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Abstract. Marginal AMP chain graphs are a recently introduced fam-
ily of models that is based on graphs that may have undirected, directed
and bidirected edges. They unify and generalize the AMP and the mul-
tivariate regression interpretations of chain graphs. In this paper, we
present a constraint based algorithm for learning a marginal AMP chain
graph from a probability distribution which is faithful to it. We also
show that the extension of Meek’s conjecture to marginal AMP chain
graphs does not hold, which compromises the development of efficient
and correct score+search learning algorithms under assumptions weaker
than faithfulness.
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1 Introduction

Chain graphs (CGs) are graphs with possibly directed and undirected edges,
and no semidirected cycle. They have been extensively studied as a formal-
ism to represent independence models, because they can model symmetric and
asymmetric relationships between the random variables of interest. However,
there are three different interpretations of CGs as independence models: The
Lauritzen-Wermuth-Frydenberg (LWF) interpretation [6], the multivariate re-
gression (MVR) interpretation [4], and the Andersson-Madigan-Perlman (AMP)
interpretation [1]. It is worth mentioning that no interpretation subsumes an-
other: There are many independence models that can be represented by a CG
under one interpretation but that cannot be represented by any CG under the
other interpretations [1, 17]. Moreover, although MVR CGs were originally rep-
resented using dashed directed and undirected edges, we like other authors prefer
to represent them using solid directed and bidirected edges.

Recently, a new family of models has been proposed to unify and general-
ize the AMP and MVR interpretations of CGs [11]. This new family, named
marginal AMP (MAMP) CGs, is based on graphs that may have undirected,
directed and bidirected edges. In this paper, we extend [11] by presenting an
algorithm for learning an MAMP CG from a probability distribution which is
faithful to it. Our algorithm is constraint based and builds upon those devel-
oped in [16] and [10] for learning, respectively, MVR and AMP CGs under the



faithfulness assumption. Finally, note that there also exist algorithms for learn-
ing LWF CGs under the faithfulness assumption [7, 19] and under the milder
composition property assumption [13]. In this paper, we also show that the ex-
tension of Meek’s conjecture to MAMP CGs does not hold, which compromises
the development of efficient and correct score+search learning algorithms under
assumptions weaker than faithfulness.

The rest of this paper is organized as follows. We start with some prelimi-
naries in Section 2. Then, we introduce MAMP CGs in Section 3, followed by
the algorithm for learning them in Section 4. We close the paper with some
discussion in Section 5.

2 Preliminaries

In this section, we introduce some concepts of models based on graphs, i.e.
graphical models. Most of these concepts have a unique definition in the liter-
ature. However, a few concepts have more than one and we opt for the most
suitable in this work. All the graphs and probability distributions in this paper
are defined over a finite set V . All the graphs in this paper are simple, i.e. they
contain at most one edge between any pair of nodes. The elements of V are not
distinguished from singletons.

If a graph G contains an undirected, directed or bidirected edge between two
nodes V1 and V2, then we write that V1 − V2, V1 → V2 or V1 ↔ V2 is in G. We
represent with a circle, such as in ←⊸or ⊸⊸, that the end of an edge is unspecified,
i.e. it may be an arrow tip or nothing. The parents of a set of nodes X of G is
the set paG(X) = {V1∣V1 → V2 is in G, V1 ∉X and V2 ∈X}. The children of X is
the set chG(X) = {V1∣V1 ← V2 is in G, V1 ∉ X and V2 ∈ X}. The neighbors of X
is the set neG(X) = {V1∣V1 − V2 is in G, V1 ∉ X and V2 ∈ X}. The spouses of X
is the set spG(X) = {V1∣V1 ↔ V2 is in G, V1 ∉ X and V2 ∈ X}. The adjacents of
X is the set adG(X) = neG(X) ∪ paG(X) ∪ chG(X) ∪ spG(X). A route between
a node V1 and a node Vn in G is a sequence of (not necessarily distinct) nodes
V1, . . . , Vn such that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. If the nodes in the route
are all distinct, then the route is called a path. The length of a route is the
number of (not necessarily distinct) edges in the route, e.g. the length of the
route V1, . . . , Vn is n − 1. A route is called descending if Vi → Vi+1 or Vi − Vi+1 is
in G for all 1 ≤ i < n. A route is called strictly descending if Vi → Vi+1 is in G for
all 1 ≤ i < n. The descendants of a set of nodes X of G is the set deG(X) = {Vn∣
there is a descending route from V1 to Vn in G, V1 ∈ X and Vn ∉ X}. The strict
ascendants of X is the set sanG(X) = {V1∣ there is a strictly descending route
from V1 to Vn in G, V1 ∉ X and Vn ∈ X}. A route V1, . . . , Vn in G is called a
cycle if Vn = V1. Moreover, it is called a semidirected cycle if Vn = V1, V1 → V2 is
in G and Vi → Vi+1, Vi ↔ Vi+1 or Vi − Vi+1 is in G for all 1 < i < n. A cycle has
a chord if two non-consecutive nodes of the cycle are adjacent in G. An AMP
chain graph (AMP CG) is a graph whose every edge is directed or undirected
such that it has no semidirected cycles. A MVR chain graph (MVR CG) is a
graph whose every edge is directed or bidirected such that it has no semidirected



cycles. The subgraph of G induced by a set of its nodes X is the graph over X
that has all and only the edges in G whose both ends are in X.

We now recall the semantics of AMP and MVR CGs. A node B in a path
ρ in an AMP CG G is called a triplex node in ρ if A → B ← C, A → B −C, or
A−B ← C is a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when

– every triplex node in ρ is in Z ∪ sanG(Z), and
– every non-triplex node B in ρ is outside Z, unless A−B −C is a subpath of
ρ and paG(B) ∖Z ≠ ∅.

A node B in a path ρ in an MVR CG G is called a triplex node in ρ if
A ←⊸B ←⊸ C is a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V
when

– every triplex node in ρ is in Z ∪ sanG(Z), and
– every non-triplex node B in ρ is outside Z.

Let X, Y and Z denote three disjoint subsets of V . When there is no Z-open
path in an AMP or MVR CG G between a node in X and a node in Y , we
say that X is separated from Y given Z in G and denote it as X ⊥GY ∣Z. The
independence model represented by G, denoted as I(G), is the set of separations
X⊥GY ∣Z. In general, I(G) is different whether G is an AMP or MVR CG.

3 MAMP CGs

In this section, we review marginal AMP (MAMP) CGs. We refer the reader
to [11] for more details. Specifically, a graph G containing possibly directed,
bidirected and undirected edges is an MAMP CG if

C1. G has no semidirected cycle,
C2. G has no cycle V1, . . . , Vn = V1 such that V1 ↔ V2 is in G and Vi − Vi+1 is in

G for all 1 < i < n, and
C3. if V1 − V2 − V3 is in G and spG(V2) ≠ ∅, then V1 − V3 is in G too.

The semantics of MAMP CGs is as follows. A node B in a path ρ in an
MAMP CG G is called a triplex node in ρ if A ←⊸B ←⊸ C, A ←⊸B − C, or
A−B ←⊸ C is a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when

– every triplex node in ρ is in Z ∪ sanG(Z), and
– every non-triplex node B in ρ is outside Z, unless A−B −C is a subpath of
ρ and spG(B) ≠ ∅ or paG(B) ∖Z ≠ ∅.

Let X, Y and Z denote three disjoint subsets of V . When there is no Z-open
path in G between a node in X and a node in Y , we say that X is separated
from Y given Z in G and denote it as X ⊥ GY ∣Z. The independence model
represented by G, denoted as I(G), is the set of separations X ⊥ GY ∣Z. We
denote by X⊥pY ∣Z (respectively X /⊥p Y ∣Z) that X is independent (respectively



dependent) of Y given Z in a probability distribution p. We say that p is faithful
to G when X ⊥ pY ∣Z iff X ⊥ GY ∣Z for all X, Y and Z disjoint subsets of V .
We say that two MAMP CGs are Markov equivalent if they represent the same
independence model. In an MAMP CG, a triplex ({A,C},B) is an induced
subgraph of the form A ←⊸B ←⊸C, A ←⊸B − C, or A − B ←⊸ C. We say that
two MAMP CGs are triplex equivalent if they have the same adjacencies and
the same triplexes. Two MAMP CGs are Markov equivalent iff they are triplex
equivalent [11, Theorem 7].

Clearly, the union of AMP and MVR CGs is a subfamily of MAMP CGs.
The following example shows that it is a proper subfamily.

Example 1. The independence model represented by the MAMP CG G below
cannot be represented by any AMP or MVR CG.

A B C

D E

To see it, assume to the contrary that it can be represented by an AMP
CG H. Note that H is an MAMP CG too. Then, G and H must have the
same triplexes. Then, H must have triplexes ({A,D},B) and ({A,C},B) but
no triplex ({C,D},B). So, C − B −D must be in H. Moreover, H must have
a triplex ({B,E},C). So, C ← E must be in H. However, this implies that H
does not have a triplex ({C,D},E), which is a contradiction because G has
such a triplex. To see that no MVR CG can represent the independence model
represented by G, simply note that no MVR CG can have triplexes ({A,D},B)
and ({A,C},B) but no triplex ({C,D},B).

Finally, other families of models that are based on graphs that may contain
undirected, directed and bidirected edges are summary graphs after replacing
the dashed undirected edges with bidirected edges [4], MC graphs [5], maximal
ancestral graphs [14], and loopless mixed graphs [15]. However, the separation
criteria for these families are identical to that of MVR CGs. Then, MVR CGs
are a subfamily of these families but AMP CGs are not. See also [14, p. 1025]
and [15, Sections 4.1-4.3]. Therefore, MAMP CGs are the only graphical models
in the literature that generalize both AMP and MVR CGs.

4 Algorithm for Learning MAMP CGs

In this section, we present our algorithm for learning an MAMP CG from a
probability distribution which is faithful to it. The algorithm builds upon those
developed in [16] and [10] for learning, respectively, MVR and AMP CGs un-
der the faithfulness assumption. The algorithm, which can be seen in Table 1,
resembles the well-known PC algorithm developed in [18] for learning Bayesian
networks under the faithfulness assumption, in the sense that it consists of two



Table 1. Algorithm for learning MAMP CGs.

Input: A probability distribution p that is faithful to an unknown MAMP CG G.
Output: An MAMP CG H that is triplex equivalent to G.

1 Let H denote the complete undirected graph
2 Set l = 0
3 Repeat while l ≤ ∣V ∣ − 2
4 For each ordered pair of nodes A and B in H st A ∈ adH(B) and

∣[adH(A) ∪ adH(adH(A))] ∖ {A,B}∣ ≥ l
5 If there is some S ⊆ [adH(A) ∪ adH(adH(A))] ∖ {A,B} st ∣S∣ = l and A⊥pB∣S

then
6 Set SAB = SBA = S
7 Remove the edge A −B from H
8 Set l = l + 1
9 Apply the rules R1-R4 to H while possible

10 Replace every edge Az B in H with A→ B
11 Replace every edge A −B or Azx B in H with A↔ B
12 Replace every induced subgraph A↔ B ↔ C in H st B ∈ SAC with A −B −C

13 If H has an induced subgraph A B C then

14 Replace the edge A↔ B in H with A −B
15 Go to line 13
16 Return H

Table 2. Rules R1-R4 in the algorithm for learning MAMP CGs.

R1: A B C ⇒ A B C

∧ B ∉ SAC

R2: A B C ⇒ A B C

∧ B ∈ SAC

R3:
A . . . B

⇒
A . . . B

R4: A B

C

D

⇒ A B

C

D

∧ A ∈ SCD



phases: The first phase (lines 1-8) aims at learning adjacencies, whereas the sec-
ond phase (lines 9-15) aims at directing some of the adjacencies learnt. Specif-
ically, the first phase declares that two nodes are adjacent if and only if they
are not separated by any set of nodes. Note that the algorithm does not test
every possible separator (see line 5). Note also that the separators tested are
tested in increasing order of size (see lines 2, 5 and 8). The second phase consists
of two steps. In the first step (line 9), the ends of some of the edges learnt in
the first phase are blocked according to the rules R1-R4 in Table 2. A block is
represented by a perpendicular line at the edge end such as in z or zx, and it
means that the edge cannot be a directed edge pointing in the direction of the
block. Note that zx does not mean that the edge must be undirected: It means
that the edge cannot be a directed edge in either direction and, thus, it must be
a bidirected or undirected edge. In the second step (lines 10-15), some edges get
directed. Specifically, the edges with exactly one unblocked end get directed in
the direction of the unblocked end. The rest of the edges get bidirected (see line
11), unless this produces a false triplex (see line 12) or violates the constraint
C2 (see lines 13-15). Note that only cycles of length three are checked for the
violation of the constraint C2.

The rules R1-R4 in Table 2 work as follows: If the conditions in the antecedent
of a rule are satisfied, then the modifications in the consequent of the rule are
applied. Note that the ends of some of the edges in the rules are labeled with a
circle such as in z⊸ or ⊸⊸. The circle represents an unspecified end, i.e. a block
or nothing. The modifications in the consequents of the rules consist in adding
some blocks. Note that only the blocks that appear in the consequents are added,
i.e. the circled ends do not get modified. The conditions in the antecedents of
R1, R2 and R4 consist of an induced subgraph of H and the fact that some of
its nodes are or are not in some separators found in line 6. The condition in
the antecedent of R3 consists of just an induced subgraph of H. Specifically, the
antecedent says that there is a cycle in H whose edges have certain blocks. Note
that the cycle must be chordless.

The rest of this section is devoted to prove that our algorithm is correct, i.e.
it returns an MAMP CG the given probability distribution is faithful to. We
start by proving some auxiliary results.

Lemma 1. After having executed line 8, G and H have the same adjacencies.

Proof. Consider any pair of nodes A and B in G. If A ∈ adG(B), then A /⊥pB∣S
for all S ⊆ V ∖{A,B} by the faithfulness assumption. Consequently, A ∈ adH(B)
at all times. On the other hand, if A ∉ adG(B), then consider the following cases.

Case 1 Assume that A ∉ deG(B) or B ∉ deG(A). Assume without loss of gen-
erality that B ∉ deG(A). Then, A⊥ pB∣paG(A) [11, Theorem 5]. Note that,
as shown above, paG(A) ⊆ adH(A) ∖B at all times.

Case 2 Assume that A ∈ deG(B) and B ∈ deG(A). Then, A ⊥ pB∣neG(A) ∪
paG(A ∪ neG(A)) [11, Theorem 5]. Note that, as shown above, neG(A) ∪
paG(A ∪ neG(A)) ⊆ [adH(A) ∪ adH(adH(A))] ∖ {A,B} at all times.



Therefore, in either case, there will exist some S in line 5 such that A⊥pB∣S
and, thus, the edge A − B will be removed from H in line 7. Consequently,
A ∉ adH(B) after line 8.

Lemma 2. The rules R1-R4 block the end of an edge only if the edge is not a
directed edge in G pointing in the direction of the block.

Proof. According to the antecedent of R1, G has a triplex ({A,C},B). Then, G
has an induced subgraph of the form A ←⊸B ←⊸ C, A ←⊸B −C or A −B ←⊸ C.
In either case, the consequent of R1 holds.

According to the antecedent of R2, (i) G does not have a triplex ({A,C},B),
(ii) A ←⊸B or A − B is in G, (iii) B ∈ adG(C), and (iv) A ∉ adG(C). Then,
B → C or B −C is in G. In either case, the consequent of R2 holds.

According to the antecedent of R3, (i) G has a path from A to B with no
directed edge pointing in the direction of A, and (ii) A ∈ adG(B). Then, A← B
cannot be in G because G has no semidirected cycle. Then, the consequent of
R3 holds.

According to the antecedent of R4, neither B → C nor B → D are in G.
Assume to the contrary that A ← B is in G. Then, G must have an induced
subgraph that is consistent with

A B

C

D

because, otherwise, G has a semidirected cycle. However, this contradicts
that A ∈ SCD.

Lemma 3. At line 16, all the undirected edges in H are in G.

Proof. Note that lines 10-11 imply that H has no undirected edge when line 12
is to be executed. Note also that any undirected edges A −B and B −C added
to H in line 12 must exist in G, because this implies that H has an induced
subgraph A zx B zx C with B ∈ SAC when line 11 is to be executed, which
implies that (i) A and B as well as B and C are adjacent in G whereas A and
C are not adjacent in G by Lemma 1, and (ii) G has no directed edge between
A and B or B and C. Then, A −B −C must be in G by Lemma 2 and the fact
that B ∈ SAC .

The paragraph above implies that all the undirected edges in H are in G
when lines 13-15 are to be executed for the first time, which implies that the
undirected edge added to H in the first execution of lines 13-15 must also be in
G due to the constraints C1 and C2. By repeatedly applying this argument, all
the undirected edges in H at line 16 must be in G.

Lemma 4. At line 16, G and H have the same triplexes.



Proof. We first prove that any triplex in H at line 16 is in G. Assume to the
contrary that H at line 16 has a triplex ({A,C},B) that is not in G. This is
possible if and only if H has an induced subgraph of one of the following forms
when lines 10-11 are to be executed:

A B C A B C A B C

A B C A B C A B C

Note that the induced subgraphs above together with Lemma 1 imply that A
is adjacent to B in G, B is adjacent to C in G, and A is not adjacent to C in G.
This together with the assumption made above that G has no triplex ({A,C},B)
implies that B ∈ SAC . Now, note that the second and fourth induced subgraphs
above are impossible because, otherwise, A z⊸B would be in H by R2. Likewise,
the third and fifth induced subgraphs above are impossible because, otherwise,
B z⊸ C would be in H by R2. Now, note that any triplex that is added to H in
line 11 due to the first and sixth induced subgraphs above is removed from H in
line 12 because, as shown above, B ∈ SAC . Finally, note that no triplex is added
to H in lines 13-15.

We now prove that any triplex ({A,C},B) in G is in H at line 16. Note that
B ∉ SAC . Consider the following cases.

Case 1 Assume that the triplex in G is of the form A → B ⊸⊸ C (respectively
A ⊸⊸ B ← C). Then, when lines 10-11 are to be executed, A z B z⊸C
(respectively A z⊸ B x C) is in H by R1 and Lemmas 1 and 2. Then, the
triplex is added to H in lines 10-11. Moreover, the triplex added is of the
form A → B ⊸⊸ C (respectively A ⊸⊸ B ← C) and, thus, it does not get
removed from H in lines 12-15.

Case 2 Assume that the triplex inG is of the form A↔ B ⊸⊸ C or A ⊸⊸ B ↔ C.
Then, when lines 10-11 are to be executed, A z⊸ B z⊸C is in H by R1 and
Lemmas 1 and 2. Then, the triplex is added to H in lines 10-11. Moreover,
the triplex cannot get removed from H in lines 12-15. To see it, assume the
contrary. Note that all lines 12-15 do is replacing bidirected edges in H with
undirected edges. Thus, the triplex cannot get removed from H unless it is
of the form A↔ B ↔ C, A↔ B −C, or A −B ↔ C. Consider the following
cases.

Case 2.1 Assume that the triplex gets removed from H in line 12. Assume
that the triplex is of the form A ↔ B ↔ C. The proofs for the forms
A↔ B −C and A−B ↔ C are similar. Note that the triplex cannot get
removed from H by applying line 12 to A↔ B ↔ C because, as shown
above, B ∉ SAC . Then, for the triplex to get removed from H in line 12,
H must have two induced subgraphs A′ ↔ A ↔ B and B ↔ C ↔ C ′

with A ∈ SA′B and C ∈ SBC′ when line 12 is to be executed. This implies
that Azx B zx C is in H when lines 10-11 are to be executed because, as
shown above, A z⊸ B z⊸C is in H when lines 10-11 are to be executed.
Therefore, H has two induced subgraphs A′ zx Azx B and B zx C zx C ′

by R2 when lines 10-11 are to be executed. Then, A′−A or A′ ↔ A must



be in G by Lemmas 1 and 2. Then, A −B or A → B must be in G by
Lemmas 1 and 2 and the fact that A ∈ SA′B . However, A→ B cannot be
in G because Azx B is in H when line 11 is to be executed. Then, A−B
must be in G. Likewise, B −C must be in G. However, this contradicts
the assumption that G has a triplex ({A,C},B).

Case 2.2 Assume that the triplex gets removed from H in lines 13-15. Re-
call that all the undirected edges in H at line 16 are in G by Lemma 3.
Therefore, any triplex that gets removed from H in lines 13-15 cannot
exist in G.

The proofs of the following two lemmas can be found in [10, Lemmas 5 and
6]. The fact that G is an AMP CG in that work whereas it is an MAMP CG in
this work is irrelevant for the proofs. What matters is that both works use the
same rules R1-R4.

Lemma 5. After having executed line 9, H does not have any induced subgraph

of the form A B C .

Lemma 6. After having executed line 9, every chordless cycle ρ ∶ V1, . . . , Vn = V1
in H that has an edge Vi z Vi+1 also has an edge Vj x Vj+1.

Lemma 5 is used in the proof of Lemma 6. It is worth noting that one may
think that Lemma 5 implies that H does not have any induced subgraph of the

form A B C after having executed line 12 and, thus, that lines 13-15

are not needed. However, this is wrong as the following example illustrates.

Example 2. The MAMP CG G below shows that lines 13-15 are necessary.

A

B

C D

EF

I A

B

C D

EF

I

G H after line 9

A

B

C D

EF

I

H after line 12

We can now prove the correctness of our algorithm.

Theorem 1. At line 16, H is an MAMP CG that is triplex equivalent to G.



Proof. Lemma 1 implies that H at line 16 has the same adjacencies as G. Lemma
4 implies that H at line 16 has the same triplexes as G. Lemma 6 implies that H
has no semidirected chordless cycle after having executed line 11. This implies
that H has no semidirected chordless cycle at line 16, because all lines 12-15
do is replacing bidirected edges in H with undirected edges. To see that this
in turn implies that H has no semidirected cycle at line 16, assume to the
contrary that H has no semidirected chordless cycle but it has a semidirected
cycle ρ ∶ V1, . . . , Vn = V1 with a chord between Vi and Vj with i < j. Then, divide
ρ into the cycles ρL ∶ V1, . . . , Vi, Vj , . . . , Vn = V1 and ρR ∶ Vi, . . . , Vj , Vi. Note that
ρL or ρR is a semidirected cycle. Then, H has a semidirected cycle that is shorter
than ρ. By repeated application of this reasoning, we can conclude that H has
a semidirected chordless cycle, which is a contradiction. Therefore, H at line 16
satisfies the constraint C1.

We now show that H at line 16 satisfies the constraint C2. Assume to the
contrary that H has a cycle ρ ∶ V1, . . . , Vn = V1 such that V1 ↔ V2 is in H and
Vi − Vi+1 is in H for all 1 < i < n. Note that ρ must be of length greater than
three by lines 13-15, i.e. n > 3. Note also that Vi − Vi+1 must be in G for all
1 < i < n by Lemma 3, which implies that V1 − V2 is also in G by the constraints
C1 and C2. This implies that V1 and V3 are adjacent in G because, otherwise,
G and H have not the same triplexes, which contradicts Lemma 4. Then, V1
and V3 are adjacent in H by Lemma 1. In fact, V1 ↔ V3 must be in H because,
otherwise, H has a cycle of length three that violates the constraint C1 or C2
which, as shown above, is a contradiction. Then, H has a cycle that violates the
constraint C2 and that is shorter than ρ, namely V1, V3, . . . , Vn = V1. By repeated
application of this reasoning, we can conclude that H has a cycle of length three
that violates the constraint C2 which, as shown above, is a contradiction.

We finally show that H at line 16 satisfies the constraint C3. Assume to the
contrary that H at line 16 has a subgraph of the form V1 −V2 −V3, and V2 ↔ V4
is in H but V1 − V3 is not in H. We show below that G (respectively H at line
16) has the graph to the left (respectively right) below as an induced subgraph.

V1 V2 V3

V4

V1 V2 V3

V4

That V1 −V2 −V3 is in H at line 16 but V1 −V3 is not implies that V1 and V3
cannot be adjacent in H because, otherwise, H violates the constraint C1 or C2
which, as shown above, is a contradiction. This implies that V1 and V3 are not
adjacent in G either by Lemma 1. That V1 − V2 − V3 is in H at line 16 implies
that V1−V2−V3 is also in G by Lemma 3. That V2 ↔ V4 is in H at line 16 implies
that V2 zx V4 is in H after having executed line 9, which implies that V2 − V4
or V2 ↔ V4 is in G by Lemmas 1 and 2. In fact, V2 − V4 must be in G because,
otherwise, G violates the constraint C3 since, as shown above, V1 − V2 − V3 is in
G but V1 − V3 is not. Finally, note that V1 and V4 as well as V3 and V4 must be
adjacent in G and H because, otherwise, H at line 16 does not have the same
triplexes as G, which contradicts Lemma 4. Specifically, V1 − V4 − V3 must be



in G and V1 ↔ V4 ↔ V3 must be in H at line 16 because, otherwise, G or H
violates the constraint C1 or C2 which, as shown above, is a contradiction.

However, that G (respectively H at line 16) has the graph to the left (re-
spectively right) above as an induced subgraph implies that H has a triplex
({V1, V3}, V4) that G has not, which contradicts Lemma 4. Then, V1 and V3
must be adjacent in H which, as shown above, is a contradiction.

5 Discussion

MAMP CGs are a recently introduced family of models that is based on graphs
that may have undirected, directed and bidirected edges. They unify and gen-
eralize AMP and MVR CGs. In this paper, we have presented an algorithm for
learning an MAMP CG from a probability distribution p which is faithful to
it. In practice, we do not usually have access to p but to a finite sample from
it. Our algorithm can easily be modified to deal with this situation: Replace
A ⊥ pB∣S in line 5 with a hypothesis test, preferably one that is consistent so
that the resulting algorithm is asymptotically correct. We are currently working
in the implementation and empirical evaluation of our algorithm. It is worth
mentioning that, whereas R1, R2 and R4 only involve three or four nodes, R3
may involve more. Unfortunately, we have not succeeded so far in proving the
correctness of our algorithm with a simpler R3. Note that the output of our
algorithm would be the same. The only benefit might be a decrease in running
time.

The correctness of our algorithm relies upon the assumption that p is faithful
to some MAMP CG. This is a strong requirement that we would like to weaken,
e.g. by replacing it with the milder assumption that p satisfies the composition
property. Specifically, p satisfies the composition property when X⊥pY ∣Z ∧X⊥
pW ∣Z ⇒X⊥pY ∪W ∣Z for all X, Y , Z and W pairwise disjoint subsets of V . Note
that if p is a Gaussian distribution, then it satisfies the composition property
regardless of whether it is faithful or not to some MAMP CG [20, Corollary 2.4].

When making the faithfulness assumption is not reasonable, the correctness
of a learning algorithm may be redefined as follows. Given an MAMP CG G,
we say that p is Markovian with respect to G when X ⊥ pY ∣Z if X ⊥GY ∣Z for
all X, Y and Z pairwise disjoint subsets of V . We say that a learning algorithm
is correct when it returns an MAMP CG H such that p is Markovian with
respect to H and p is not Markovian with respect to any MAMP CG F such
that I(H) ⊆ I(F ).

Correct algorithms for learning Bayesian networks and LWF CGs under the
composition property assumption exist [3, 9, 13]. The way in which these algo-
rithms proceed (a.k.a. score+search based approach) is rather different from
that of the algorithm presented in this paper (a.k.a. constraint based approach).
In a nutshell, they can be seen as consisting of two phases: A first phase that
starts from the empty graph H and adds single edges to it until p is Markovian
with respect to H, and a second phase that removes single edges from H until
p is Markovian with respect to H and p is not Markovian with respect to any



graph F such that I(H) ⊆ I(F ). The success of the first phase is guaranteed by
the composition property assumption, whereas the success of the second phase
is guaranteed by the so-called Meek’s conjecture [8]. Specifically, given two di-
rected and acyclic graphs F and H such that I(H) ⊆ I(F ), Meek’s conjecture
states that we can transform F into H by a sequence of operations such that,
after each operation, F is a directed and acyclic graph and I(H) ⊆ I(F ). The
operations consist in adding a single edge to F , or replacing F with a triplex
equivalent directed and acyclic graph. Meek’s conjecture was proven to be true
in [2, Theorem 4]. The extension of Meek’s conjecture to LWF CGs was proven
to be true in [13, Theorem 1]. The extension of Meek’s conjecture to AMP and
MVR CGs was proven to be false in [10, Example 1] and [12], respectively. Un-
fortunately, the extension of Meek’s conjecture to MAMP CGs does not hold
either, as the following example illustrates.

Example 3. The MAMP CGs F and H below show that the extension of Meek’s
conjecture to MAMP CGs does not hold.

A B

C D E

A B

C D E

A B

C D E

F H F ′

We can describe I(F ) and I(H) by listing all the separators between any
pair of distinct nodes. We indicate whether the separators correspond to F or
H with a superscript. Specifically,

– SFAD = SFBE = SFCD = SFDE = ∅,
– SFAB = {∅,{C},{D},{E},{C,D},{C,E}},
– SFAC = {∅,{B},{E},{B,E}},
– SFAE = {∅,{B},{C},{B,C}},
– SFBC = {∅,{A},{D},{A,D},{A,D,E}},
– SFBD = {∅,{A},{C},{A,C}}, and
– SFCE = {{A,D},{A,B,D}}.

Likewise,

– SHAD = SHBD = SHBE = SHCD = SHDE = ∅,
– SHAB = {∅,{C},{E},{C,E}},
– SHAC = {∅,{B},{E},{B,E}},
– SHAE = {∅,{B},{C},{B,C}},
– SHBC = {{A,D},{A,D,E}}, and
– SHCE = {{A,D},{A,B,D}}.

Then, I(H) ⊆ I(F ) because SHXY ⊆ SFXY for all X,Y ∈ {A,B,C,D,E} with
X ≠ Y . Moreover, the MAMP CG F ′ above is the only MAMP CG that is triplex
equivalent to F , whereas there is no MAMP CG that is triplex equivalent to H.
Obviously, one cannot transform F or F ′ into H by adding a single edge.



While the example above compromises the development of score+search
learning algorithms that are correct and efficient under the composition prop-
erty assumption, it is not clear to us whether it also does it for constraint based
algorithms. This is something we plan to study.
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