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This paper proposes using estimation of distribution algorithms for unsupervised learning
of Bayesian networks, directly as well as within the framework of the Bayesian struc-
tural EM algorithm. Both approaches are empirically evaluated in synthetic and real
data. Specifically, the evaluation in real data consists in the application of this paper’s
proposals to gene expression data clustering, i.e., the identification of clusters of genes
with similar expression profiles across samples, for the leukemia database. The valida-
tion of the clusters of genes that are identified suggests that these may be biologically
meaningful.
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1. Introduction

One of the main problems that arises in a great variety of fields, including artificial
intelligence, machine learning, and statistics, is the so-called data clustering problem.
Given some data in the form of a set of instances with an underlying group-structure,
data clustering may be roughly defined as the search for the best description of the
underlying group-structure according to a certain criterion, when the true group
membership of every instance is unknown. Each of the groups that exist in the data
at hand is called a cluster.
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Among the different interpretations and expectations that the term data cluster-
ing gives rise to, this paper is limited to data clustering problems that are basically
defined by the following assumptions:

• A database d containing N instances or cases, i.e., d = {x1, . . . , xN}, is available.
The l-th case of d is represented by an (n + 1)-dimensional discrete vector xl =
(xl1, . . . , xln+1) that is partitioned as xl = (cl, yl) for all l. cl is the unknown
cluster membership of xl, and yl = (yl1, . . . , yln) is the n-dimensional discrete
vector of observations or predictive attributes of xl for all l.

• The number of clusters in the underlying group-structure of d, in the forthcoming
referred to as K, is known.

• Each of the K clusters underlying d corresponds to a physical process that is
defined by an unknown joint probability distribution. Then, every case in d may
be seen as sampled from exactly one of these K unknown joint probability dis-
tributions. This corresponds to assuming the existence of an (n + 1)-dimensional
discrete random variable X = (X1, . . . , Xn+1) that is partitioned as X = (C, Y ).
C is a unidimensional discrete hidden random variable that represents the un-
known cluster membership, i.e., the cluster random variable. Y = (Y1, . . . , Yn) is
an n-dimensional discrete random variable that represents the set of predictive
attributes, i.e., the predictive random variable. Moreover, it is usual to assume
that the mechanism that generated d works in two stages: First, one of the phys-
ical processes that are associated with the K clusters that exist in d is somehow
selected according to a probability distribution for C and, then, an instance is
somehow generated according to the joint probability distribution for Y that de-
fines the selected physical process. The existence of a random variable C whose
entries in d are unknown makes data clustering be also referred to as learning
from unlabelled data or, simply, as unsupervised learning.

• The parametric forms of the joint probability distributions that govern the mech-
anism that generated d are all known to be multinomial.

Under these assumptions, data clustering is usually approached from the proba-
bilistic or model-based perspective: The description of the K clusters underlying d is
accomplished through the probabilistic modelling of the mechanism that generated
d. Consequently, probabilistic data clustering reduces to learning a joint probabil-
ity distribution for X from d. When the aim is to represent a joint probability
distribution in general and for probabilistic data clustering in particular, one of the
paradigms that can be helpful is the Bayesian network paradigm 1,2,3. This paper
is concerned with unsupervised learning of Bayesian networks 4,5,6 as a means to
solve probabilistic data clustering problems.

Specifically, this paper proposes the use of a relatively novel family of evolution-
ary algorithms, called estimation of distribution algorithms 7,8,9, for unsupervised
learning of Bayesian networks, both directly and within the Bayesian structural
EM algorithm framework 10. These two approaches are empirically evaluated in
synthetic as well as in real data. The results that are reported for synthetic data
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confirm the ability of this paper’s proposals to induce models that perform sat-
isfactorily when compared to the original models. The experimental evaluation in
real data consists in the application of this paper’s proposals to gene expression
data clustering, i.e., the identification of clusters of genes with similar expression
profiles across samples, for the leukemia database 11. The clusters of genes that are
obtained are described and validated. The validation shows that the clusters are
homogeneous and have a natural interpretation. This suggests that they may be
biologically meaningful.

The remainder of this paper is structured as follows. Section 2 reviews unsuper-
vised learning of Bayesian networks. Section 3 introduces estimation of distribution
algorithms. Section 4 compiles and discusses the experimental results for synthetic
as well as for real data. Finally, Section 5 closes with some conclusions.

2. Bayesian Networks for Data Clustering

Let X be a random variable as stated above, i.e., an (n + 1)-dimensional discrete
random variable X = (X1, . . . , Xn+1) that is partitioned as X = (C, Y ) into a
unidimensional discrete hidden cluster random variable C and an n-dimensional
discrete predictive random variable Y = (Y1, . . . , Yn). A Bayesian network (BN)
for (probabilistic) data clustering for X 4,5,6 consists of (i) a directed acyclic graph
(DAG) whose nodes correspond to the unidimensional random variables of X, i.e.,
the model structure, and (ii) a set of local probability distributions, one for each node
of the model structure conditioned on each state of its parents a. The model struc-
ture encodes a set of conditional (in)dependencies between the random variables
of X, and it is usually constrained so that every Yi is a child of C. This restric-
tion is imposed by the assumption about how the generative mechanism underlying
the domain works (recall Section 1). A BN for data clustering for X represents a
graphical factorization of a joint probability distribution for X as follows:

p(x | θs, sh) = p(c | θs, sh)p(y | c,θs, sh)
= p(c | θC , sh)

∏n
i=1 p(yi | c,pa(sY )i,θi, s

h)
(1)

where s is the model structure and pa(sY )i, with sY the subgraph of s that is
induced by Y , denotes the state of those parents of Yi that correspond to predictive
random variables, Pa(sY )i, for all i. The local probability distributions of the BN
for data clustering for X are those induced by the terms in Eq. (1), and they are
univariate multinomial distributions that depend on a finite set of parameters θs =
(θC ,θ1, . . . , θn), i.e., the model parameters. Moreover, sh denotes the hypothesis
that the true joint probability distribution for X can be graphically factorized
according to the conditional independencies in s.

As K clusters exist, C can take K distinct values that are denoted by c1, . . . , cK .
Then, the univariate multinomial distribution p(c | θC , sh) consists of a set of

aThroughout the text, the terms node and random variable are interchangeably used.
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Table 1. Structure (left), parameters (middle), and local probability distri-
butions (right) of a BN for data clustering for X = (C,Y ) = (C, Y1, Y2, Y3),
where C and every Yi are binary.

C

Y1 Y2 Y3

�C = (θ1, θ2) p(c | �C , sh)
�1 = (�1

1,�2
1)

�1
1 = (θ1-1

1 , θ1-2
1 ) p(y1 | c1,�1, sh)

�2
1 = (θ2-1

1 , θ2-2
1 ) p(y1 | c2,�1, sh)

�2 = (�1
2,�2

2)
�1

2 = (θ1-1
2 , θ1-2

2 ) p(y2 | c1,�2, sh)
�2

2 = (θ2-1
2 , θ2-2

2 ) p(y2 | c2,�2, sh)
�3 = (�1

3,�2
3)

�1
3 = (�11

3 ,�12
3 ,�13

3 , �14
3 )

�11
3 = (θ111

3 , θ112
3 ) p(y3 | c1, y1

1 , y1
2 , �3, sh)

�12
3 = (θ121

3 , θ122
3 ) p(y3 | c1, y1

1 , y2
2 , �3, sh)

�13
3 = (θ131

3 , θ132
3 ) p(y3 | c1, y2

1 , y1
2 , �3, sh)

�14
3 = (θ141

3 , θ142
3 ) p(y3 | c1, y2

1 , y2
2 , �3, sh)

�2
3 = (�21

3 ,�22
3 ,�23

3 , �24
3 )

�21
3 = (θ211

3 , θ212
3 ) p(y3 | c2, y1

1 , y1
2 , �3, sh)

�22
3 = (θ221

3 , θ222
3 ) p(y3 | c2, y1

1 , y2
2 , �3, sh)

�23
3 = (θ231

3 , θ232
3 ) p(y3 | c2, y2

1 , y1
2 , �3, sh)

�24
3 = (θ241

3 , θ242
3 ) p(y3 | c2, y2

1 , y2
2 , �3, sh)

probabilities of the form

p(cg | θC , sh) = θcg = θg > 0 (2)

representing the probability that C takes its g-th state for all g. Furthermore,∑K
g=1 θg = 1. Consequently, the parameters of the local probability distribution

for C are given by θC = (θ1, . . . , θK). Besides, let y1
i , . . . , yri

i denote the ri distinct
values that Yi can take, and let pa(sY )1i , . . . , pa(sY )qi

i denote the qi distinct states
that Pa(sY )i can have, with qi =

∏
Ye∈Pa(sY )i

re for all i. Then, the univariate

multinomial distribution p(yi | cg,pa(sY )j
i , θi, s

h) for all g, i, and j consists of a
set of probabilities of the form

p(yk
i | cg,pa(sY )j

i ,θi, s
h) = θg

yk
i |pa(sY )j

i

= θgjk
i > 0 (3)

representing the conditional probability that Yi takes its k-th state given that
C takes its g-th value and Pa(sY )i takes its j-th value for all k. Furthermore,∑ri

k=1 θgjk
i = 1 for all g, i, and j. Consequently, the parameters of the local proba-

bility distributions for every Yi are given by θi = (θg
i )

K
g=1 with θg

i = (θgj
i )qi

j=1 and
θgj

i = (θgjk
i )ri

k=1 for all g and j. Table 1 shows a BN for data clustering.
As mentioned in Section 1, a BN for data clustering for X induced from an

unlabelled database d encodes a description of the K clusters that exist in d, by
modelling the joint probability distribution for X that defines the mechanism that
generated d. Moreover, this is an effective and efficient description, because a BN for
data clustering for X explicitly reflects the existing conditional (in)dependencies be-
tween the random variables of X (model structure) as well as the strictly necessary
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parameters to be estimated (model parameters). As seen in Eq. (1), the description
of the K clusters underlying d actually consists of (i) p(c | θC , sh) modelling how
one of the physical processes that are associated with the clusters was selected by
the mechanism that generated d, and (ii) p(y | cg, θs, sh) for all g modelling how
the generative mechanism caused every instance that is summarized in d, after one
cluster was selected. Note that p(y | cg,θs, sh) for all g graphically factorize further
according to the conditional independencies that are encoded in s (recall Eq. (1)).
Once a BN for data clustering for X has been induced from d, it constitutes an
effective device for reasoning under uncertainty. However, learning such a model is
challenging in general. As a matter of fact, it has been proven 12 that the identifi-
cation of the BN structure with the highest Bayesian Dirichlet equivalent score 13

among all the BN structures in which every node has no more than t parents is an
NP-hard optimization problem for t > 1. It is usually assumed that this hardness
holds for other common scores as well, though there is not yet a formal proof 14.
These results also apply to unsupervised learning of BNs. This paper interprets
unsupervised learning of BNs as an optimization problem where the search space,
the objective function, and the search strategy are as follows.

As search space, this paper considers the space of structures of BNs for data clus-
tering. This space can be restricted to the space of DAGs for Y , due to the fact that
every Yi is a child of C. Alternative search spaces include the space of equivalence
classes of structures of BNs for data clustering and the space of ancestral orderings
of structures of BNs for data clustering. Note that, as usually, model parameter fit-
ting is considered a secondary optimization problem: Given a BN structure for data
clustering, maximum likelihood (ML) or maximum a posteriori model parameter
estimates can be effectively obtained via approximation techniques such as the EM
algorithm, Gibbs sampling, or gradient descent methods.

As objective function, this paper considers the Bayesian information criterion
(BIC) 15, which can be expressed as follows:

Sc(s,d) = log L(d | θ̂s, sh)− 1
2

log Ndim(s) (4)

where s is the model structure being evaluated, θ̂s are the ML model parameter
estimates for s, and dim(s) = (K − 1) +

∑n
i=1[(ri − 1)K

∏
Ye∈Pa(sY )i

re] is the
dimension of s. Then, the goal of the problem optimization process is maximiza-
tion. Other scores that can serve as objective function include Bayesian scores and
information theory scores.

As search strategy, this paper proposes and evaluates a relatively novel family
of evolutionary algorithms, known as estimation of distribution algorithms 7,8,9. In
addition to the direct application of estimation of distribution algorithms to unsu-
pervised learning of BNs, this paper also studies the benefits of fitting them into the
framework of the Bayesian structural EM (BSEM) algorithm 10 as follows. Table 2
shows a pseudocode of the generic BSEM algorithm for unsupervised learning of
BNs. As can be seen, the generic BSEM algorithm iterates between two main steps.
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Table 2. Pseudocode of the generic BSEM algorithm for unsupervised learning of BNs.

1. Let s1 be the initial model structure
2. for u = 1, 2, . . . do

3. Run the EM algorithm in order to approximate the ML parameters b�su for su

4. Perform a search over model structures, evaluating each one by

Sc(s : su,d) = E[Sc(s,d) | dY , b�su , sh
u] =

P
dC Sc(s, (dC ,dY ))L(dC | dY , b�su , sh

u)

5. Let su+1 be the model structure with the highest score among those visited in step 4
6. if Sc(su+1 : su,d) = Sc(su : su,d) then

7. Return (su, b�su )

The first step (step 3 in Table 2) approximates the ML parameters for the current
model structure given the observed data, usually via the EM algorithm 16,17. On
the other hand, the second step (step 4 in Table 2) performs a search for the model
structure with the highest expected score with respect to the observed data and the
best model found so far. That is, the score that guides the structural search at the
u-th iteration of the generic BSEM algorithm is as follows for all u:

Sc(s : su, d) = E[Sc(s,d) | dY , θ̂su , sh
u]

=
∑

dC Sc(s, (dC ,dY ))L(dC | dY , θ̂su , sh
u)

(5)

where dC and dY denote d restricted to the missing entries for the cluster random
variable C and to the values for the predictive random variable Y , respectively. In
this paper, Sc(s,d) in Eq. (5) corresponds to the BIC (recall Eq. (4)). In principle,
any search strategy can be used to solve the structural search step at each itera-
tion of the generic BSEM algorithm, being greedy hill-climbing the most common
choice. This paper proposes applying estimation of distribution algorithms. The
next section provides the reader with an introduction to them.

3. Estimation of Distribution Algorithms

Among stochastic heuristic search strategies for problem optimization, evolutionary
algorithms (EAs) 18,19 are well known for their good performance and wide applica-
bility. Classical examples of EAs are genetic algorithms, evolutionary programming,
and evolution strategies. The main feature that is shared by all the instances of the
EA paradigm is the fact of being inspired by Darwinian natural evolution. That
is why much of the nomenclature of EAs is borrowed from this field. For instance,
one talks about populations to refer to sets of solutions to an optimization problem,
each solution is called an individual, and each basic component of an individual is
named a gene. The main components of most EA instances are: An initial popula-
tion of individuals, a selection method, a set of random operators, and a replacement
method. Basically, all the EAs work in the same iterative way: At each iteration or
generation some individuals of the current population are selected according to the
selection method and modified by the random operators in order to create new
individuals and, consequently, a new population via the replacement method. The
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Table 3. Pseudocode of the generic EDA.

1. Let po1 be a population composed of Q randomly generated individuals
2. Evaluate the individuals in po1

3. u = 1
4. while the stopping criterion is not met do
5. Let du group M individuals selected from pou via the selection method
6. Let pu(z) be the joint probability distribution for Z learnt from du

7. Let ofu be the offspring population composed of R individuals sampled from pu(z)
8. Evaluate the individuals in ofu

9. Let pou+1 be the population created from pou and ofu via the replacement method
10. u + +
11. Return the best individual found so far

objective of this iterative process is to evolve the population of individuals towards
promising zones of the search space of the optimization problem at hand.

Recently, a novel class of EAs, known as estimation of distribution algorithms
(EDAs) 7,8,9, has been proposed. The main characteristic of EDAs is the non-
existence of random operators. Instead, the offspring population is generated from
the current one at each iteration by learning and subsequent simulation of a joint
probability distribution for a database conformed with those individuals that are
selected from the current population by means of the selection method. This results
in two important advantages of EDAs over classical EAs: The sometimes necessary
design of random operators tailored to the particular optimization problem at hand
is avoided, and the number of parameters to be assessed by the user is reduced.
A further advantage of EDAs over classical EAs is that the relationships between
the genes of the individuals that are selected at each generation can be exploited
through the joint probability distribution that is learnt from those individuals.
Besides, EDAs keep the main strengths of classical EAs: Wide applicability and
good performance 7.

As any other class of EAs, EDAs are based on detecting promising zones of
the search space of the optimization problem at hand by evolving a population of
individuals. For this purpose, the generic EDA iterates between three main steps,
after the individuals of the initial population po1 have been generated, usually at
random, and evaluated. The iterative process ends when the stopping criterion is
met, e.g., performance of a maximum number of generations, uniformity in the
current population, or no improvement with regard to the best individual of the
previous generation. This causes the best solution found so far being returned. The
three main steps of the u-th iteration of the generic EDA are as follows for all u.
First, M of the Q individuals of the current population pou are selected by means
of the selection method. Then, these individuals are used to construct a learning
database, denoted by du, from which a joint probability distribution for Z, pu(z),
is induced. Z = (Z1, . . . , Zm) denotes an m-dimensional discrete random variable,
where each Zi is associated with one of the m genes of every individual in du.
Finally, R individuals are sampled from pu(z) and evaluated in order to create the
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offspring population ofu which, then, is used to generate the new population pou+1

by replacing some individuals of pou via the replacement method. A schematic of
the generic EDA is shown in Table 3.

Learning pu(z) from du constitutes the main bottleneck of the u-th iteration of
the generic EDA for all u. Obviously, the computation of all the parameters that are
needed to specify this joint probability distribution in the standard representation
is often impractical. For this reason, several families of EDAs have arisen where
pu(z) is assumed to factorize according to a certain class of probabilistic models for
all u 7,9. For the purpose of this paper, it suffices to consider one of the simplest
instances of the generic EDA, namely the univariate marginal distribution algorithm
(UMDA) 7,9,20, which is based on the assumption that pu(z) factorizes as

pu(z) =
m∏

i=1

pu(zi) (6)

and pu(zi) is restricted to be a univariate multinomial distribution whose parameters
are estimated from du according to the ML criterion for all i and u. Obviously, the
assumption behind Eq. (6) may not hold in practice, as relationships between the
unidimensional random variables of Z may exist in the optimization problem at
hand. However, this assumption simplifies learning the probabilistic model for the
factorization of pu(z) from du for all u, because this process reduces to parameter
fitting. Furthermore, the UMDA has proven to work successfully in many domains
and has received much attention in the literature 7,20.

4. Empirical Evaluation

This section is devoted to empirically evaluate the performance of EDAs for un-
supervised learning of BNs, both directly and within the generic BSEM algorithm
(see Section 2), in synthetic as well as in real data (gene expression data). The eval-
uation is limited to the UMDA, as this is one of the simplest but most widely used
and studied instances of the generic EDA (recall Section 3). In the forthcoming, the
direct application of the UMDA to unsupervised learning of BNs is simply referred
to as the UMDA, and the incorporation of the UMDA into the generic BSEM al-
gorithm for unsupervised learning of BNs is denoted as the BSEM-UMDA. Recall
from Section 2 that both the UMDA and the BSEM-UMDA search for the best
BN for data clustering in the space of DAGs for Y . However, whereas the BIC (see
Eq. (4)) is the objective function in the case of the UMDA, the expected BIC with
respect to the observed data and the best model found so far (see Eq. (5)) is the
score that guides the structural search at each iteration of the BSEM-UMDA.

This section starts by describing the experimental setup. Then, the performance
of the UMDA and the BSEM-UMDA in synthetic data is discussed. Finally, the
UMDA and the BSEM-UMDA are validated in a real-world domain: Gene expres-
sion data clustering for the leukemia database 11.
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4.1. Evaluation setup

The representation that is considered in the UMDA and the BSEM-UMDA for every
solution sY in the search space uses an n×n adjacency matrix a = (aij), such that
(i) aij = 2 if Yj ∈ Pa(sY )i, (ii) aij = 1 if Yi ∈ Pa(sY )j , and (iii) aij = 0 otherwise
for all i and j. Therefore, every solution in the search space can be represented by
an m-dimensional individual z = (z1, . . . , zm), where m = (n2 − n)/2, consisting
only of the elements of a either above or below the diagonal.

It should be noted that the creation of po1 and ofu for all u is not closed
with respect to the DAG property. Thus, individuals representing invalid solutions
may appear during the problem optimization process. Invalid solutions need to be
repaired before they are evaluated. A simple randomized repair operator is used in
the UMDA and the BSEM-UMDA: An invalid solution is repaired by, iteratively,
removing a randomly chosen directed edge that invalidates the DAG property until
a DAG is obtained. Note that the repair operator does not modify the individuals
but the invalid solutions that are represented by them.

The selection and the replacement methods of the UMDA and the BSEM-UMDA
are as follows. The most fitted individuals in pou are selected to conform du for
all u. On the other hand, pou+1 is obtained as the result of replacing the least
fitted individuals in pou by ofu for all u. Moreover, the size of the population,
Q, the number of selected individuals, M , and the size of the offspring population,
R, are set to 75, 25, and 50, respectively, for the UMDA. For the BSEM-UMDA,
Q = 7500, M = 2500, and R = 5000. The UMDA halts after 50 generations. The
UMDA that is run at each iteration of the BSEM-UMDA stops after 50 generations
as well. Preliminary experiments confirmed that these parameters are well suited
and that they do not favor any of the two techniques over the other.

For ML model parameter estimation when computing the BIC, a multiple-restart
version of the EM algorithm is employed. The convergence criterion for the EM
algorithm is satisfied when the relative difference between successive values for
log L(d | θs, sh) is less than 10−6.

For comparison purposes, the most common instance of the generic BSEM algo-
rithm is used as benchmark. This, referred to as the BSEM-HC in the forthcoming,
reduces the structural search step at each iteration of the generic BSEM algorithm
to a greedy hill-climbing search that, having the naive Bayes model as initial model,
considers all the possible additions, removals, and non-covered reversals of a single
directed edge at each point in the search. The score that guides the structural search
steps of the BSEM-HC is the same as in the BSEM-UMDA, i.e., Eq. (5).

The performance of the UMDA, the BSEM-UMDA, and the BSEM-HC is as-
sessed according to their capacity for obtaining BNs for data clustering that show
satisfactory (i) ability to summarize the learning data, (ii) ability to generalize the
learning data to previously unseen data, and (iii) structural similarity to the true
model underlying the learning data. The BIC values that are scored by the induced
models serve for assessing the first ability. The second ability can be measured by
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calculating the log likelihood of some hold-out data given the corresponding elicited
models. Finally, the third ability can be assessed as follows 21. First, the completed
partially directed acyclic graphs (CPDAGs) representing the equivalence classes of
the structures of each learnt model and the corresponding original model are gen-
erated and, then, the number of edges that are different in these two graphs is
reported. In the gene expression database, CPDAG distances cannot be computed.
Instead, the interpretability and the homogeneity of the gene clusterings that the
induced BNs for data clustering represent are extensively validated, as part of the
evaluation of the UMDA, the BSEM-UMDA, and the BSEM-HC.

4.2. Results: Synthetic data

The first part of the evaluation of the UMDA and the BSEM-UMDA is carried
out in three synthetic databases that were obtained by sampling three BNs for
data clustering of increasing complexity. The three original models involved a bi-
nary cluster random variable C and a 9-dimensional predictive random variable
Y = (Y1, . . . , Y9), with Yi binary for all i. The number of directed edges between
unidimensional predictive random variables in each of these models was 10, 15, and
20. These directed edges were uniformly generated, as far as no directed cycle was
created. Note that each of the three original models had nine additional directed
edges, due to the fact that every Yi was a child of C. The parameters for each of the
original models were generated at random. Finally, 5000 cases were sampled from
each of the three original models. Each case consisted only of a state for Y , i.e.,
all the entries for C in the samples were missing. In the forthcoming, the samples
are referred to as d10, d15, and d20, where the subscript indicates the number of
directed edges between unidimensional predictive random variables in the genera-
tive model. In the experiments below, the first 4000 cases of each sample are used
as learning data, and the last 1000 cases are set aside and used as testing data.
Moreover, the number of clusters is fixed to the true number, i.e., K = 2.

Table 4 summarizes the performance of the BNs for data clustering that are
induced by the UMDA, the BSEM-UMDA, and the BSEM-HC from d10, d15, and
d20. All the performance criteria values in the table are given in terms of averages
and standard deviations over five independent runs for the UMDA, and over ten in-
dependent runs for the BSEM-UMDA and the BSEM-HC. The performance criteria
values of the original models are also given for comparison purposes.

The first conclusion that can be made from Table 4 is that the UMDA and the
BSEM-UMDA behave satisfactorily in terms of all the performance measures that
are considered in the evaluation, no matter the complexity of the learning database.
Moreover, the UMDA and the BSEM-UMDA clearly outperform the BSEM-HC for
the three criteria and the three databases. The results in the table also show the
superiority of the UMDA over the BSEM-UMDA. As a matter of fact, the UMDA
is able to identify models that score BIC values for the learning databases and
log likelihood values for the hold-out databases that are very close to those of the
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Table 4. Performance of the BNs for data clustering induced by the UMDA, the BSEM-UMDA,
and the BSEM-HC from d10, d15, and d20.

BIC Log likelihood CPDAG distance
Initial Final Initial Final Initial Final

d10 Original — -8709 — -2156 — —
BSEM-HC -10372±0 -8732±26 -2203±6 -2159±3 28±0 3±3
BSEM-UMDA -10372±0 -8726±18 -2204±6 -2158±1 28±0 3±3
UMDA -8935±37 -8714±5 -2191±19 -2158±2 17±3 2±2

d15 Original — -8898 — -2189 — —
BSEM-HC -10502±0 -8971±66 -2250±7 -2197±9 32±0 9±6
BSEM-UMDA -10502±0 -8930±59 -2249±5 -2195±10 32±0 6±5
UMDA -9202±28 -8913±35 -2249±7 -2195±11 22±2 4±2

d20 Original — -9094 — -2232 — —
BSEM-HC -10658±0 -9145±45 -2298±8 -2249±11 31±0 10±5
BSEM-UMDA -10658±0 -9127±11 -2294±8 -2248±4 31±0 9±1
UMDA -9368±37 -9107±19 -2302±11 -2241±4 21±3 9±3

original models.
The fact that the models that are selected by both the UMDA and the BSEM-

UMDA enjoy satisfactory log likelihood values for the hold-out databases and
CPDAG distances to the generative models confirms that the (expected) BIC is
an appropriate objective function to guide the search towards models that, in addi-
tion to summarize well the learning data, generalize well to previously unseen data,
and encode conditional (in)dependence models fairly similar to those of the original
models. As expected, the performance of the induced models with respect to these
two criteria slightly degrades as the complexity of the generative model increases
and the amount of learning data available remains the same (4000 cases).

The reliability of the UMDA and the BSEM-UMDA to recover the structures
of the true models underlying d10, d15, and d20 can be appreciated as follows.
Table 4 summarizes the average number of relationships, i.e., non-edges, undirected
edges, and directed edges with any orientation, that are different in the CPDAGs
corresponding to the equivalence classes of the original and the induced models,
out of the 36 pairwise combinations of unidimensional predictive random variables.
Then, the number of relationships that coincide in the CPDAGs corresponding to
the equivalence classes of the original model and the ones that are learnt by the
UMDA is, on average, 34 (94 %) for d10, 32 (89 %) for d15, and 27 (75 %) for d20.
The models that are induced by the BSEM-UMDA score, on average, 33 (92 %)
for d10, 30 (83 %) for d15, and 27 (75 %) for d20. As discussed above, the models
that are selected by the BSEM-HC have larger CPDAG distances than those of the
models that are obtained by means of the UMDA and the BSEM-UMDA: They
score, on average, 33 (92 %) for d10, 27 (75 %) for d15, and 26 (72 %) for d20.

The graphs in Table 5 complement Table 4 with the dynamics of the UMDA
for d10 (left) and d15 (right). All the performance criteria values in the graphs are
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Table 5. Performance of the BNs for data clustering induced by the UMDA from d10 (left) and
d15 (right), as a function of the number of generations.

averaged over five independent runs. The performance criteria values of the original
models are also given for comparison purposes. Due to space restrictions, the graphs
corresponding to the dynamics of the UMDA for d20 are not shown. These curves
have essentially the same shapes as those in Table 5 and, thus, they do not provide
additional information 22.

It can be clearly appreciated in the graphs in the first row of Table 5 that, as
the number of generations of the UMDA increases, the curves corresponding to the
BIC values of the population averages (indicated as UMDA population in Table 5)
get closer to the curves corresponding to the BIC values of the best models found so
far (indicated as UMDA in Table 5). This observation reflects the good behavior of
the experiments regarding convergence of the UMDA. This fact together with the
fairly flat shape of the curves corresponding to the BIC values of the best models
found so far during the final generations indicate that further improvements are
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unlike to occur, if more generations of the UMDA are considered in the experi-
ments. Therefore, the stopping criterion used, i.e., 50 generations, seems to be a
sensible choice for the databases in the evaluation. This makes the performance of
the UMDA specially satisfactory: For the three databases in the evaluation, the
UMDA identifies final models that score similar BIC values to those of the original
models, by evaluating only 2525 solutions out of the approximately 1.2 × 1015 dif-
ferent solutions in the search space. Furthermore, the graphs in the second and the
third rows of Table 5 indicate that, as the problem optimization process progresses,
the best models found so far (indicated as UMDA in Table 5) increase their ability
to generalize the learning data to previously unseen data as well as their close-
ness to the true model underlying the learning data. This supports the claim made
previously that the (expected) BIC is a suitable objective function to optimize.

Finally, it must be said against the UMDA that it is typically more time con-
suming than the BSEM-UMDA and the BSEM-HC, despite the latter two evaluate
a considerably larger number of solutions than the former. The reason is that every
evaluation of a solution in the UMDA implies running the EM algorithm. This some-
how bounds the scalability of the UMDA to domains of higher dimension than the
ones in the evaluation. Unlike the UMDA, the BSEM-UMDA enjoys an interesting
trade-off between effectiveness and efficiency, i.e., a trade-off between the quality
of the final models and the computational cost of the unsupervised model learning
process. The reason is in the generic BSEM algorithm: Treating expected data as
real data makes possible the use of sophisticated search strategies, like EDAs, in
order to solve the structural search step at each iteration effectively, and without
compromising the efficiency of the whole unsupervised model learning process. Con-
sequently, the BSEM-UMDA is a realistic approach, i.e., effective and scalable, to
unsupervised learning of BNs.

4.3. Results: Real data

Answering biological questions through gene expression data analysis has been taken
to a new level by the relatively recent development of DNA microarray experiments,
which enable to monitor the expression levels of many genes simultaneously. This
explains, at least partially, the fast-growing popularity and relevance that disciplines
like, for instance, bioinformatics and biostatistics enjoy nowadays.

For the purpose of this paper, a DNA microarray experiment can be seen as a
sequence of complex laboratory and computer related steps, whose output is usually
presented in the form of a matrix with as many rows as samples, e.g., tissues, and as
many columns as genes in the experiment, or vice versa. Each entry in this matrix
measures the expression level of the corresponding gene in the corresponding sample.
In this scenario, data clustering can help to identify clusters of samples sharing the
same gene expression profile 11 and/or clusters of genes sharing the same expression
profile across samples 23.

This section evaluates the UMDA and the BSEM-UMDA for gene expression
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Table 6. Performance of the BNs for data clustering induced by the UMDA, the BSEM-UMDA,
and the BSEM-HC from dALL and dAML.

BIC Log likelihood Directed edges
Initial Final Initial Final Initial Final

dALL BSEM-HC -20656±0 -20292±0 -8795±0 -8590±0 0±0 8±0
BSEM-UMDA -20656±0 -20299±0 -8795±0 -8549±0 0±0 9±0
UMDA -20678±49 -20276±13 -8651±30 -8563±13 14±1 10±1

dAML BSEM-HC -21181±0 -21105±7 -9032±0 -8979±6 0±0 3±1
BSEM-UMDA -21181±0 -21105±7 -9032±0 -8979±6 0±0 3±1
UMDA -21437±9 -21090±4 -8991±23 -8952±11 12±1 5±1

data clustering, with the purpose of identifying clusters of genes with similar ex-
pression profiles across the samples in the leukemia database 11. This database has
become pretty much of a standard test bed for gene expression data analysis tech-
niques 23,24. It consists of 72 samples from leukemia patients, with each sample
being characterized by the expression levels of 7129 genes. Besides, each sample is
labelled with either acute lymphoblastic leukemia (ALL) or acute myeloid leukemia
(AML) meaning the specific type of acute leukemia the patient suffers from. Out of
the 72 samples in the database, 47 are labelled as ALL and 25 as AML.

The preprocessing of the leukemia database was kept at minimum possible. This
means that the original data were only discretized. Following the most common
approach in the literature, gene expression levels were discretized into three states,
corresponding to the concepts of a gene being either underexpressed, or baseline,
or overexpressed with respect to its control expression level 25. The discretization
method that was used is based on information theory 24,26. The resulting discretized
database is referred to as dleukemia in the forthcoming. From this, two auxiliary
databases were created in order to analyze separately ALL and AML patients, due
to their different gene expression profiles 11. The first database grouped the first
ten ALL patients in dleukemia. On the other hand, the second database contained
the first ten AML patients in dleukemia. These two databases were then transposed,
so that the 7129 genes were the cases and the measurements for the corresponding
ten patients were the predictive attributes. The resulting learning databases are
denoted dALL and dAML in the forthcoming, where the subscript indicates the
label of the corresponding patients. In the experiments below, the first 5000 cases
of each database are used as learning data, and the last 2129 cases are set aside and
used as testing data. Preliminary experiments with different numbers of clusters
indicated that K = 3 is well suited for both dALL and dAML. Therefore, K = 3 in
the experiments below. Finally, it should be mentioned that the cases in dALL and
dAML are treated as independent and identically distributed, although some genes
may be co-regulated and, therefore, some cases may be correlated. This simplifies
the analysis and may not change the essence of the results. In fact, this approach
is taken in many other gene expression data analysis applications 23.
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Table 7. Descriptions of the clusters of genes encoded by BNALL (left) and BNAML (right).

Table 6 summarizes the BIC and the log likelihood values corresponding to the
BNs for data clustering that are induced by the UMDA, the BSEM-UMDA, and the
BSEM-HC from dALL and dAML. The numbers of directed edges between unidi-
mensional predictive random variables in the final models are also reported. All the
performance criteria values in the table are given in terms of averages and standard
deviations over five independent runs for the UMDA, and over ten independent
runs for the BSEM-UMDA and the BSEM-HC. It can be appreciated from the ta-
ble that, while no algorithm is clearly superior to the rest for dALL, the UMDA
outperforms the BSEM-UMDA and the BSEM-HC for dAML. In this last scenario,
the BSEM-UMDA behaves as effectively as the BSEM-HC.

The remainder of this section provides more evidence about the effectiveness of
the UMDA and the BSEM-UMDA. Specifically, the forthcoming paragraphs vali-
date the interpretability and the homogeneity of the gene clusterings that are en-
coded by two of the models that are induced by the BSEM-UMDA, one from dALL,
BNALL for short, and one from dAML, BNAML for short. Similar conclusions to



March 3, 2003 9:25 WSPC/INSTRUCTION FILE pelola03

16 J. M. Peña, J. A. Lozano, and P. Larrañaga

Table 8. Homogeneity of the clusters of genes encoded by BNALL.

dALL cunderexpressed
ALL cbaseline

ALL coverexpressed
ALL

Genes 7129 2265 2063 2801

p(c∗) 0.34±0.05 0.31±0.00 0.29±0.00 0.39±0.00
p(c∗ | y) 0.90±0.14 0.89±0.14 0.89±0.15 0.90±0.14
p(c∗ | y)/p(c∗) 2.68±0.55 2.85±0.45 3.04±0.51 2.29±0.35

H(C) 1.57±0.00 1.57±0.00 1.57±0.00 1.57±0.00
H(C | y) 0.37±0.40 0.38±0.39 0.39±0.41 0.36±0.38
H(C)/H(C | y) 76.85±223.38 41.77±81.65 152.87±379.22 49.22±98.55

Table 9. Homogeneity of the clusters of genes encoded by BNAML.

dAML cunderexpressed
AML cbaseline

AML coverexpressed
AML

Genes 7129 2678 1713 2738

p(c∗) 0.35±0.05 0.37±0.00 0.25±0.00 0.38±0.00
p(c∗ | y) 0.91±0.14 0.91±0.14 0.89±0.15 0.92±0.13
p(c∗ | y)/p(c∗) 2.71±0.62 2.46±0.37 3.52±0.59 2.46±0.35

H(C) 1.56±0.00 1.56±0.00 1.56±0.00 1.56±0.00
H(C | y) 0.32±0.40 0.31±0.40 0.39±0.41 0.28±0.38
H(C)/H(C | y) 555.27±1753.93 754.62±2305.34 209.88±650.83 576.38±1560.30

those below can be achieved by considering any other pair of models that are learnt
via the UMDA and the BSEM-UMDA from dALL and dAML. It should be noticed
that all the 7129 cases, i.e., genes, in dALL and dAML are involved in the analysis
below, and not only those 5000 that were used for learning BNALL and BNAML.

Table 7 outlines the descriptions of the clusters of genes that BNALL and BNAML

represent. Concretely, each component of Table 7 illustrates the marginal probability
distributions of the unidimensional predictive random variables, i.e., gene expression
levels corresponding to patients, conditioned on one of the states of the cluster
random variable. These figures suggest that, in both BNALL and BNAML, cluster
0 exhibits a tendency towards all the predictive random variables being in state 0
(underexpressed), cluster 1 towards being in state 1 (baseline) and, finally, cluster
2 towards being in state 2 (overexpressed). It seems sensible and believable that
the generative mechanisms underlying dALL and dAML consist of three physical
processes each, with each physical process being governed by a joint probability
distribution that tends towards genes being either underexpressed, or baseline, or
overexpressed for all the patients. This description of the generative mechanism
underlying dALL (dAML) seems specially convincing if one takes into account that
the patients in dALL (dAML) all suffer from the same type of acute leukemia.

Given a BN for data clustering and a case with predictive attributes y, let p(c)
and p(c | y) denote, respectively, the prior and the posterior probability distribu-
tions for the cluster random variable C. Also, let H(C) and H(C | y) represent,
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Table 10. Error rates of the NB, the IB1-1, and
the IB1-3 for dALL and dAML.

NB IB1-1 IB1-3

dALL 5.54±0.25 6.06±0.22 4.74±0.20

dAML 2.85±0.22 7.60±0.27 3.31±0.18

respectively, the entropy of p(c) and p(c | y). A straightforward way of assessing the
homogeneity of the clusters of genes that BNALL (BNAML) encodes is by averaging
over the genes in dALL (dAML) the values of p(c∗ | y), p(c∗ | y)/p(c∗), H(C | y),
and H(C)/H(C | y), where c∗ = arg maxC=cp(c | y). The higher the value of the
first, the second, and the fourth averages the more homogeneous the clusters. On
the other hand, the lower the value of the third average the better. Additionally,
the homogeneity of each cluster alone can be assessed by averaging the previous
criteria only over the genes belonging to that particular cluster. Note that for this
analysis, genes need to be hard-assigned to clusters. Consequently, every case in
dALL and dAML is completed with c∗. For the sake of readability, clusters 0, 1, and
2 in Table 7 are denoted cunderexpressed

ALL , cbaseline
ALL , and coverexpressed

ALL , respectively,
for dALL, and cunderexpressed

AML , cbaseline
AML , and coverexpressed

AML , respectively, for dAML.
Table 8 and Table 9 compile the values of the homogeneity criteria for the whole

dALL and dAML as well as for each of the clusters underlying them alone. The size
of each cluster, after hard-assigning cases to clusters, is also reported. The results
in the tables confirm that the six clusters of genes are homogeneous, being the
clusters underlying dAML slightly more homogeneous than those underlying dALL.
Specifically, the high values of p(c∗ | y) and the low values of H(C | y) for all the
clusters indicate that cases can be hard-assigned to clusters with little uncertainty.
The same conclusion can be reached by looking at the ratios p(c∗ | y)/p(c∗) and
H(C)/H(C | y): In all the cases, there is a significant reduction in uncertainty
when comparing the prior and the posterior probability distributions. These are
clear signs of homogeneity.

More evidence about the homogeneity of the clusters of genes that are repre-
sented by BNALL and BNAML can be given through supervised classification. If
the clusters are homogeneous then, after hard-assigning genes to them, supervised
classifiers should do well at predicting the cluster membership of the genes. Table 10
reports the error rates for this task, in terms of averages and standard deviations es-
timated via 10-fold cross-validation, of three well known supervised classifiers: The
naive Bayes classifier 27, NB for short, and the IB1 classifier 28 with one and three
neighbors, IB1-1 and IB1-3, respectively, for short. The error rates in the table are
rather low and, therefore, support the claim made above that the clusters of genes
are homogeneous.

It is known that the accuracy of supervised classifiers is not monotonic with
respect to the inclusion of predictive attributes 29, i.e., the inclusion of irrelevant
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Table 11. Error rates of the NB, the IB1-1, and the IB1-3 for dleukemia, when
different sets of genes are considered as predictive attributes.

Genes NB IB1-1 IB1-3

All 7129 0.00±0.00 0.00±0.00 1.39±1.39

All differentially expressed 3160 1.39±1.39 0.00±0.00 0.00±0.00

cunderexpressed
ALL ∩ cbaseline

AML 352 2.78±1.95 8.33±3.28 6.94±3.02

cunderexpressed
ALL ∩ coverexpressed

AML 407 8.33±3.28 5.56±2.72 6.94±3.02

cbaseline
ALL ∩ cunderexpressed

AML 557 4.17±2.37 2.78±1.95 1.39±1.39

cbaseline
ALL ∩ coverexpressed

AML 687 5.56±2.72 1.39±1.39 0.00±0.00

coverexpressed
ALL ∩ cunderexpressed

AML 615 2.78±1.95 5.56±2.72 6.94±3.02

coverexpressed
ALL ∩ cbaseline

AML 542 2.78±1.95 4.17±2.37 2.78±1.95

and/or redundant predictive attributes may degrade their accuracy. For this rea-
son, supervised classifiers aiming at discriminating among known classes of samples
in gene expression data analysis usually focus on what are called differentially ex-
pressed genes 11,23,24, i.e., genes whose expression levels vary significantly from one
class of samples to another. Based on these observations, the homogeneity of the
clusters of genes that BNALL and BNAML represent can be further validated as
follows. Under the assumption that these clusters are homogeneous, differentially
expressed genes for dleukemia can be easily detected: After hard-assigning genes to
clusters, genes belonging to any of the intersections of clusters clabelALL

ALL ∩ clabelAML
AML

for labelALL, labelAML = underexpressed, baseline, and overexpressed such that
labelALL 6= labelAML can be deemed differentially expressed. Table 11 illustrates
the error rates, in terms of averages and standard deviations estimated via leave-one-
out cross-validation, of the NB, the IB1-1, and the IB1-3 for predicting the specific
type of acute leukemia, i.e., either ALL or AML, of the 72 patients in dleukemia.
The table reports results for the original database dleukemia, i.e., 7129 genes charac-
terize each sample, for dleukemia restricted to all the differentially expressed genes,
and for dleukemia restricted to those genes in each of the intersections of clusters
clabelALL
ALL ∩ clabelAML

AML for labelALL, labelAML = underexpressed, baseline, and
overexpressed such that labelALL 6= labelAML. Table 11 also shows the number
of genes that are included in the supervised classifiers. From the results in the table,
it can be concluded that the supervised classifiers that are induced from dleukemia

restricted to the 3160 differentially expressed genes perform as well as those that
involve all the 7129 genes. Furthermore, the supervised classifiers that are learnt
from each of the intersections of pairs of clusters under study are very accurate in
general, despite the significant reduction in the number of genes characterizing each
case in the learning data. Therefore, the homogeneity of the clusters of genes that
are identified in this work is again confirmed.

As summary, it can be said that the gene clusterings that BNALL and BNAML

encode have natural and sensible interpretations and conform homogeneous group-
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structures. This suggests that these gene clusterings may be meaningful for the
biologist. Further validation using biological knowledge is required to confirm this.

5. Conclusions

The contribution of this paper has been twofold. First, the proposal and empirical
evaluation of EDAs for unsupervised learning of BNs, both directly and within
the framework of the BSEM algorithm. Second, the application of this paper’s
proposals to gene expression data analysis, and in particular to gene expression
data clustering, which is one of the most challenging research areas nowadays.

The evaluation has been limited to one of the simplest EDAs, namely the
UMDA. Both the UMDA and the BSEM-UMDA have behaved effectively in syn-
thetic and real data. However, only the BSEM-UMDA seems to scale well to high-
dimensional domains. This trade-off between effectiveness and efficiency makes the
BSEM-UMDA attractive. An issue for further research may be the evaluation of
EDAs more sophisticated than the UMDA within the BSEM algorithm framework.
Regarding the application to gene expression data clustering, both approaches have
identified similar gene clusterings. The extensive validation of these clusters of genes
has indicated that these may be biologically meaningful.
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5. J. M. Peña, J. A. Lozano and P. Larrañaga, “An Improved Bayesian Structural EM

Algorithm for Learning Bayesian Networks for Clustering”, Pattern Recognition Letters
21 (2000) 779–786.
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