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● In page 2, the definition of descending route should be replaced by the following:

A route is called descending if Vi → Vi+1, Vi −Vi+1 or Vi↔ Vi+1 is in G for all 1 ≤ i < n.

● In page 2, the sentences

”intersection X ⊥ pY ∣Z ∪ W ∧ X ⊥ pW ∣Z ∪ Y ⇒ X ⊥ pY ∪ W ∣Z. Moreover, M is
called compositional graphoid if it is a graphoid that also satisfies the composition
property X⊥MY ∣Z ∧X⊥MW ∣Z ⇒X⊥MY ∪W ∣Z.”

should be replaced by

”intersection X ⊥ MY ∣Z ∪W ∧ X ⊥ MW ∣Z ∪ Y ⇒ X ⊥ MY ∪W ∣Z. Moreover, M is
called compositional graphoid if it is a graphoid that also satisfies the composition
property X ⊥MY ∣Z ∧X ⊥MW ∣Z ⇒ X ⊥MY ∪W ∣Z. Another property that M may
satisfy is weak transitivity X ⊥MY ∣Z ∧X ⊥MY ∣Z ∪K ⇒ X ⊥MK ∣Z ∨K ⊥MY ∣Z with
K ∈ V ∖X ∖ Y ∖Z.”

● In page 8, Corollary 3 should be replaced by the following (the old proof still applies):

Corollary 3. Any independence model represented by a MAMP CG is a composi-
tional graphoid that satisfies weak transitivity.

● In page 8, the definition of pairwise separation base should be replaced by the follow-
ing:

Specifically, we define the pairwise separation base of a MAMP CG G as the sep-
arations

– A⊥B∣paG(A) for all A,B ∈ V st A ∉ adG(B) and B ∉ deG(A),
– A ⊥B∣neG(A) ∪ paG(A ∪ neG(A)) for all A,B ∈ V st A ∉ adG(B), A ∈ deG(B),
B ∈ deG(A) and ucG(A) = ucG(B), and

– A ⊥ B∣paG(A) for all A,B ∈ V st A ∉ adG(B), A ∈ deG(B), B ∈ deG(A) and
ucG(A) ≠ ucG(B).

● In page 10, in the sentence

”Note that for all A,B ∈ Ki st ucG(A) = ucG(B) and A − B is not in G, A ⊥
GB∣paG(Ki)∪Ki∖A∖B and thus (Λi

ucG(A),ucG(A))−1A,B = 0 (Lauritzen, 1996, Proposition
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5.2).”

A⊥GB∣paG(Ki)∪Ki ∖A∖B should be replaced by A⊥GB∣paG(Ki)∪ucG(A)∖A∖B.

● In page 20, the sentence

”On the other hand, if A and C are in different undirected connectivity components
of G1, then A ∉ deG1(C) or C ∉ deG1(A). Assume without loss of generality that
A ∉ deG1(C). Then, A⊥C ∣paG1(C) holds for G1 by Theorem 5 but it does not hold
for G2, which is a contradiction.”

should be replaced by

”On the other hand, if A and C are in different undirected connectivity components
of G1, then A⊥C ∣paG1(C) or A⊥C ∣paG1(A) holds for G1 by Theorem 5 but neither
holds for G2, which is a contradiction.”

Likewise, the sentence

”On the other hand, if A and C are in different undirected connectivity compo-
nents of G1, then A ∉ deG1(C) or C ∉ deG1(A). Assume without loss of generality
that A ∉ deG1(C). Then, A⊥C ∣paG1(C) holds for G1 by Theorem 5. Note also that
B ∉ paG1(C) because, otherwise, G1 would not have the triplex ({A,C},B). Then,
A⊥C ∣paG1(C) does not hold for G2, which is a contradiction.”

should be replaced by

”On the other hand, if A and C are in different undirected connectivity components
of G1, then A⊥C ∣paG1(C) or A⊥C ∣paG1(A) holds for G1 by Theorem 5. Note also
that B ∉ paG1(A) and B ∉ paG1(C) because, otherwise, G1 would not have the triplex
({A,C},B). Then, neither A⊥C ∣paG1(C) nor A⊥C ∣paG1(A) holds for G2, which is a
contradiction.”

● In pages 17-20, the proofs of Theorems 5 and 6 should be replaced by the following:

Proof of Theorem 5. Since the independence model represented by G satisfies the
compositional graphoid properties by Corollary 3, it suffices to prove that the pairwise
separation base of G is a subset of the independence model represented by G. We
prove this next. Let A,B ∈ V st A ∉ adG(B). Consider the following cases.
Case 1: Assume that B ∉ deG(A). Then, every path between A and B in G falls

within one of the following cases.
Case 1.1: A = V1 ← V2 . . . Vn = B. Then, this path is not paG(A)-open.
Case 1.2: A = V1 ←⊸V2 . . . Vn = B. Note that V2 ≠ Vn because A ∉ adG(B).

Note also that V2 ∉ paG(A) due to the constraint C1. Then, V2 → V3 must
be in G for the path to be paG(A)-open. By repeating this reasoning, we
can conclude that A = V1 ←⊸V2 → V3 → . . . → Vn = B is in G. However, this
contradicts that B ∉ deG(A).

Case 1.3: A = V1 − V2 − . . . − Vm ←⊸ Vm+1 . . . Vn = B. Note that Vm ∉ paG(A)
due to the constraint C1. Then, this path is not paG(A)-open.
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Case 1.4: A = V1 − V2 − . . . − Vm → Vm+1 . . . Vn = B. Note that Vm+1 ≠ Vn
because B ∉ deG(A). Note also that Vm+1 ∉ paG(A) due to the constraint
C1. Then, Vm+1 → Vm+2 must be in G for the path to be paG(A)-open.
By repeating this reasoning, we can conclude that A = V1 − V2 − . . . − Vm →
Vm+1 → . . .→ Vn = B is in G. However, this contradicts that B ∉ deG(A).

Case 1.5: A = V1 − V2 − . . . − Vn = B. This case contradicts the assumption
that B ∉ deG(A).

Case 2: Assume that A ∈ deG(B), B ∈ deG(A) and ucG(A) = ucG(B). Then, there
is an undirected path ρ between A and B in G. Then, every path between A and
B in G falls within one of the following cases.

Case 2.1: A = V1 ← V2 . . . Vn = B. Then, this path is not (neG(A) ∪ paG(A ∪
neG(A)))-open.

Case 2.2: A = V1 ←⊸V2 . . . Vn = B. Note that V2 ≠ Vn because A ∉ adG(B).
Note also that V2 ∉ neG(A) ∪ paG(A ∪ neG(A)) due to the constraints C1
and C2. Then, V2 → V3 must be in G for the path to be (neG(A)∪paG(A∪
neG(A)))-open. By repeating this reasoning, we can conclude that A =
V1 ←⊸V2 → V3 → . . .→ Vn = B is in G. However, this together with ρ violate
the constraint C1.

Case 2.3: A = V1 − V2 ← V3 . . . Vn = B. Then, this path is not (neG(A) ∪
paG(A ∪ neG(A)))-open.

Case 2.4: A = V1 − V2 ←⊸V3 . . . Vn = B. Note that V3 ≠ Vn due to ρ and the
constraints C1 and C2. Note also that V3 ∉ neG(A)∪ paG(A∪neG(A)) due
to the constraints C1 and C2. Then, V3 → V4 must be in G for the path
to be (neG(A) ∪ paG(A ∪ neG(A)))-open. By repeating this reasoning, we
can conclude that A = V1 − V2 ←⊸V3 → . . . → Vn = B is in G. However, this
together with ρ violate the constraint C1.

Case 2.5: A = V1 − V2 − V3 . . . Vn = B st spG(V2) = ∅. Then, this path is not
(neG(A) ∪ paG(A ∪ neG(A)))-open.

Case 2.6: A = V1 − V2 − . . . − Vn = B st spG(Vi) ≠ ∅ for all 2 ≤ i ≤ n − 1. Note
that Vi ∈ neG(V1) for all 3 ≤ i ≤ n by the constraint C3. However, this
contradicts that A ∉ adG(B).

Case 2.7: A = V1 −V2 − . . .−Vm −Vm+1 −Vm+2 . . . Vn = B st spG(Vi) ≠ ∅ for all
2 ≤ i ≤m and spG(Vm+1) = ∅. Note that Vi ∈ neG(V1) for all 3 ≤ i ≤m+1 by
the constraint C3. Then, this path is not (neG(A)∪paG(A∪neG(A)))-open.

Case 2.8: A = V1 − V2 − . . . − Vm − Vm+1 ← Vm+2 . . . Vn = B st spG(Vi) ≠ ∅ for
all 2 ≤ i ≤ m. Note that Vi ∈ neG(V1) for all 3 ≤ i ≤ m + 1 by the constraint
C3. Then, this path is not (neG(A) ∪ paG(A ∪ neG(A)))-open.

Case 2.9: A = V1 − V2 − . . . − Vm − Vm+1 ←⊸Vm+2 . . . Vn = B st spG(Vi) ≠ ∅
for all 2 ≤ i ≤ m. Note that Vm+2 ≠ Vn due to ρ and the constraints C1
and C2. Note also that Vm+2 ∉ neG(A) ∪ paG(A ∪ neG(A)) due to the
constraints C1 and C2. Then, Vm+2 → Vm+3 must be in G for the path to
be (neG(A)∪paG(A∪neG(A)))-open. By repeating this reasoning, we can
conclude that A = V1 − V2 − . . . − Vm − Vm+1 ←⊸Vm+2 → . . . → Vn = B is in G.
However, this together with ρ violate the constraint C1.

Case 3: Assume that A ∈ deG(B), B ∈ deG(A) and ucG(A) ≠ ucG(B). Then, every
path between A and B in G falls within one of the following cases.

Case 3.1: A = V1 ← V2 . . . Vn = B. Then, this path is not paG(A)-open.
Case 3.2: A = V1 ←⊸V2 . . . Vn = B. Note that V2 ≠ Vn because A ∉ adG(B).

Note also that V2 ∉ paG(A) due to the constraint C1. Then, V2 → V3 must
be in G for the path to be paG(A)-open. By repeating this reasoning, we
can conclude that A = V1 ←⊸V2 → V3 → . . . → Vn = B is in G. However, this
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together with the assumption that A ∈ deG(B) contradict the constraint
C1.

Case 3.3: A = V1 − V2 − . . . − Vm ←⊸ Vm+1 . . . Vn = B. Note that Vm ∉ paG(A)
due to the constraint C1. Then, this path is not paG(A)-open.

Case 3.4: A = V1 − V2 − . . . − Vm → Vm+1 . . . Vn = B. Note that Vm+1 ≠ Vn
because, otherwise, this together with the assumption that A ∈ deG(B)
contradict the constraint C1. Note also that Vm+1 ∉ paG(A) due to the
constraint C1. Then, Vm+1 → Vm+2 must be in G for the path to be paG(A)-
open. By repeating this reasoning, we can conclude that A = V1 −V2 − . . .−
Vm → Vm+1 → . . . → Vn = B is in G. However, this together with the
assumption that A ∈ deG(B) contradict the constraint C1.

�

Lemma 3. Let X and Y denote two nodes of a MAMP CG G with only one con-
nectivity component. If X ⊥ GY ∣Z and there is a node C ∈ Z st spG(C) ≠ ∅, then
X⊥GY ∣Z ∖C.

Proof. Assume to the contrary that there is a (Z ∖C)-open path ρ between X and Y
in G. Note that C must occur in ρ because, otherwise, ρ is Z-open which contradicts
that X ⊥ GY ∣Z. For the same reason, C must be a non-triplex node in ρ. Then,
D − C − E must be a subpath of ρ and, thus, the edge D − E must be in G by the
constraint C3, because spG(C) ≠ ∅. Then, the path obtained from ρ by replacing the
subpath D − C − E with the edge D − E is Z-open. However, this contradicts that
X⊥GY ∣Z.

�

Lemma 4. Let X and Y denote two nodes of a MAMP CG G with only one connec-
tivity component. If X⊥GY ∣Z then X⊥ cl(G)Y ∣Z.

Proof. We prove the lemma by induction on ∣Z ∣. If ∣Z ∣ = 0, then ucG(X) ≠ ucG(Y ).
Consequently, X ⊥ cl(G)Y follows from the pairwise separation base of G because
X ∉ adG(Y ). Assume as induction hypothesis that the lemma holds for ∣Z ∣ < l. We
now prove it for ∣Z ∣ = l. Consider the following cases.
Case 1: Assume that ucG(X) = ucG(Y ). Consider the following cases.

Case 1.1: Assume that Z ⊆ ucG(X). Then, the pairwise separation base of G
implies that C⊥ cl(G)ucG(X)∖C∖neG(C)∣neG(C) for all C ∈ ucG(X) by re-
peated composition, which implies X⊥ cl(G)Y ∣Z by the graphoid properties
(Lauritzen, 1996, Theorem 3.7).

Case 1.2: Assume that there is some node C ∈ Z ∖ucG(X) st C ↔D is in G
with D ∈ ucG(X) and X /⊥GC ∣Z ∖C. Then, Y ⊥GC ∣Z ∖C. To see it, assume
the contrary. Then, X /⊥GY ∣Z ∖C by weak transitivity because X ⊥GY ∣Z.
However, this contradicts Lemma 3.
Now, note that Y ⊥ GC ∣Z ∖ C implies Y ⊥ cl(G)C ∣Z ∖ C by the induction
hypothesis. Note also that X ⊥ GY ∣Z ∖ C by Lemma 3 and, thus, X ⊥
cl(G)Y ∣Z ∖C by the induction hypothesis. Then, X⊥ cl(G)Y ∣Z by symmetry,
composition and weak union.

Case 1.3: Assume that Cases 1.1 and 1.2 do not apply. Let E ∈ Z ∖ucG(X).
Such a node E exists because, otherwise, Case 1.1 applies. Moreover,
X ⊥ GE∣Z ∖ E because, otherwise, there is some node C that satisfies the
conditions of Case 1.2. Note also that X ⊥ GY ∣Z ∖ E. To see it, assume
the contrary. Then, there is a (Z ∖E)-open path between X and Y in G.
Note that E must occur in the path because, otherwise, the path is Z-open,
which contradicts that X⊥GY ∣Z. However, this implies that X /⊥GE∣Z ∖E,
which is a contradiction.
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Now, note that X ⊥ GE∣Z ∖ E and X ⊥ GY ∣Z ∖ E imply X ⊥ cl(G)E∣Z ∖ E
and X ⊥ cl(G)Y ∣Z ∖E by the induction hypothesis. Then, X ⊥ cl(G)Y ∣Z by
composition and weak union.

Case 2: Assume that ucG(X) ≠ ucG(Y ). Consider the following cases.
Case 2.1: Assume that there is some node C ∈ Z st C ↔ X is in G. Then,
Y ⊥ GC ∣Z ∖ C because, otherwise, X /⊥ GY ∣Z. Then, Y ⊥ cl(G)C ∣Z ∖ C
by the induction hypothesis. Note that X ⊥ GY ∣Z ∖ C by Lemma 3 and,
thus, X ⊥ cl(G)Y ∣Z ∖C by the induction hypothesis. Then, X ⊥ cl(G)Y ∣Z by
symmetry, composition and weak union.

Case 2.2: Assume that there is some node C ∈ Z ∩ ucG(X) st spG(C) ≠ ∅,
and X ⊥ GC ∣Z ∖ C. Then, X ⊥ cl(G)C ∣Z ∖ C by the induction hypothesis.
Note that X ⊥ GY ∣Z ∖ C by Lemma 3 and, thus, X ⊥ cl(G)Y ∣Z ∖ C by the
induction hypothesis. Then, X⊥ cl(G)Y ∣Z by composition and weak union.

Case 2.3: Assume that there is some node C ∈ Z ∩ ucG(X) st spG(C) ≠ ∅,
and X /⊥ GC ∣Z ∖ C. Then, Y ⊥ GC ∣Z ∖ C. To see it, assume the contrary.
Then, X /⊥GY ∣Z ∖C by weak transitivity because X⊥GY ∣Z. However, this
contradicts Lemma 3.
Now, note that Y ⊥ GC ∣Z ∖ C implies Y ⊥ cl(G)C ∣Z ∖ C by the induc-
tion hypothesis. Note also that X ⊥ GY ∣Z ∖ C by Lemma 3 and, thus,
X ⊥ cl(G)Y ∣Z ∖C by the induction hypothesis. Then, X ⊥ cl(G)Y ∣Z by com-
position and weak union.

Case 2.4: Assume that Cases 2.1-2.3 do not apply. Let V1, . . . , Vm be the
nodes in Z ∩ ucG(X). Let W1, . . . ,Wn be the nodes in Z ∖ ucG(X). Then,
(1) X ⊥ cl(G)Y follows from the pairwise separation base of G because

ucG(X) ≠ ucG(Y ) and X ∉ adG(Y ). Moreover, for all 1 ≤ i ≤m
(2) Vi ⊥ cl(G)Y follows from the pairwise separation base of G because

Vi ∉ ucG(Y ) and Vi ∉ adG(Y ), since spG(Vi) = ∅ because, otherwise,
Case 2.2 or 2.3 applies. Moreover, for all 1 ≤ j ≤ n

(3) X ⊥ cl(G)Wj follows from the pairwise separation base of G because
Wj ∉ ucG(X) and Wj ∉ adG(X), since Wj ↔ X is not in G because,
otherwise, Case 2.1 applies. Moreover, for all 1 ≤ i ≤m and 1 ≤ j ≤ n

(4) Vi ⊥ cl(G)Wj follows from the pairwise separation base of G because
ucG(Vi) ≠ ucG(Wj) and Vi ∉ adG(Wj), since spG(Vi) = ∅ because,
otherwise, Case 2.2 or 2.3 applies. Then,

(5) X⊥ cl(G)Y ∣Z by repeated symmetry, composition and weak union.
�

We sort the connectivity components of a MAMP CG G as K1, . . . ,Kn st if X → Y
is in G, then X ∈ Ki and Y ∈ Kj with i < j. It is worth mentioning that, in the
proofs below, we make use of the fact that the independence model represented by
G satisfies weak transitivity by Corollary 3. Note, however, that this property is not
used in the construction of cl(G). In the expressions below, we give equal precedence
to the operators set minus, set union and set intersection.

Lemma 5. Let X and Y denote two nodes of a MAMP CG G st X,Y ∈ Km, X ⊥
GY ∣Z and Z ∩ (Km+1 ∪ . . . ∪Kn) = ∅. Let H denote the subgraph of G induced by
Km. Let W = Z ∩Km. Let W1 denote a minimal (wrt set inclusion) subset of W st
X⊥HW ∖W1∣W1. Then, X⊥ cl(G)Y ∣Z ∪ paG(X ∪W1).
Proof. We define the restricted separation base of G as the following set of separations:
R1. A⊥B∣neG(A) for all A,B ∈Km st A ∉ adG(B) and ucG(A) = ucG(B), and
R2. A⊥B for all A,B ∈Km st A ∉ adG(B) and ucG(A) ≠ ucG(B).

We define the extended separation base of G as the following set of separations:
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E1. A⊥B∣neG(A)∪ paG(Km) for all A,B ∈Km st A ∉ adG(B) and ucG(A) = ucG(B),
and

E2. A⊥B∣paG(Km) for all A,B ∈Km st A ∉ adG(B) and ucG(A) ≠ ucG(B).
Note that the separations E1 (resp. E2) are in one-to-one correspondence with

the separations R1 (resp. R2) st the latter can be obtained from the former by
adding paG(Km) to the conditioning sets. Let W2 = W ∖W1. Then, X ⊥ HW2∣W1

implies that X ⊥ cl(H)W2∣W1 by Lemma 4. Note also that the pairwise separation
base of H coincides with the restricted separation base of G. Then, X ⊥ cl(H)W2∣W1

implies that X ⊥W2∣W1 can be derived from the restricted separation base of G by
applying the compositional graphoid properties. We can now reuse this derivation to
derive X⊥W2∣W1 ∪ paG(Km) from the extended separation base of G by applying the
compositional graphoid properties: It suffices to apply the same sequence of properties
but replacing any separation of the restricted separation base in the derivation with
the corresponding separation of the extended separation base. In fact, X ⊥W2∣W1 ∪
paG(Km) is not only in the closure of the extended separation base of G but also in
the closure of the pairwise separation base of G, i.e. X ⊥ cl(G)W2∣W1 ∪ paG(Km). To
show it, it suffices to show that the extended separation base is in the closure of the
pairwise separation base. Specifically, consider any A,B ∈ Km st A ∉ adG(B) and
ucG(A) ≠ ucG(B). Then,
(1) A⊥ cl(G)B∣paG(A) follows from the pairwise separation base of G, and
(2) A⊥ cl(G)paG(Km) ∖ paG(A)∣paG(A) follows from the pairwise separation base of

G by repeated composition. Then,
(3) A⊥ cl(G)B∣paG(Km) by composition on (1) and (2), and weak union.

Now, consider any A,B ∈Km st A ∉ adG(B) and ucG(A) = ucG(B). Then,
(4) A⊥ cl(G)B∣neG(A) ∪ paG(A ∪ neG(A)) follows from the pairwise separation base

of G. Moreover, for any C ∈ A ∪ neG(A)
(5) C ⊥ cl(G)paG(Km) ∖ paG(C)∣paG(C) follows from the pairwise separation base of

G by repeated composition. Then,
(6) C⊥ cl(G)paG(Km) ∖ paG(A ∪ neG(A))∣paG(A ∪ neG(A)) by weak union. Then,
(7) A ⊥ cl(G)paG(Km) ∖ paG(A ∪ neG(A))∣neG(A) ∪ paG(A ∪ neG(A)) by repeated

symmetry, composition and weak union. Then,
(8) A⊥ cl(G)B∣neG(A) ∪ paG(Km) by composition on (4) and (7), and weak union.

Note that X⊥HY ∣W1 because, otherwise, X /⊥GY ∣Z which is a contradiction. Then,
we can repeat the reasoning above to show that X ⊥ cl(G)Y ∣W1 ∪ paG(Km). Then,
X⊥ cl(G)Y ∪W2∣W1 ∪ paG(Km) by composition on X⊥ cl(G)W2∣W1 ∪ paG(Km). Finally,
we show that this implies that X⊥ cl(G)Y ∣Z ∪ paG(X ∪W1). Specifically,
(9) X⊥ cl(G)Y ∪W2∣W1 ∪ paG(Km) as shown above. Moreover, for any C ∈X ∪W1

(10) C ⊥ cl(G)paG(Km) ∖ paG(C)∣paG(C) follows from the pairwise separation base of
G by repeated composition. Then,

(11) C⊥ cl(G)paG(Km) ∖ paG(X ∪W1)∣paG(X ∪W1) by weak union. Then,
(12) X⊥ cl(G)paG(Km)∖ paG(X ∪W1)∣W1 ∪ paG(X ∪W1) by repeated symmetry, com-

position and weak union. Then,
(13) X⊥ cl(G)Y ∪W2∣W1 ∪ paG(X ∪W1) by contraction on (9) and (12), and decompo-

sition. Moreover, for any C ∈X ∪W1

(14) C⊥ cl(G)Z∖W∪paG(X∪W1)∖paG(C)∣paG(C) follows from the pairwise separation
base of G by repeated composition. Then,

(15) C⊥ cl(G)Z ∖W ∖ paG(X ∪W1)∣paG(X ∪W1) by weak union. Then,
(16) X⊥ cl(G)Z∖W∖paG(X∪W1)∣W1∪paG(X∪W1) by repeated symmetry, composition

and weak union. Then,
(17) X⊥ cl(G)Y ∣Z ∪ paG(X ∪W1) by composition on (13) and (16), and weak union.

�
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Lemma 6. Let X and Y denote two nodes of a MAMP CG G st Y ∈ K1 ∪ . . . ∪Km,
X ∈ Km and X ⊥ GY ∣Z. Let H denote the subgraph of G induced by Km. Let W =
Z∩Km. Let W1 denote a minimal (wrt set inclusion) subset of W st X⊥HW ∖W1∣W1.
Then, X /⊥GC ∣Z for all C ∈ paG(X ∪W1) ∖Z.

Proof. Note that X /⊥HD∣W ∖D for all D ∈W1. To see it, assume the contrary. Then,
X⊥HD∣W ∖D and X⊥HW ∖W1∣W1 imply X⊥HW ∖W1 ∪D∣W1 ∖D by intersection,
which contradicts the definition of W1. Finally, note that X /⊥HD∣W ∖D implies that
there is a (W ∖D)-open path between X and D in G whose all nodes are in Km.
Then, X /⊥GC ∣Z for all C ∈ paG(X ∪W1) ∖Z.

�

Lemma 7. Let X and Y denote two nodes of a MAMP CG G st Y ∈K1 ∪ . . .∪Km−1,
X ∈ Km, X ⊥GY ∣Z and Z ∩ (Km+1 ∪ . . . ∪Kn) = ∅. Let H denote the subgraph of G
induced by Km. Let W = Z ∩Km. Let W1 denote a minimal (wrt set inclusion) subset
of W st X⊥HW ∖W1∣W1. Then, X⊥ cl(G)Y ∣Z ∪ paG(X ∪W1).
Proof. Let W2 =W ∖W1. Note that X /⊥GC ∣Z for all C ∈ paG(X ∪W1)∖Z by Lemma
6, because Y ∈ K1 ∪ . . . ∪Km−1, X ∈ Km and X ⊥ GY ∣Z. Then, Y ∉ paG(X ∪W1)
because, otherwise, X /⊥GY ∣Z which is a contradiction. Moreover, for any C ∈X ∪W1

(1) C⊥ cl(G)Y ∪ paG(Km)∖ paG(C)∣paG(C) follows from the pairwise separation base
of G by repeated composition. Then,

(2) C⊥ cl(G)Y ∣paG(Km) by weak union. Then,
(3) X ⊥ cl(G)Y ∣W1 ∪ paG(Km) by repeated symmetry, composition and weak union.

Moreover,
(4) X⊥ cl(G)W2∣W1∪paG(Km) as shown in the third paragraph of the proof of Lemma

5. Then,
(5) X⊥ cl(G)Y ∪W2∣W1 ∪ paG(Km) by composition on (3) and (4). Moreover, for any

C ∈X ∪W1

(6) C ⊥ cl(G)paG(Km) ∖ paG(C)∣paG(C) follows from the pairwise separation base of
G by repeated composition. Then,

(7) C⊥ cl(G)paG(Km) ∖ paG(X ∪W1)∣paG(X ∪W1) by weak union. Then,
(8) X⊥ cl(G)paG(Km)∖ paG(X ∪W1)∣W1 ∪ paG(X ∪W1) by repeated symmetry, com-

position and weak union. Then,
(9) X ⊥ cl(G)Y ∪W2∣W1 ∪ paG(X ∪W1) by contraction on (5) and (8), and decompo-

sition. Moreover, for any C ∈X ∪W1

(10) C⊥ cl(G)Z∖W∪paG(X∪W1)∖paG(C)∣paG(C) follows from the pairwise separation
base of G by repeated composition. Then,

(11) C⊥ cl(G)Z ∖W ∖ paG(X ∪W1)∣paG(X ∪W1) by weak union. Then,
(12) X⊥ cl(G)Z∖W∖paG(X∪W1)∣W1∪paG(X∪W1) by repeated symmetry, composition

and weak union. Then,
(13) X⊥ cl(G)Y ∣Z ∪ paG(X ∪W1) by composition on (9) and (12), and weak union.

�

Proof of Theorem 6. Since the independence model induced by G satisfies the de-
composition property and cl(G) satisfies the composition property, it suffices to prove
the theorem for ∣X ∣ = ∣Y ∣ = 1. Moreover, assume without loss of generality that
Y ∈ K1 ∪ . . . ∪Km and X ∈ Km. We prove the theorem by induction on ∣Z ∣. The
theorem holds for ∣Z ∣ = 0 and m = 1 by Lemma 5, because X,Y ∈ K1, X ⊥ GY ∣Z,
Z ∩ (K2 ∪ . . . ∪Kn) = ∅ and paG(X ∪W1) ∖ Z = ∅. Assume as induction hypothesis
that the theorem holds for ∣Z ∣ = 0 and m < l. We now prove it for ∣Z ∣ = 0 and m = l.
Consider the following cases.
Case 1: Assume that Y ∈K1 ∪ . . . ∪Kl−1. Then,
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(1) X ⊥ cl(G)Y ∣Z ∪ paG(X ∪W1) by Lemma 7, because Y ∈ K1 ∪ . . . ∪ Kl−1,
X ∈ Kl, X ⊥ GY ∣Z and Z ∩ (Kl+1 ∪ . . . ∪ Kn) = ∅. Moreover, for any
C ∈ paG(X ∪W1) ∖Z

(2) X /⊥GC ∣Z by Lemma 6, because Y ∈K1 ∪ . . . ∪Kl−1, X ∈Kl and X ⊥GY ∣Z.
Then,

(3) C⊥GY ∣Z because, otherwise, X /⊥GY ∣Z which is a contradiction. Then,
(4) C ⊥ cl(G)Y ∣Z by the induction hypothesis, because C,Y ∈ K1 ∪ . . . ∪Kl−1.

Then,
(5) paG(X ∪W1)∖Z⊥ cl(G)Y ∣Z by repeated symmetry and composition. Then,
(6) X⊥ cl(G)Y ∣Z by symmetry, contraction on (1) and (5), and decomposition.

Case 2: Assume that Y ∈Kl. Then,
(1) X⊥ cl(G)Y ∣Z ∪paG(X ∪W1) by Lemma 5, because X,Y ∈Kl, X⊥GY ∣Z and

Z ∩ (Kl+1 ∪ . . . ∪Kn) = ∅. Moreover, for any D ∈ paG(X ∪W1) ∖Z
(2) X /⊥GD∣Z by Lemma 6, because X,Y ∈Kl and X⊥GY ∣Z. Then,
(3) Y ⊥GD∣Z because, otherwise, X /⊥GY ∣Z which is a contradiction. Then,
(4) Y ⊥ cl(G)D∣Z by Case 1 replacing X with Y and Y with D, because D ∈

K1 ∪ . . . ∪Kl−1, Y ∈Kl and (3). Then,
(5) Y ⊥ cl(G)paG(X ∪W1) ∖Z ∣Z by repeated composition. Then,
(6) X⊥ cl(G)Y ∣Z by symmetry, contraction on (1) and (5), and decomposition.

This ends the proof for ∣Z ∣ = 0. Assume as induction hypothesis that the theorem
holds for ∣Z ∣ < t. We now prove it for ∣Z ∣ = t and m = 1. Let Kj be the connectivity
component st Z ∩Kj ≠ ∅ and Z ∩ (Kj+1 ∪ . . .∪Kn) = ∅. Consider the following cases.
Case 3: Assume that j = 1. Then, X ⊥ cl(G)Y ∣Z holds by Lemma 5, because
X,Y ∈K1, X⊥GY ∣Z, Z ∩ (K2 ∪ . . . ∪Kn) = ∅ and paG(X ∪W1) ∖Z = ∅.

Case 4: Assume that j > 1 and paG(Z ∩Kj) ∖ Z = ∅. Then, note that there is
no (Z ∖ C)-open path between X and any C ∈ Z ∩Kj. To see it, assume the
contrary. Since X ∈ K1 and j > 1, the path must reach Kj from one of its
parents or children. However, the path cannot reach Kj from one of its children
because, otherwise, the path has a triplex node outside Z since X ∈K1, j > 1 and
Z ∩ (Kj+1 ∪ . . .∪Kn) = ∅. This contradicts that the path is (Z ∖C)-open. Then,
the path must reach Kj from one of its parents. However, this contradicts that
the path is (Z ∖C)-open, because paG(Z ∩Kj) ∖Z = ∅. Then,

(1) X⊥GC ∣Z ∖C as shown above. Then,
(2) X⊥ cl(G)C ∣Z ∖C by the induction hypothesis. Moreover,
(3) X ⊥ GY ∣Z ∖ C by contraction on X ⊥ GY ∣Z and (1), and decomposition.

Then,
(4) X⊥ cl(G)Y ∣Z ∖C by the induction hypothesis. Then,
(5) X⊥ cl(G)Y ∣Z by composition on (2) and (4), and weak union.

Case 5: Assume that j > 1 and paG(C) ∖ Z ≠ ∅ for some C ∈ Z ∩Kj. Then, note
that there is no (Z ∖ C)-open path between X and Y . To see it, assume the
contrary. If C is not in the path, then C ∈ paG(D) st −D− is in the path and
D ∈ Z because, otherwise, the path is Z-open which contradicts that X ⊥GY ∣Z.
However, this implies a contradiction because C ∈Kj and thus D ∈Kj+1∪. . .∪Kn,
but Z ∩ (Kj+1 ∪ . . .∪Kn) = ∅. Therefore, C must be in the path. In fact, C must
be a non-triplex node in the path because, otherwise, the path is not (Z ∖ C)-
open. Then, either (i) −C−, (ii) ← C ⊸⊸ or (iii) ⊸⊸ C → is in the path. Case
(i) implies that the path is Z-open, because paG(C) ∖ Z ≠ ∅. This contradicts
that X ⊥GY ∣Z. Cases (ii) and (iii) imply that the path has a directed subpath
from C to (iv) X, (v) Y or (vi) a triplex node E in the path. Cases (iv) and (v)
are impossible because X,Y ∈ K1 but C ∈ Kj with j > 1. Case (vi) contradicts
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that the path is (Z ∖C)-open, because C ∈Kj and thus E ∈Kj+1 ∪ . . . ∪Kn, but
Z ∩ (Kj+1 ∪ . . . ∪Kn) = ∅. Then,

(1) X⊥GY ∣Z ∖C as shown above. Then,
(2) X⊥ cl(G)Y ∣Z ∖C by the induction hypothesis. Moreover,
(3) X ⊥GC ∣Z ∖C or C ⊥GY ∣Z ∖C by weak transitivity on X ⊥GY ∣Z and (1).

Then,
(4) X⊥ cl(G)C ∣Z ∖C or C⊥ cl(G)Y ∣Z ∖C by the induction hypothesis. Then,
(5) X⊥ cl(G)Y ∣Z by symmetry, composition on (2) and (4), and weak union.

This ends the proof for ∣Z ∣ = t and m = 1. Assume as induction hypothesis that the
theorem holds for ∣Z ∣ = t and m < l. In order to prove it for ∣Z ∣ = t and m = l, it suffices
to repeat Cases 1 and 2 if Z ∩ (Kl+1 ∪ . . . ∪Kn) = ∅, and Cases 4 and 5 replacing 1
with l otherwise.

�

● In page 24, the sentence

”Note that ρ1 cannot be Z-open because, otherwise, Part 2 would apply.”

should be replaced by

”Note that ρ1 cannot be Z-open st all its triplex nodes are in Z because, otherwise,
Part 2 would apply.”
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