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On the Complexity of Discrete Feature Selection
for Optimal Classification

Jose M. Peña and Roland Nilsson

Abstract—Consider a classification problem involving only discrete features that are represented as random variables with some
prescribed discrete sample space. In this paper, we study the complexity of two feature selection problems. The first problem consists
in finding a feature subset of a given size k that has minimal Bayes risk. We show that for any increasing ordering of the Bayes risks of
the feature subsets (consistent with an obvious monotonicity constraint), there exists a probability distribution that exhibits that ordering.
This implies that solving the first problem requires an exhaustive search over the feature subsets of size k. The second problem consists
in finding the minimal feature subset that has minimal Bayes risk. In the light of the complexity of the first problem, one may think that
solving the second problem requires an exhaustive search over all the feature subsets. We show that, under mild assumptions, this is
not true. We also study the practical implications of our solutions to the second problem.

Index Terms—Feature evaluation and selection, Classifier design and evaluation, Machine learning.
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1 INTRODUCTION

CONSIDER a classification problem involving only
discrete features that are represented as random

variables with some prescribed discrete sample space.
The Bayes classifier over a feature subset is the classifier
that outputs the most likely class conditioned on the
state of the feature subset. Let the Bayes risk of a feature
subset be the error probability of the Bayes classifier
over that feature subset. Obviously, every ordering of
the Bayes risks of the feature subsets that is possible (i.e.
there exists a probability distribution that exhibits that
ordering) must comply with the following monotonicity
constraint: The supersets of a feature subset cannot have
larger Bayes risks than the subset.

In this paper, we study the complexity of two feature
selection problems. The first problem consists in finding
a feature subset of a given size k that has minimal Bayes
risk. We call this problem the k-optimal problem. In
Section 3, we prove that any increasing ordering of the
Bayes risks of the feature subsets that is consistent with
the monotonicity constraint is possible. This implies that
solving the k-optimal problem requires an exhaustive
search over the feature subsets of size k. As we discuss
later, our result strengthens the results in [1, Theorem 1],
[11, page 108] and [2, Theorem 32.1].

The second problem that we study in this paper
consists in finding the minimal feature subset that has
minimal Bayes risk. We call this problem the minimal-
optimal problem. One may think that if solving the
k-optimal problem requires an exhaustive search over
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the feature subsets of size k, then solving the minimal-
optimal problem requires an exhaustive search over all
the feature subsets. We show in Section 4 that, under
mild assumptions, this is not true: The minimal-optimal
problem can be solved by a backward search, or even
without any search by applying a characterization of the
solution that we derive. As we discuss later, our result
strengthens the result in [5, page 593].

The two methods that we propose to solve the
minimal-optimal problem build upon the assumption
that the probability distribution over the features and
the class is known. In practice, however, this probability
distribution is typically unknown and only a finite sam-
ple from it is available. We show in Section 5 that our
methods can be adapted to finite samples so that they
solve the minimal-optimal problem in the large sample
limit.

Although the k-optimal problem has received some
attention in the literature, the minimal-optimal prob-
lem has undoubtedly received much more attention.
Therefore, we believe that researchers and practitioners
will find more relevant our complexity analysis of the
minimal-optimal problem than that of the k-optimal
problem. All in all, we believe that both analyses con-
tribute to advance the understanding of feature selection.

2 PRELIMINARIES

Let the set of discrete random variables X =
(X1, . . . , Xn) represent the features and the discrete ran-
dom variable Y the class. Assume that every random
variable in (X, Y ) has a finite sample space of cardinality
greater than one. For simplicity, assume that the sample
space of every random variable in (X, Y ) are the integer
numbers 0, 1, . . .. For simplicity, we use the juxtaposition
of sets to represent their union. For instance, given
S, T ⊆ X , ST means S ∪ T . We use ¬S to denote X \ S.
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We use upper-case letters to denote random variables
and the same letters in lower-case to denote their states.
For instance, s denotes a state of S, st a state of ST , and
¬s a state of ¬S. In the expressions S = 0 and s = 0,
0 represents a vector of zeroes. The expression s ≥ 1
means that every component of s is greater or equal to
1. We use low-case p to denote a probability distribution,
and upper-case P to denote the probability of an event.

The following definitions are taken from [2]. A clas-
sifier over X is a function g : X → Y , where X and
Y are the sample spaces of X and Y , respectively. The
risk of a classifier g(X), denoted as R(g(X)), is the
error probability of g(X), i.e. R(g(X)) = P (g(X) 6= Y ).
R(g(X)) can also be written as

R(g(X)) =
∑
x,y

p(x, y)1{g(x) 6=y} = 1−
∑
x,y

p(x, y)1{g(x)=y}.

The Bayes classifier over X , denoted as g∗(X), is the
classifier that outputs the most likely class a posteriori,
i.e. g∗(x) = argmaxy p(y|x). Interestingly, the Bayes clas-
sifier is optimal. That is, the risk of the Bayes classifier,
known as the Bayes risk of X , is minimal [2, Theorem
2.1]. If Y is binary, the Bayes risk of X can be written as

R(g∗(X)) =
∑

x

min
y

p(x, y).

An inducer is a function I : (X × Y)l → G, where G
is a set of classifiers over X . An inducer is universally
consistent if for every ε > 0, p(|R(I(Dl))− R(g∗(X))| >
ε) → 0 as l → ∞. An estimator of R(I(Dl)), denoted as
R̂(I(Dl)), is consistent if for every ε > 0, p(|R̂(I(Dl)) −
R(I(Dl))| > ε) → 0 as l →∞.

3 ON THE k-OPTIMAL PROBLEM

In this section, we show that solving the k-optimal
problem requires an exhaustive search over the subsets
of X of size k. First, we prove in the theorem below that
any increasing ordering of the Bayes risks of the subsets
of X that is consistent with the monotonicity constraint
is possible, no matter the cardinality of the sample space
of each random variable in (X, Y ).

Theorem 1: Let S1, . . . , S2n be an ordering of the sub-
sets of X such that i < j for all Sj ⊂ Si. Then, there
exists a probability distribution p over (X, Y ) such that
R(g∗(S1)) < . . . < R(g∗(S2n)).

Proof: We construct p as follows. We set p(x, y) = 0
for all y /∈ {0, 1} and x. This allows us to treat Y
hereinafter as if it were binary. We do so. We set

p(X = 0, Y = 0) = α ∈ (0.5, 1), (1)
p(X = 0, Y = 1) = 0, (2)
p(x, Y = 0) = 0 for all x 6= 0. (3)

Note that S1 = X and, thus, that R(g∗(S1)) = 0 by
Equations 2 and 3. Now, consider the subsets S2, . . . , S2n

in order, i.e. consider a subset only after having consid-
ered its predecessors in the ordering. Let Si denote the

next subset to consider. Then, miny p(Si = 0, y) = p(Si =
0, Y = 1) by Equation 1. Furthermore, p(si, Y = 0) = 0
for all si 6= 0 by Equation 3 and, thus, miny p(si, y) = 0
for all si 6= 0. Consequently,

R(g∗(Si)) =
∑
si

min
y

p(si, y) = p(Si = 0, Y = 1).

Furthermore,

p(Si = 0, Y = 1) =
∑
¬si

p(Si = 0,¬si, Y = 1)

=
∑

{Sj : Sj⊇Si}

∑
{¬sj : ¬sj≥1}

p(Sj = 0,¬sj , Y = 1)

=
∑

{¬si : ¬si≥1}

p(Si = 0,¬si, Y = 1)

+
∑

{Sj : Sj⊃Si}

∑
{¬sj : ¬sj≥1}

p(Sj = 0,¬sj , Y = 1). (4)

Since we have already considered S1, . . . , Si−1, we
have already set the probabilities in the second sum-
mand in the last equation above as well as those in
R(g∗(Si−1)). Then, we can now set the probabilities in
the first summand in the last equation above to some
positive value so that R(g∗(Si−1)) < R(g∗(Si)).

Since setting p(Si = 0,¬si, Y = 1) for all i and
¬si ≥ 1 so that

∑
i

∑
¬si≥1 p(Si = 0,¬si, Y = 1) =

1 − α is not straightforward, one can initially as-
sign them positive values satisfying the constraints
above and, then, normalize them by dividing them by∑

i

∑
¬si≥1

p(Si=0,¬si,Y =1)

1−α .
The theorem above implies that no non-exhaustive

search method over the subsets of X of size k can always
solve the k-optimal problem: For any subset S of X of
size k that is not considered by a non-exhaustive search
method, there exists a probability distribution such that
the Bayes risk of S is smaller than the Bayes risks of the
rest of subsets of X of size k. Furthermore, it follows
from the proof above that the Bayes risk of S can be
made arbitrarily smaller than the Bayes risks of the rest
of subsets of X of size k. Therefore, a non-exhaustive
search method can perform arbitrarily bad.

The theorem above strengthens the results in [1,
Theorem 1], [11, page 108] and [2, Theorem 32.1]. In
particular, [1, Theorem 1] and [11, Theorem 1] prove
the same result as the theorem above by constructing
a continuous probability distribution that exhibits the
desired behavior. Therefore, in these works the features
are assumed to be continuous. It is mentioned in [11,
page 108] that the result also holds for discrete fea-
tures: It suffices to find a sufficiently fine discretization
of the continuous probability distribution constructed.
An alternative proof of the result is provided in [2,
Theorem 32.1], where the authors directly construct a
discrete probability distribution that exhibits the desired
behavior. As a matter of fact, the authors do not only
construct the discrete probability distribution but also
the sample space of the features. Consequently, the three
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papers cited prove the same result as the theorem above
for some discrete sample space of the features. However,
this sample space may not coincide with the prescribed
one. In other words, the three papers cited prove the
result for some discrete sample space of the features
whereas the theorem above proves it for any discrete
sample space of the features, because the sample space of
each random variable in (X, Y ) can have any cardinality,
as long as this is finite and greater than one.

We prove below another interesting result: Some not
strictly increasing orderings of the Bayes risks of the
subsets of X are impossible though they comply with the
monotonicity constraint. This result will be of much help
in the next section. We prove first an auxiliary theorem.

Theorem 2: Let p be a probability distribution over
(X, Y ). Let S and T denote two disjoint subsets of X . If
p(st) > 0 and p(Y |st) has a single maximum for all st,
then R(g∗(ST )) = R(g(S)) iff g∗(ST ) = g(S).

Proof:

R(g(S))−R(g∗(ST ))

= 1−
∑
s,y

p(s, y)1{g(s)=y} − 1 +
∑
st,y

p(st, y)1{g∗(st)=y}

=
∑
st,y

p(st, y)1{g∗(st)=y} −
∑
s,y

(
∑

t

p(st, y))1{g(s)=y}

=
∑
st,y

p(st, y)(1{g∗(st)=y} − 1{g(s)=y})

=
∑

{st : g∗(st) 6=g(s)}

p(st, g∗(st))− p(st, g(s))

=
∑

{st : g∗(st) 6=g(s)}

p(st)(p(g∗(st)|st)− p(g(s)|st)).

Thus, if R(g(S))−R(g∗(ST )) = 0 then g∗(st) = g(s) for
all st, because p(st) > 0 and p(g∗(st)|st) > p(g(s)|st) by
assumption. On the other hand, if R(g(S))−R(g∗(ST )) 6=
0 then g∗(st) 6= g(s) for some st.

The assumption that p(Y |st) has a single maximum
for all st in the theorem above is meant to guarantee
that no tie occurs in g∗(ST ).

Theorem 3: Let p be a probability distribution over
(X, Y ). Let S, T and U denote three mutually disjoint
subsets of X . If p(stu) > 0 and p(Y |stu) has a single
maximum for all stu, then R(g∗(STU)) = R(g∗(ST )) =
R(g∗(SU)) iff R(g∗(STU)) = R(g∗(S)).

Proof: The if part is immediate due to the mono-
tonicity constraint. To prove the only if part, assume
to the contrary that R(g∗(STU)) < R(g∗(S)). Then,
g∗(s′t′u′) 6= g∗(s′t′′u′′) for some s′t′u′ and s′t′′u′′ such
that t′ 6= t′′ or u′ 6= u′′ because, otherwise, for any s,
g∗(stu) is constant for all tu and, thus, g∗(STU) reduces
to a classifier g(S) such that R(g(S)) = R(g∗(STU)) by
Theorem 2. This is a contradiction because R(g(S)) =
R(g∗(STU)) < R(g∗(S)). Then, g∗(s′t′u′) 6= g∗(s′t′′u′′).

Since R(g∗(STU)) = R(g∗(ST )), then g∗(s′t′u′) =
g∗(s′t′u′′) = g∗(s′t′) due to Theorem 2. Likewise,
since R(g∗(STU)) = R(g∗(SU)), then g∗(s′t′u′′) =
g∗(s′t′′u′′) = g∗(s′u′′) due to Theorem 2. However, these

equalities imply that g∗(s′t′u′) = g∗(s′t′′u′′) which is a
contradiction.

Consequently, under the assumptions in the theorem
above, some not strictly increasing orderings of the Bayes
risks of the subsets of X are impossible though they com-
ply with the monotonicity constraint, e.g. R(g∗(STU)) =
R(g∗(ST )) = R(g∗(SU)) < R(g∗(S)).

4 ON THE MINIMAL-OPTIMAL PROBLEM

In this section, we prove that, under mild assump-
tions on the probability distribution p(X, Y ), solving
the minimal-optimal problem does not require an ex-
haustive search over the subsets of X . Specifically, the
assumptions are that p(x) > 0 and p(Y |x) has a single
maximum for all x. The former assumption implies that
there are not bijective transformations between feature
subsets. To see it, it suffices to note that if there were
a bijective transformation between two feature subsets,
then the probability that one of the feature subsets is in
a state different from the one dictated by the bijective
transformation would be zero, which contradicts the
assumption of strict positivity. The latter assumption
implies that no tie occurs in g∗(X).

Before proving the main result of this section, we
prove that the solution to the minimal-optimal problem
is unique.

Theorem 4: Let p be a probability distribution over
(X, Y ). If p(x) > 0 and p(Y |x) has a single maximum for
all x, then the solution to the minimal-optimal problem
is unique.

Proof: A solution to the minimal-optimal problem is
any minimal feature subset that has minimal Bayes risk.
It is obvious that one such subset always exists. Assume
to the contrary that there exist two such subsets, say
S∗ and S∗. Then, R(g∗(X)) = R(g∗(S∗)) = R(g∗(S∗)).
Since S∗ = (S∗ ∩ S∗)(S∗ \ S∗) and S∗ ⊆ (S∗ ∩ S∗)(X \
S∗), the monotonicity constraint implies that R(g∗(X)) =
R(g∗((S∗∩S∗)(S∗\S∗))) = R(g∗((S∗∩S∗)(X\S∗))). Since
X = (S∗∩S∗)(S∗\S∗)(X\S∗), R(g∗(X)) = R(g∗(S∗∩S∗))
by Theorem 3. However, this contradicts that S∗ and S∗
are minimal with respect to having minimal Bayes risk.

Hereinafter, S∗ denotes the unique solution to the
minimal-optimal problem. We prove below that the
backward search (BS) method in Table 1 solves the
minimal-optimal problem. Let S denote the estimate of
S∗. BS first initializes S to X . Then, it chooses any Xi ∈ S
such that R(g∗(S \Xi)) = R(g∗(S)) and removes it from
S. The method keeps removing features from S while
possible.

Theorem 5: Let p be a probability distribution over
(X, Y ). If p(x) > 0 and p(Y |x) has a single maximum for
all x, then the backward search (BS) method in Table 1
solves the minimal-optimal problem.

Proof: Assume that no feature can be removed from
S and, thus, that BS halts. At that point, S has minimal
Bayes risk, i.e. R(g∗(S)) = R(g∗(X)), by how BS works.
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TABLE 1
Backward search (BS) method

1 S = X
2 i = 1
3 while i ≤ n do
4 if Xi ∈ S then
5 if R(g∗(S \Xi)) = R(g∗(S)) then
6 S = S \Xi

7 i = 1
8 else
9 i = i + 1

10 else
11 i = i + 1
12 return S

Moreover, S is minimal with respect to having minimal
Bayes risk. To see it, assume to the contrary that there
exists some T ⊂ S such that R(g∗(T )) = R(g∗(S)) =
R(g∗(X)). Then, R(g∗(S \ Xi)) = R(g∗(S)) with Xi ∈
S\T , due to the monotonicity constraint because T ⊂ S\
Xi ⊂ S. However, this contradicts that no more features
can be removed from S.

Finally, note that if S is minimal with respect to having
minimal Bayes risk, then S = S∗ by Theorem 4.

If X contains more than two features, then the theorem
above implies that solving the minimal-optimal problem
does not require an exhaustive search over the subsets
of X . Recall from the previous section that solving the
k-optimal problem requires an exhaustive search over
the subsets of X of size k. One may think that such an
exhaustive search would not be necessary if one makes
the same assumptions as in the theorem above. Unfor-
tunately, this is not true: The probability distribution
constructed in the proof of Theorem 1 satisfies those
assumptions, because of Equations 1 and 3 and because
the probabilities in the first summand of Equation 4 are
set to positive values.

BS removes features from S in certain order: It always
removes the feature with the smallest index that satisfies
the conditions in lines 4 and 5. However, removing
any other feature that satisfies these conditions works
equally well, because the proof of the theorem above
does not depend on this question. However, the study
of this question led us to an interesting finding: The
features that satisfy the conditions in lines 4 and 5 in
the first iteration of BS, i.e. when S = X , are exactly the
features that will be removed from S in all the iterations.
The theorem below proves this fact.

Theorem 6: Let p be a probability distribution over
(X, Y ). If p(x) > 0 and p(Y |x) has a single maximum
for all x, then Xi ∈ S∗ iff R(g∗(¬Xi)) 6= R(g∗(X)) or,
alternatively, Xi ∈ S∗ iff g∗(¬Xi) 6= g∗(X).

Proof: It suffices to prove the first equivalence in the
theorem, because the second follows from the first by
Theorem 2.

Consider any Xi /∈ S∗. By Theorem 5, BS removes
Xi from S at some point. At that point, R(g∗(S \
Xi)) = R(g∗(S)) = R(g∗(X)) by how BS works. More-
over, R(g∗(S \ Xi)) = R(g∗(X)) implies R(g∗(¬Xi)) =

TABLE 2
One-shot (OS) method

1 S = X
2 i = 1
3 while i ≤ n do
4 if R(g∗(¬Xi)) = R(g∗(X)) then
5 S = S \Xi

6 i = i + 1
7 return S

R(g∗(X)) by the monotonicity constraint since S \Xi ⊂
¬Xi ⊂ X .

Now, consider any Xi ∈ S∗. By Theorem 5, Xi ∈
S when BS halts. At that point, R(g∗(S \ Xi)) 6=
R(g∗(S)) = R(g∗(X)) by how BS works. More-
over, R(g∗(X)) 6= R(g∗(S \ Xi)) implies R(g∗(X)) =
R(g∗(S)) 6= R(g∗(¬Xi)) by Theorem 3 and the fact that
R(g∗(X)) = R(g∗(S)).

The theorem above implies that the minimal-optimal
problem can be solved without performing a search over
the subsets of X : It suffices to apply the characterization
of S∗ in the theorem. We call this method the one-shot
(OS) method. Tables 2 shows its pseudocode.

It is worth mentioning that an unproven character-
ization of S∗ is proposed in [5, page 593]. Although
in [5] the features are assumed to be continuous, the
authors claim that their characterization also applies to
discrete features. Specifically, the authors state without
proof that Xi ∈ S∗ iff P (g∗(¬Xi, Xi) 6= g∗(¬Xi, X

′
i)) > 0

where Xi and X ′
i are two representations of the i-th

feature that are independent and identically distributed
conditioned on ¬Xi. Intuitively, one can think of Xi

and X ′
i as two identical sensors measuring the state

of the i-th feature. Note that the only independence
assumed is that between Xi and X ′

i conditioned on ¬Xi

and, thus, no independence is assumed between the
random variables in (¬Xi, Xi, Y ) or between the random
variables in (¬Xi, X

′
i, Y ). The theorem below proves the

correctness of this alternative characterization of S∗.
Theorem 7: Let p be a probability distribution over

(X, Y ). If p(x) > 0 and p(Y |x) has a single maximum for
all x, then Xi ∈ S∗ iff P (g∗(¬Xi, Xi) 6= g∗(¬Xi, X

′
i)) > 0

where Xi and X ′
i are independent and identically dis-

tributed conditioned on ¬Xi.
Proof: Let p′ denote the probability distribution over

(¬Xi, X
′
i, Y ). That Xi and X ′

i are independent and iden-
tically distributed conditioned on ¬Xi implies that, for
any ¬xi, p′(¬xi, X

′
i = z) = p(¬xi, Xi = z) for all z

state of Xi and X ′
i . We represent this coincidence by the

expression p′ = p.
By Theorem 6, it suffices to prove that

P (g∗(¬Xi, Xi) 6= g∗(¬Xi, X
′
i)) = 0 iff g∗(¬Xi) = g∗(X).

We first prove that P (g∗(¬Xi, Xi) 6= g∗(¬Xi, X
′
i)) = 0

iff, for any ¬xi, g∗(¬xi, xi) is constant for all xi. The
if part is immediate because p′ = p implies that, for
any ¬xi, g∗(¬xi, x

′
i) is also constant for all x′i. To

prove the only if part, assume to the contrary that,
for some ¬xi, g∗(¬xi, xi) is not constant for all xi.
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Then, p′ = p implies that g∗(¬xi, xi) 6= g∗(¬xi, x
′
i)

for some state ¬xixix
′
i. Note that this state has

probability p(¬xi)p(xi|¬xi)p′(x′i|¬xi), which is greater
than zero because p(x) > 0 for all x and p′ = p. Then,
P (g∗(¬Xi, Xi) 6= g∗(¬Xi, X

′
i)) > 0 which is a contradic-

tion. Consequently, P (g∗(¬Xi, Xi) 6= g∗(¬Xi, X
′
i)) = 0

iff, for any ¬xi, g∗(¬xi, xi) is constant for all xi.
Moreover, for any ¬xi, g∗(¬xi, xi) is constant for all

xi iff g∗(X) coincides with some classifier g(¬Xi). We
now prove that the latter statement is true iff g∗(X) =
g∗(¬Xi). The if part is trivial. To prove the only if part,
assume to the contrary that g∗(X) coincides with some
classifier g(¬Xi) such that g(¬Xi) 6= g∗(¬Xi). Then,
R(g∗(¬Xi)) < R(g(¬Xi)) = R(g∗(X)) by Theorem 2.
However, this contradicts the monotonicity constraint.

Finally, note that our characterization of S∗ in Theorem
6 as Xi ∈ S∗ iff g∗(¬Xi) 6= g∗(X) resembles the definition
of strongly relevant features introduced in [4, Definition
5]: Xi is strongly relevant iff p(Y |¬Xi) 6= p(Y |X). Note,
however, that our characterization of S∗ involves the
Bayes classifier whereas the definition of strongly rele-
vant involves the posterior distribution of Y . This is why
S∗ does not coincide with the set of strongly relevant
features in general, as the following example illustrates.

Example 1: Let X and Y be two binary random vari-
ables. Let p(x) > 0 and p(Y = 0|x) = x/3 for all x. Then,
X is strongly relevant though X /∈ S∗, because it affects
the posterior distribution of Y but not enough so as to
affect the Bayes classifier, which is g∗(x) = 1 for all x.

It should be noted, however, that every feature in S∗

is strongly relevant. See [5, Theorem 8] for a proof of this
statement for continuous features. The proof also applies
to discrete features. Yet another feature subset of impor-
tance in classification is the so-called Markov boundary
introduced in [6, page 97]: The Markov boundary is the
minimal feature subset M such that p(Y |M) = p(Y |X).
When p(x) > 0 for all x, the Markov boundary coincides
with the strongly relevant features. See [5, Theorem 10]
for a proof of this statement for continuous features. The
proof also applies to discrete features. Therefore, S∗ does
not coincide with the Markov boundary in general either.

When facing a classification problem for the first time,
the practitioner should decide whether it will suffice to
predict a class label for each new instance or whether
it will also be needed to assess the confidence in the
class label predicted. Some may say that this is not
a decision the practitioner can make but an intrinsic
characteristic of the classification problem at hand. In
any case, the practitioner should determine the feature
subset on which to build the classifier. As we have
discussed above, S∗ and the Markov boundary M do
not coincide in general. Therefore, it is crucial to choose
the right feature subset in order to solve the classification
problem optimally. If only the label of the class predicted
is needed when classifying a new instance, then one
should go for S∗ because it is the minimal feature subset
that allows to build a classifier with minimal risk, i.e.

R(g∗(S∗)) = R(g∗(X)). If a measure of the confidence
in the class label predicted is required, then one should
go for M , which as mentioned above coincides with
the strongly relevant features when p(x) > 0 for all
x, because it is the minimal feature subset such that
p(Y |M) = p(Y |X).

5 BS AND OS IN PRACTICE

It is shown in [9] that for a feature selection algorithm to
solve a feature selection problem, the algorithm should
be custom designed for specific classes of classifiers
and performance measures. Of course, these classes of
classifiers and performance measures must be aligned
with the feature selection problem at hand. Clearly, these
conditions are satisfied by BS and OS and the feature
selection problem that they address, i.e. the minimal-
optimal problem: The algorithms and the problem are
defined in terms of the same classifier (the Bayes classi-
fier) and performance measure (the risk of a classifier).
We have proved in Theorems 5 and 6 that BS and OS
solve the minimal-optimal problem. Recall that BS and
OS assume that one has access to the probability distri-
bution p(X, Y ) so that the Bayes risks of different feature
subsets can be computed. Unfortunately, in practice, one
does not have access to this probability distribution but
to a sample from it of finite size l, here denoted as Dl.
Therefore, in order to use BS and OS in practice, we make
the following modifications:

• We replace the condition R(g∗(S \Xi)) = R(g∗(S))
in Table 1 with the condition R̂(I(Dl

S\Xi
)) ≤

R̂(I(Dl
S)) + τ , and

• we replace the condition R(g∗(¬Xi)) = R(g∗(X)) in
Table 2 with the condition R̂(I(Dl

¬Xi
)) ≤ R̂(I(Dl))+

τ ,
where I is an inducer, R̂ is a risk estimator, Dl

T is the data
in Dl for the features in T ⊆ X , and τ > 0 is a parameter
that enables to discard Xi if this does not harm perfor-
mance significantly. This parameter enables to control
the trade-off between precision and recall, i.e. the smaller
τ the higher recall but the lower precision. We call the
methods resulting from the two modifications above,
respectively, FBS and FOS, where the F stands for finite
sample.

As we have discussed above, if FBS and FOS are
to solve the minimal-optimal problem, then I and R̂
must be aligned with the Bayes classifier and the risk
of a classifier, respectively. A reasonable interpretation
of being aligned may be that the former converge to
the latter asymptotically. The theorem below proves
that, under this interpretation, FBS and FOS solve the
minimal-optimal problem asymptotically, i.e. the proba-
bility that they do not return S∗ converges to zero as the
sample size tends to infinity. We call this property of an
algorithm consistency.

Theorem 8: Let p be a probability distribution over
(X, Y ) such that p(x) > 0 and p(Y |x) has a single
maximum for all x. If I is an universally consistent
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inducer and R̂ is a consistent risk estimator, then there
exists some η > 0 such that FBS and FOS are consistent
for all τ ∈ (0, η).

Proof: The proof is a straightforward adaptation of
that of [5, Theorem 11]. We start by proving the theorem
for FBS. Let Sj and Tj denote the content of S and S\Xi,
respectively, when line 5 in Table 1 is executed for the
j-th time. Let η = 1 if R(g∗(Tj)) − R(g∗(Sj)) = 0 for
all j. Otherwise, let η = minj{R(g∗(Tj)) − R(g∗(Sj)) :
R(g∗(Tj)) − R(g∗(Sj)) > 0}. Let τ ∈ (0, η). Since BS
returns S∗ by Theorem 5, if FBS does not return S∗, then
there exists some feature that is in the output of FBS
but not in the output of BS, or that is in the output of
BS but not in the output of FBS. In other words, if FBS
does not return S∗, then there exists some j such that
either R(g∗(Tj)) − R(g∗(Sj)) = 0 whereas R̂(I(Dl

Tj
)) −

R̂(I(Dl
Sj

)) > τ , or R(g∗(Tj)) − R(g∗(Sj)) ≥ η whereas
R̂(I(Dl

Tj
)) − R̂(I(Dl

Sj
)) ≤ τ . Let ε ∈ (0,min{τ, η − τ}).

Then,

P (FBS does not return S∗)

≤ P (
∨
j

|R(g∗(Tj))−R(g∗(Sj))−(R̂(I(Dl
Tj

))−R̂(I(Dl
Sj

)))| > τ

∨|R(g∗(Tj))−R(g∗(Sj))− (R̂(I(Dl
Tj

))− R̂(I(Dl
Sj

)))| ≥ η− τ)

≤ P (
∨
j

|R(g∗(Tj))−R(g∗(Sj))−(R̂(I(Dl
Tj

))−R̂(I(Dl
Sj

)))| > ε)

≤ P (
∨
j

|R(g∗(Tj))−R̂(I(Dl
Tj

))|+|R̂(I(Dl
Sj

))−R(g∗(Sj))| > ε)

≤ P (
∨
j

|R(g∗(Tj))−R(I(Dl
Tj

)) + R(I(Dl
Tj

))− R̂(I(Dl
Tj

))|

+|R̂(I(Dl
Sj

))−R(I(Dl
Sj

)) + R(I(Dl
Sj

))−R(g∗(Sj))| > ε)

≤ P (
∨
j

|R(g∗(Tj))−R(I(Dl
Tj

))|+ |R(I(Dl
Tj

))− R̂(I(Dl
Tj

))|

+|R̂(I(Dl
Sj

))−R(I(Dl
Sj

))|+ |R(I(Dl
Sj

))−R(g∗(Sj))| > ε)

≤ P (
∨
j

|R(g∗(Tj))−R(I(Dl
Tj

))| > ε

4

∨|R(I(Dl
Tj

))− R̂(I(Dl
Tj

))| > ε

4

∨|R̂(I(Dl
Sj

))−R(I(Dl
Sj

))| > ε

4

∨|R(I(Dl
Sj

))−R(g∗(Sj))| >
ε

4
)

≤
∑

j

P (|R(g∗(Tj))−R(I(Dl
Tj

))| > ε

4
)

+P (|R(I(Dl
Tj

))− R̂(I(Dl
Tj

))| > ε

4
)

+P (|R̂(I(Dl
Sj

))−R(I(Dl
Sj

))| > ε

4
)

+P (|R(I(Dl
Sj

))−R(g∗(Sj))| >
ε

4
).

Note that the four probabilities in the last expression
above converge to zero for all j as l tends to infinity: The
first and forth probabilities because I is universally con-
sistent, and the second and third probabilities because R̂
is consistent. Consequently, P (FBS does not return S∗)
converges to zero as l tends to infinity.

The proof above also applies to FOS if Sj and Tj

denote the content of X and ¬Xi, respectively, when line
4 in Table 2 is executed for the j-th time.

Luckily, there are many universally consistent induc-
ers and consistent risk estimators, among them some of
the most commonly used inducers and risk estimators.
For instance, two examples of universally consistent in-
ducer are support vector machines [8] and the k-nearest
neighbor method [2, Theorem 6.4]. Two examples of
consistent risk estimator are the counting risk estimator
[2, Corollary 8.1] and the cross-validation risk estimator
[2, Chapter 24]. Furthermore, note that the number of
iterations that FBS and FOS perform is smaller than n2

in the case of the former and exactly n in the case of the
latter, where n is the number of features in X . Therefore,
the running time of FBS and FOS is polynomial in n,
provided that the inducer and the risk estimator in them
are also polynomial in n. For example, let the inducer be
the k-nearest neighbor method run on the first half of Dl,
and let the risk estimate be the counting risk estimate on
the second half of Dl, i.e. the fraction of errors on the
second half of Dl. This inducer and this risk estimator
are polynomial in n. Consequently, FBS and FOS with
this inducer and this risk estimator prove that there exist
algorithms for solving the minimal-optimal problem that
are both polynomial and consistent.

As discussed above, FBS may be slower than FOS:
The number of iterations of the former is quadratic
in n whereas the number of iterations of the latter is
linear in n. However, FBS may be more reliable than
FOS: Since S gets smaller with each feature discarded,
the result of the check R̂(I(Dl

S\Xi
)) ≤ R̂(I(Dl

S)) + τ
in FBS is more reliable than the result of the check
R̂(I(Dl

¬Xi
)) ≤ R̂(I(Dl)) + τ in FOS. Therefore, FBS can

be said to be slower but more reliable than FOS and
viceversa. It is up to the practitioner to decide which
of the two algorithms suits the application at hand,
depending on the amount of learning data available and
the running time requirements.

The theorem above provides evidence of why feature
selection algorithms that run backward as FBS does, i.e.
they initialize the estimate S to X and then proceed by
removing features from S (e.g. [3]), usually work well
in practice. All in all, FBS and FOS are not meant to
be applied in practice, though they may be. Thus, their
empirical evaluation is out of the scope of this paper.
The reason is that the estimates R̂(I(Dl

S\Xi
)), R̂(I(Dl

S)),
R̂(I(Dl

¬Xi
)) and R̂(I(Dl)) may be unreliable if the num-

ber of features is large and the data available scarce. We
have developed FBS and FOS as a proof-by-example of
the existence of time efficient and asymptotically correct
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algorithms for solving the minimal-optimal problem. It
is our hope that FBS and FOS provide foundation for
designing algorithms that, in addition to being time
efficient and asymptotically correct as FBS and FOS, are
data efficient as well. We are convinced that such algo-
rithms must run forward, i.e. initializing the estimate S
to the empty set and then adding features to it until it
coincides with S∗. Forward search methods are common
when searching for the Markov boundary, e.g. [7], [10].
This is why we plan to investigate the conditions under
which forward search methods aiming at finding S∗ are
asymptotically correct.

6 CONCLUSIONS

In this paper, we have reported some theoretic results
on feature selection that have important practical im-
plications. Specifically, we have proved the following
theoretic results:

• Any increasing ordering of the Bayes risks of the fea-
ture subsets that is consistent with the monotonicity
constraint is possible, no matter the cardinality of
the sample space of the features and the class.
This implies that finding the feature subset of a
given size that has minimal Bayes risk requires an
exhaustive search over the feature subsets of that
size. Up to now, [1], [2], [11] have frequently been
miscited as evidence for the intractability of this
feature selection problem (recall Section 3).

• Finding the minimal feature subset that has minimal
Bayes risk, i.e. S∗, is a tractable feature selection
problem since it does not require an exhaustive
search over feature subsets. We have proposed two
algorithms to solve this problem: BS that runs back-
ward, and OS that takes a one-shot approach based
on a characterization of S∗ that we have derived.

The results above are theoretic in the sense that they
build upon the assumption that the probability distribu-
tion of the features and the class, i.e. p(X, Y ), is known.
Unfortunately, in practice, one does not have access to
this probability distribution but to a finite sample from it.
We have adapted BS and OS to finite samples resulting
in two algorithms, FBS and FOS, that converge to S∗

asymptotically and whose running time is polynomial
in the number of features. This result provides evidence
of why feature selection algorithms that run backward as
FBS does, e.g. [3], usually work well in practice. In any
case, the aim of this paper was not to develop algorithms
that are competitive in practice, but to demonstrate that
there are principled ways of developing time efficient
and asymptotically correct algorithms. We hope that
our results provide foundation for developing feature
selection algorithms that are not only time efficient and
asymptotically correct but also data efficient and, thus,
competitive in practice. We are convinced that such
algorithms must run forward. We plan to investigate the
assumptions that allow to develop such algorithms. Of
course, the assumptions should be as mild as possible.

However, it is unlikely that they will be as mild as the
assumptions made to develop BS, OS, FBS and FOS,
namely that p(x) > 0 and p(Y |x) has a single maximum
for all x.
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