space can be represented by
an m-dimensional individual z = (z1, . . . , zm),
where m = (n2−n)/2, consisting only of the el-
ements of a either above or below the diagonal.
As the creation of po1 and ofu for all u is not
closed with respect to the DAG property, indi-
viduals representing invalid solutions are likely
to be produced by the UMDA. An invalid solu-
tion is repaired by, iteratively, removing a ran-
domly chosen directed edge that invalidates the
DAG property until a DAG is obtained. This
decoding process, if needed, does not repair in-
dividuals but the solutions represented by them.

The objective function for the UMDA is
the Bayesian information criterion (BIC). A
multiple-restart version of the EM algorithm is
employed to estimate the maximum likelihood
model parameters for a given model structure.

The selection and the replacement methods
of the UMDA are as follows. The most fitted
individuals in pou are selected to conform du

for all u. On the other hand, pou+1 is obtained
as the result of replacing the least fitted indi-
viduals in pou by ofu for all u. Moreover, the
size of the population Q, the number of selected
individuals M , and the size of the generated off-
spring R are set to 75, 25, and 50, respectively.
The UMDA halts after 50 generations, i.e., after
evaluating 2525 solutions.

The evaluation is carried out on 3 synthetic
databases obtained by sampling 3 BNs for data
clustering of increasing complexity. The knowl-
edge of the 3 original models underlying the
databases enables to assess the performance
of the UMDA by comparing the original and
the elicited models. The 3 original models
involved a binary cluster random variable C
and a 9-dimensional predictive random variable
Y = (Y1, . . . , Y9), with Yi binary for all i. The
number of directed edges between unidimen-
sional predictive random variables in each of the
3 original models was 10, 15, and 20. These di-
rected edges were uniformly generated, as far as
no cycle was created. Note that each of the 3
original models had 9 additional directed edges
due to the structural constraint imposed on BNs
for data clustering, i.e., every Yi was a child of

C. The model parameters for each of the 3 orig-
inal models were generated at random. From
each of the 3 original models 5000 cases were
sampled. Each case consisted only of a state for
Y , i.e., all the entries for C in the samples were
missing. The first 4000 cases of each sample
were used as learning data and, the last 1000
cases were set aside and used as testing data.
In the forthcoming, the 3 learning databases are
referred to as d10, d15, and d20, respectively.

In the evaluation, the performance of the
UMDA is assessed according to its capacity for
obtaining BNs for data clustering that show
satisfactory (i) ability to summarize the learn-
ing data, (ii) ability to generalize the learning
data to previously unseen data, and (iii) simi-
larity to the true model underlying the learn-
ing data. The BIC values scored by the in-
duced models serve for assessing the first ability.
The second ability can be measured by calculat-
ing the log likelihood of each hold-out database
given the corresponding elicited model. Fi-
nally, the similarity between each learnt model
and the corresponding original model should
be assessed by measuring the closeness between
the equivalence classes to which these models
belong. For this purpose, the approach pro-
posed by Chickering (1996b) is taken: First,
the completed partially directed acyclic graphs
(CPDAGs) for both equivalence classes are gen-
erated and, then, the number of edges that are
different in these 2 graphs is reported.

It should be emphasized that the best indica-
tors of the performance of the UMDA are the
BIC values of the learnt BNs for data cluster-
ing, because the BIC is the objective function
that guides the search. The other 2 performance
measures considered are also relevant for the
evaluation, though secondary.

For comparison purposes, 2 instances of the
BSEM algorithm are used as benchmarks. The
first instance, referred to as BSEM+HC, re-
duces the maximization step of each iteration of
the generic BSEM algorithm to a hill-climbing
search that, having the naive Bayes model as
initial model, considers all the possible addi-
tions, removals, and non-covered reversals of
a single arc at each point in the search. The



score that guides the search at each maximiza-
tion step of the BSEM+HC is the expected BIC
with respect to the best model found so far. On
the other hand, the second instance, referred
to as BSEM+UMDA, solves the maximization
step via the UMDA but, in this case, the objec-
tive function for the UMDA is the expected BIC
with respect to the best model found so far, and
Q = 7500, M = 2500, and R = 5000.

3.2 Results

The graphs in Figure 3 show the performance
of the BNs for data clustering induced by the
UMDA from d10, d15, and d20, as a function
of the number of generations. The graphs in the
first row report the BIC values for the learning
databases, those in the second row measure the
log likelihood of the hold-out databases, and
those in the third row show the distances be-
tween the CPDAGs of the equivalence classes
of the original and the induced models. Ta-
ble 1 complements Figure 3 with a comparison
of the performance of the models obtained via
the BSEM+HC, the BSEM+UMDA, and the
UMDA. All the performance criteria values are
given in terms of average and standard devia-
tion over 5 independent runs for the UMDA,
and over 10 independent runs for the 2 bench-
marks. The performance criteria values of the
original models are also given.

The most important observation that can be
gained from Figure 3 and Table 1 is that the
UMDA is able to evolve the populations towards
models that perform well with respect to the ob-
jective function, i.e., the BIC, independently of
the complexity of the learning databases. More-
over, the final models considerably improve the
initial models, and can be totally compared with
the original models in terms of BIC values. The
small standard deviation values reported in Ta-
ble 1 for the BIC values reflect the robustness of
the UMDA for the databases in the evaluation.

It is also interesting to note in the graphs
of the first row of Figure 3 that, as the num-
ber of generations increases, the curves corre-
sponding to the BIC values of the population
averages (UMDA population in Figure 3) get
closer to the curves corresponding to the BIC

values of the best models found so far. This ob-
servation reflects the good behavior of the ex-
periments regarding convergence. Furthermore,
this fact together with the fairly flat shape of the
curves corresponding to the BIC values of the
best models found so far during the final genera-
tions indicate that further improvements are un-
like to occur, if more generations of the UMDA
are considered in the experiments. Therefore,
the stopping criterion used, i.e., 50 generations,
seems a sensible choice for the databases in the
evaluation. This makes the good performance
of the UMDA especially satisfactory: For the 3
databases in the evaluation, the UMDA iden-
tifies final models that perform similarly well
as the original models by evaluating only 2525
solutions out of the approximately 1.2 × 1015

different solutions in the search space. Similar
conclusions are reported by Blanco et al. (2002)
when the UMDA is applied to BN induction
from complete data.

Regarding the 2 secondary performance mea-
sures, i.e., ability to generalize the learning data
to previously unseen data and closeness to the
true model underlying the learning data, it can
be said that the approach proposed in this pa-
per performs satisfactorily for d10, d15, and
d20: As the problem optimization process pro-
gresses, there is an increase in the values that
the best models found so far by the UMDA score
for both performance criteria (see the graphs
of the second and the third rows of Figure 3).
Therefore, these results confirm that the BIC is
an appropriate objective function to guide the
search towards models that, in addition to sum-
marize well the learning data, generalize well to
previously unseen data, and encode conditional
(in)dependence models fairly similar to those of
the original models.

The reliability of the UMDA to recover the
true models underlying d10, d15, and d20
can be appreciated as follows. Table 1 sum-
marizes the average number of relationships,
i.e., non-edges, undirected edges, and directed
edges with any orientation, that are different in
the CPDAGs corresponding to the equivalence
classes of the original and the induced models,
out of the 36 pairwise combinations of unidi-



Figure 3: Performance of the BNs for data clustering induced by the UMDA from d10, d15, and
d20, as a function of the number of generations.

Table 1: Comparison of the performance of the BNs for data clustering induced by the BSEM+HC,
the BSEM+UMDA, and the UMDA from d10, d15, and d20.

BIC Log likelihood CPDAG distance

Data Model Initial F inal Initial F inal Initial F inal

d10 Original −8709 −8709 −2156 −2156 — —
BSEM+HC −10372±0 −8732±26 −2203±6 −2159±3 28±0 3±3
BSEM+UMDA −10372±0 −8726±18 −2204±6 −2158±1 28±0 3±3
UMDA −8935±37 −8714±5 −2191±19 −2158±2 17±3 2±2

d15 Original −8898 −8898 −2189 −2189 — —
BSEM+HC −10502±0 −8971±66 −2250±7 −2197±9 32±0 9±6
BSEM+UMDA −10502±0 −8930±59 −2249±5 −2195±10 32±0 6±5
UMDA −9202±28 −8913±35 −2249±7 −2195±11 22±2 4±2

d20 Original −9094 −9094 −2232 −2232 — —
BSEM+HC −10658±0 −9145±45 −2298±8 −2249±11 31±0 10±5
BSEM+UMDA −10658±0 −9127±11 −2294±8 −2248±4 31±0 9±1
UMDA −9368±37 −9107±19 −2302±11 −2241±4 21±3 9±3



mensional predictive random variables. Then,
the number of relationships that coincide in
the CPDAGs corresponding to the equivalence
classes of the original model and the one learnt
by the UMDA is, on average, 34 (94 %) for d10,
32 (89 %) for d15, and 27 (75 %) for d20.

As expected, the performance of the induced
models with respect to the 2 secondary per-
formance measures degrades as the complexity
of the models underlying the learning data in-
creases. However, the UMDA is always able to
learn models that perform very well in terms
of the BIC, which is the primary performance
criterion. It is an open question as to whether
considering EDAs more sophisticated than the
UMDA and/or larger learning databases would
yield to better results for the 2 secondary per-
formance measures, as the complexity of the un-
derlying models increases.

Finally, the results compiled in Table 1
show that the UMDA clearly outperforms both
benchmarks. Moreover, the UMDA also ap-
pears advantageous within the framework of
the BSEM algorithm, as the BSEM+UMDA
behaves more effectively than the BSEM+HC.
In favor of both the BSEM+HC and the
BSEM+UMDA, it must be said that they are
typically less time consuming than the UMDA,
despite they always evaluate a considerably
larger number of solutions than the UMDA. The
reason is that every evaluation performed by
the UMDA implies running the EM algorithm.
Nevertheless, the benefits of the UMDA for un-
supervised learning of BNs are apparent.

4 Conclusions

The main contribution of this paper has been
the proposal and empirical evaluation of EDAs
for unsupervised learning of BNs. Specifi-
cally, the evaluation has been limited to one
of the simplest EDAs, namely, the UMDA.
The evaluation has been performed on synthetic
databases in order to compare the learnt models
with those underlying the learning databases.
The evaluation has mainly focused on assessing
the capacity of the UMDA for inducing BNs for
data clustering that performed well with respect

to (i) the ability to summarize the learning data,
(ii) the ability to generalize the learning data to
previously unseen data, and (iii) the closeness
to the original models. The results reported
are encouraging, as they show that the UMDA
can be considered a reliable and robust tech-
nique for unsupervised learning of BNs. Due
to space limitations, a thorough evaluation, in-
cluding real data and EDAs more sophisticated
than the UMDA, is deferred to an extended ver-
sion of this paper. Finally, it should be noted
that the work developed in this paper can be
readily applied to BN induction from incom-
plete data in general. The validation of this
approach may be an issue of further research.
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P. Larrañaga and J. A. Lozano (eds.). 2001. Es-
timation of Distribution Algorithms. A New Tool
for Evolutionary Computation. Kluwer Academic
Publishers.

H. Mühlenbein. 1997. The Equation for Response to
Selection and Its Use for Prediction. Evolutionary
Computation, 5(3):303–346.

J. M. Peña, J. A. Lozano, and P. Larrañaga. 1999.
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Learning Recursive Bayesian Multinets for Data
Clustering by Means of Constructive Induction.
Machine Learning, 47(1):63–89.


