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Abstract

We propose a framework for learning from data and validating Bayesian network models
of genetic regulatory networks. The learning phase selects multiple locally optimal models
of the data and reports the best of them. The validation phase assesses the confidence
in the model reported by studying all the different locally optimal models obtained in
the learning phase. We prove that our proposal is asymptotically optimal under the
faithfulness assumption. Experiments with real data (320 samples of the expression levels
of 32 genes involved in Saccharomyces cerevisiae, i.e. baker’s yeast, pheromone response)
show that our proposal is reliable.

1 Introduction

Much of a cell’s complex behavior can be ex-
plained through the concerted activity of genes
and gene products. This concerted activity is
typically represented as a network of interac-
ting genes and gene products. Identifying this
network, which we call genetic regulatory net-
work (GRN), is crucial for understanding the
behavior of the cell which, in turn, can lead to
better diagnosis and treatment of diseases. This
is one of the most exciting challenges in compu-
tational biology. For the last few years, there
has been an increasing interest in using Baye-
sian networks (BNs) to model GRNs (Fried-
man et al., 2000; Hartemink et al., 2002; Ott
et al., 2004; Pe’er et al., 2001), mainly due
to their ability to represent stochastic relations
between genes. This is particularly important
when inferring models of GRNs from gene ex-
pression data, because gene expression seems to
be a stochastic phenomenon (Blake et al., 2003;
McAdams and Arkin, 1997), and because gene
expression data typically include measurement
noise. Another key feature of BNs is the exis-
tence of principled ways for learning them from
gene expression data, and even for incorpora-
ting prior knowledge in the learning process.

A BN models a GRN by representing a joint
probability distribution for V , p(V ), where V
denotes a nonempty finite set of discrete ran-
dom variables such that each of them represents
the expression level of a gene in the GRN. For-
mally, a BN for V is a pair (G, θ), where G is
an acyclic directed graph (DAG) whose nodes
correspond to the random variables in V , and
θ are parameters specifying a conditional pro-
bability distribution for each node X ∈ V gi-
ven its parents Pa(X) in G, p(X|Pa(X)). A
BN represents p(V ) through the factorization
p(V ) =

∏
X∈V p(X|Pa(X)).

Once a BN is built as the model of a GRN,
it constitutes an effective device for reaso-
ning. In particular, the DAG G of the BN
allows to reason about the structure of p(V )
in terms of conditional (in)dependencies among
the random variables in V . These conditional
(in)dependencies can be read from G by means
of the d-separation criterion (Lauritzen, 1996).
In this paper, we focus on this sort of structu-
ral reasoning. We define a BN model, M(G), as
the set of all the joint probability distributions
that satisfy the conditional independencies en-
forced by the d-separation criterion in G. In
other words, M(G) contains all the joint pro-



bability distributions that can be represented
by all the BNs with structure G, i.e. all the
possible parameterizations of G. Joint probabi-
lity distributions that do not satisfy any other
conditional independence than those enforced
by the d-separation criterion in G are called fai-
thful to G. We are concerned here with BN mo-
dels of GRNs. Furthermore, we aim to induce
these models from gene expression data auto-
matically. Two main approaches to learning BN
models from data exist: One tests conditional
independencies among the random variables in
V with the help of the learning data (Spirtes
et al., 1993), while the other searches the space
of models by scoring them with respect to the
learning data (Castelo and Kočka, 2003; Chicke-
ring, 2002; Nielsen et al., 2003). In this paper,
we take the latter approach, also called model
selection.

Model selection aims to find the highest sco-
ring BN model of the learning data. Unfortu-
nately, this task is NP-complete (Chickering,
1996).1 For this reason, most model selection
algorithms are heuristic and they only guaran-
tee convergence to a locally optimal model. As
the number of locally optimal models can be
huge (Nielsen et al., 2003), validating the mo-
del learnt is crucial. When inferring BN models
of GRNs from gene expression data, validation
becomes even more important: Gene expression
databases usually contain few samples and these
may even be very noisy. However, there is little
research on BN model validation.

In this paper, we propose a framework for
learning from data and validating BN models
of GRNs. The learning phase consists in run-
ning repeatedly a stochastic model selection al-
gorithm to discover multiple locally optimal mo-
dels of the learning data and, then, reporting
the best of them. The validation phase assesses
the confidence in some features of the model re-
ported by studying all the different locally opti-
mal models obtained in the learning phase. The

1
To be exact, the result reported in (Chickering, 1996) states

that identifying the BN model that maximizes the Bayesian sco-
ring criterion when computed as indicated in (Heckerman et al.,
1995) is NP-complete. It is usually assumed that this result holds
for other common scoring criteria as well, though there is not yet
a formal proof.

higher the confidence in the features of the mo-
del reported, the more reliable or valid it is. We
prove that our framework is asymptotically op-
timal under the faithfulness assumption.2

The paper is structured as follows. We des-
cribe the learning and validation phases in Sec-
tions 2 and 3, respectively. We evaluate our
proposal with real data in Section 4. The data
consist of 320 samples of the expression levels
of 32 genes involved in Saccharomyces cerevi-
siae (baker’s yeast) pheromone response. We
conclude in Section 5 with some discussion.

2 Learning Phase

As mentioned above, the learning phase runs re-
peatedly a stochastic model selection algorithm
to obtain multiple locally optimal models of the
learning data and, then, reports the best of
them. We use the k-greedy equivalence search
algorithm (KES) (Nielsen et al., 2003) for this
purpose. Like most model selection algorithms,
KES consists of three components: A neigh-
borhood, a scoring criterion and a search stra-
tegy. The neighborhood of a model restricts the
search to a small part of the search space around
the model, and it is usually defined by means
of local transformations of a representative of
the model. The scoring criterion evaluates the
quality of a model with respect to the learning
data. The search strategy selects a new model,
based on the scoring criterion, from those in the
neighborhood of the current best model. The
paragraphs below describe these components in
the case of KES.

KES uses the inclusion boundary of a mo-
del as the neighborhood of the model. The
inclusion boundary of a model M1, IB(M1),
is the union of the lower and upper inclusion
boundaries, LIB(M1) and UIB(M1), respecti-
vely. LIB(M1) is the set of models M2 that
are strictly included in M1 and such that no
model strictly included in M1 strictly includes
M2. Likewise, UIB(M1) is the set of models
M2 that strictly include M1 and such that no
model strictly including M1 is strictly included
in M2. IB(M1) is characterized using DAGs

2
By asymptotically optimal we mean optimal in the large

sample limit.



as the set of models represented by all those
DAGs that can be obtained by adding or re-
moving a single edge from any representative
DAG of M1 (Chickering, 2002). Any represen-
tative DAG G1 of a model M1 can be obtained
from any other representative DAG G2 of M1

through a sequence of covered edge reversals in
G2, where the edge X → Y is covered in G2 if
Pa(Y ) = Pa(X) ∪ {X} (Chickering, 2002).3

In this paper, KES uses the Bayesian infor-
mation criterion (Schwarz, 1978) as the scoring
criterion. The Bayesian scoring criterion can
be considered as well. KES uses the following
search strategy:

KES (k∈[0,1])
M = empty graph model
repeat

B = set of models in IB(M) with
higher score than the model M

if |B| > 0 then
C = random subset of the set B

with size max(1,|B|·k)
M = the highest scoring model

from the set C
else return(M)

where |B| denotes the cardinality of the
set B. The input parameter k ∈ [0, 1] allows
to trade off greediness for randomness. This
makes KES (k 6= 1) able to reach different
locally optimal models when run repeatedly.
KES (k = 1) corresponds to the greedy equi-
valence search algorithm (GES) proposed in
(Chickering, 2002).4 We refer the reader to
(Nielsen et al., 2003) for a thorough description
and study of KES, including the proof of the
following property.

Theorem 1 KES using fully observed learning
data i.i.d. sampled from a joint probability dis-
tribution faithful to a DAG G asymptotically al-
ways returns M(G).

3
A more efficient, though more complex, characterization of

IB(M1) using completed acyclic partially directed graphs is re-
ported in (Studený, 2003a; Studený, 2003b).

4
To be exact, GES is a two-phase algorithm that first uses

only UIB(M) and, then, only LIB(M). KES (k = 1) corresponds
to a variant of GES described in (Chickering, 2002) that uses
IB(M) in each step.

3 Validation Phase

As noted in the introduction, the best locally
optimal model discovered in the learning phase
may not represent perfectly the distribution of
the learning data, because these may be noisy,
sparse and/or very complex. This is usually the
case when dealing with gene expression data.
Validating the best model found in the learning
phase is, then, of much importance. Our propo-
sal for validating it consists of two main steps.
First, extraction of relevant features from the
model. Second, assessment of the confidence in
the features extracted. The higher the confi-
dence in these features, the more believable or
valid the model is. The following sections des-
cribe the two steps of the validation phase.

3.1 Feature Extraction

First of all, we need to adopt a model represen-
tation scheme so that interesting features can
be extracted and studied. Representing a mo-
del by a DAG may not the best solution, be-
cause there may be many such representative
DAGs of the model. A completed acyclic par-
tially directed graph (CPDAG) provides, on the
other hand, a canonical representation of a mo-
del. A CPDAG represents a model by summari-
zing all its representative DAGs: The CPDAG
contains the directed edge X → Y if and only
if X → Y exists in all the representative DAGs,
while it contains the undirected edge X—Y if
and only if X → Y exists in some representa-
tive DAGs and Y → X in some others. In this
paper, we use CPDAGs as the model represen-
tation scheme. See (Chickering, 2002) for an
efficient procedure to transform a DAG into its
corresponding CPDAG.

We pay attention to four types of features in a
CPDAG: Directed edges, undirected edges, di-
rected paths and Markov blanket neighbors (two
nodes are Markov blanket neighbors if there is
an edge between them, or if they are both pa-
rents of another node). We focus on these types
of features because they stress relevant aspects
of the distribution of the learning data. Direc-
ted and undirected edges reflect unmediated in-
teractions between random variables. In addi-



tion, directed edges suggest possible causal re-
lations. Directed paths establish orderings bet-
ween random variables. A random variable is
conditionally independent of all the random va-
riables outside its Markov blanket neighborhood
given its Markov blanket neighborhood (Lau-
ritzen, 1996). Moreover, the Markov blanket
neighborhood of a random variable is the mini-
mal set with such a property.

3.2 Confidence Assessment

While all the different locally optimal models
discovered in the learning phase disagree in
some features, we expect them to share some
others. In fact, the more strongly the learning
data supports a feature, the more frequently it
should appear in the different locally optimal
models found. Likewise, the more strongly the
learning data supports a feature, the higher the
likelihood of the feature being true in the distri-
bution that generated the learning data. This
leads us to assess the confidence in a feature as
the fraction of models containing the feature out
of all the different locally optimal models obtai-
ned in the learning phase. Note that we give
equal weight to all the models available, no mat-
ter their scores. Alternatively, we could weight
each of the models by its score. These two ap-
proaches to confidence estimation are close in
spirit to the methods proposed in (Friedman et
al., 2000; Hartemink et al., 2002; Pe’er et al.,
2001). No proof of optimality is reported for
these methods. However, we prove below that
our proposals are asymptotically optimal under
the faithfulness assumption.

Theorem 2 Assessing the confidence in a fea-
ture as the (weighted) fraction of models contai-
ning the feature out of the different locally opti-
mal models obtained by running KES repeatedly
using fully observed learning data i.i.d. sampled
from a joint probability distribution faithful to
a DAG G asymptotically always assigns confi-
dence equal to one to the features in M(G) and
equal to zero to the rest.

Proof: Under the conditions of the theo-
rem, KES asymptotically always returns M(G)
(Theorem 1).

3.3 Validity Assessment

Let M∗ denote the best model found in the lear-
ning phase. Deciding on the validity of M∗ ba-
sed only on the confidence values scored by its
features may be difficult. We suggest a sensible
way to ease making this decision. We call true
positives (TPs) to the features in M∗ with confi-
dence value equal or above a given threshold
value t. Likewise, we call false positives (FPs)
to the features not in M∗ with confidence va-
lue equal or above t, and false negatives (FNs)
to the features in M∗ with confidence value be-
low t. In order to decide on the validity of M∗,
we propose studying the trade-off between the
number of FPs and FNs for each type of features
under study as a function of t. The less FPs and
FNs for high values of t, the more believable or
valid M∗ is. In other words, we trust M∗ as a
valid model of the learning data if the features
in M∗ receive high confidence values, while the
features not in M∗ score low confidence values.
Note that we treat on equal basis FPs and FNs.
Alternatively, we can attach different costs to
FPs and FNs according to our preferences (e.g.
we may be less willing to accept FPs than FNs).

Finally, it is worth noting that, under the
faithfulness assumption, M∗ asymptotically al-
ways coincides with the true model (Theorem
1) and the number of FPs and FNs is asympto-
tically always zero for any threshold value t > 0
(Theorem 2). Therefore, under the faithfulness
assumption, the learning phase asymptotically
always returns the true model and the valida-
tion phase asymptotically always confirms the
validity of this model.

4 Evaluation

In this section, we evaluate our methodology for
learning from data and validating BN models of
GRNs. We first introduce the gene expression
database used for the evaluation and the expe-
rimental setting. Then, we report and discuss
the results obtained.

4.1 Database and Setting

We use the database in (Hartemink et al., 2002)
for the evaluation. The database consists of 320



Group Description
Magenta Genes expressed only in MATa cells: STE2, MFA1, MFA2,

STE6, AGA2 and BAR1
Red Genes expressed only in MATα cells: STE3, MFALPHA1,

MFALPHA2 and SAG1
Blue Genes whose promoters are bound by Ste12: FUS3, STE12,

FAR1, FUS1 and AGA1
Green Genes coding for components of the heterotrimeric

G-protein complex: GPA1, STE4 and STE18
Yellow Genes coding for core components of the signaling cascade

(except FUS3 which is blue): STE7, STE11 and STE5
Orange Genes coding for auxiliary components of the signaling

cascade: KSS1, STE20 and STE50
Brown Genes coding for components of the SWI-SNF complex:

SNF2 and SWI1
White Others: SST2, KAR3, TEC1, MCM1, SIN3 and TUP1

MATING_TYPE

MFA2 MFALPHA1

FUS3

TEC1

STE50

FUS1TUP1

KSS1 STE20 MCM1 SIN3 SWI1

STE7

STE5

MFA1

STE2 AGA2

STE6

MFALPHA2

STE3

SNF2 KAR3

GPA1

STE18

STE12

BAR1 FAR1

SST2 STE4

SAG1

STE11

AGA1

Figure 1: Left, description of the groups of genes in the evaluation. Right, best model learnt
represented as a CPDAG. Nodes are colored with the color of the group they belong to.

records with each record being characterized by
33 attributes. The records correspond to 320
samples of unsynchronized Saccharomyces cere-
visiae (baker’s yeast) populations observed un-
der different experimental conditions. Yeast is
considered an ideal eukaryotic organism and,
thus, it has been widely studied (Lee et al.,
2002; Spellman et al., 1998). The first 32 at-
tributes of each record represent the expression
levels of 32 genes involved in yeast pheromone
response. This pathway plays an essential role
in the sexual reproduction of yeast. The last at-
tribute of each record, named MATING TYPE,
indicates the mating type of the strain of yeast
in the corresponding sample, either MATa or
MATα, as some of the 32 genes measured ex-
press only in strains of a specific mating type.
We note that gene expression levels are discre-
tized into four states. We refer the reader to
(Hartemink et al., 2002) for details on the data
collection and preparation process, as well as
for a thorough description of the 32 genes in
the database. We summarize this description in
Figure 1 (left) by grouping the genes according
to their function in the domain under study.

The setting for the evaluation is as follows.
We consider KES (k = 0.6, 0.8, 0.9). We avoid
values of k too close to 0 so as to prevent conver-
gence to poor locally optimal models (Nielsen

et al., 2003). For each value of k, we proceed
in two phases, learning and validation, as pre-
viously described in Sections 2 and 3, respecti-
vely. We first run KES 1000 independent times
and report the best locally optimal model found.
Then, we use all the different locally optimal
models discovered in the 1000 runs to estimate
the confidence in the features of interest, i.e. di-
rected and undirected edges, directed paths and
Markov blanket neighbors. Finally, we compute
the trade-off between the number of FPs and
FNs for each type of features under study as
a function of the threshold value t, in order to
decide on the validity of the model reported.
We give equal weight to all the models used
for confidence estimation, because most of them
have similar scores. We treat equally FPs and
FNs when computing the trade-off. We use the
current knowledge of the domain under study
to check the consistency and accuracy of the re-
sults obtained.

4.2 Results

We first report the results of the learning phase.
Out of the 1000 independent runs of KES per-
formed for each value of k considered in the eva-
luation, we obtained 967 different locally opti-
mal models for k = 0.6, 330 for k = 0.8, and
159 for k = 0.9. In the three cases, the best



k = 0.6 k = 0.8 k = 0.9
t FPs FNs FPs FNs FPs FNs

1.00 0 30 0 25 0 22
0.95 0 22 0 15 0 12
0.90 0 17 0 11 0 10
0.85 0 12 0 8 0 7
0.80 0 11 0 6 0 3
0.75 0 8 0 2 0 1
0.70 0 5 0 1 0 1
0.65 0 2 0 1 0 1
0.60 0 1 0 0 0 0
0.55 0 1 0 0 0 0
0.50 0 0 0 0 0 0
0.45 0 0 0 0 0 0
0.40 0 0 0 0 0 0
0.35 0 0 0 0 0 0
0.30 1 0 0 0 0 0
0.25 6 0 0 0 0 0
0.20 9 0 4 0 2 0
0.15 11 0 7 0 6 0
0.10 17 0 11 0 10 0
0.05 25 0 18 0 14 0
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Figure 2: Left, trade-off between the number of FPs and FNs for undirected edges at threshold
values t = 0.05 · r, r = 1, . . . , 20. Right, undirected edges for k = 0.8 when t = 0.60 (solid and
dashed edges) and when t = 0.90 (solid edges). Nodes are colored with the color of the group they
belong to.

model found was the same. Figure 1 (right)
shows the best model learnt depicted as a CP-
DAG. We remark that the graph in the figure
does not intend to represent the biological or
physical GRN (e.g., gene products are not mo-
delled), but the conditional (in)dependencies in
it. We note that all the edges in the CPDAG
in the figure are undirected, meaning that each
edge appears in opposite directions in at least
two representative DAGs of the model. As a
matter of fact, none of CPDAGs representing
the locally optimal models obtained in the 3000
runs of KES performed has directed edges. This
reduces the types of features under study to one:
Undirected edges.

We now discuss the results of the validation
phase. Figure 2 (left) shows the trade-off bet-
ween the number of FPs and FNs for undirected
edges as a function of the threshold value t. We
note that the CPDAG corresponding to the best
model found in the learning phase has 32 undi-
rected edges. As can be appreciated from the
figure for each value of k considered in the eva-
luation, FNs only happen for high values of t,
while FPs only occur for low values of t. There-
fore, TPs receive substantially higher confidence
values than FPs. For k = 0.8, for instance, no

TP scores lower than 0.60, while no FP scores
higher than 0.25. These observations support
the validity and meaningfulness of the best mo-
del discovered in the learning phase. Figure 2
(right) depicts the undirected edges for k = 0.8
when t = 0.60, 0.90. Note that all the edges in
the figure are TPs. As a matter of fact, there
are 0 FPs and 0 FNs (32 TPs) for t = 0.60, and
0 FPs and 11 FNs (21 TPs) for t = 0.90. The fi-
gures for k = 0.6, 0.9 are very similar to the one
shown. We omit them due to space restrictions.

It is worth mentioning that we repeated the
experiments in this section with a random da-
tabase created by randomly reshuffling the en-
tries of each attribute in the original database.
In such a database, we did not expect to find
features scoring high confidence values. As a
matter of fact, no edge was added in any of the
3000 runs of KES performed. This leads us to
believe that the results presented above are not
artifacts of the learning and validation phases
but reliable findings.

We give below some evidence that the condi-
tional (in)dependencies in the best model indu-
ced in the learning phase are consistent with
the existing knowledge of yeast pheromone res-
ponse. This somehow confirms the results of



the validation phase. Magenta-colored genes are
marginally dependent one on another. Moreo-
ver, no genes from other groups mediate in these
dependencies. These observations also hold true
for red- and green-colored genes. These fin-
dings are consistent with the genes in each of
these groups being functionally related, as in-
dicated in Figure 1 (left). Moreover, magenta-
and red-colored genes are also marginally de-
pendent on MATING TYPE, and this is the
only node that mediates between both groups.
This makes sense given that these two groups
of genes express in strains of yeast of different
mating type. Orange-colored genes are margi-
nally dependent one on another, and only TUP1
mediates in these dependencies. As a mat-
ter of fact, TUP1 has the highest number of
adjacencies in the model, which is consistent
with its role as repressor of numerous genes
in yeast pheromone response (Hartemink et
al., 2002). Blue-colored genes are marginally
dependent one on another. However, seve-
ral other genes mediate in these dependencies.
These observations also hold true for yellow-
and brown-colored genes. Many of the media-
ting genes have also been identified playing such
a role in (Hartemink et al., 2002). The follo-
wing adjacencies are also supported by the exis-
ting literature: STE2—STE6, STE3—SAG1,
SST2—AGA1, MFALPHA2—STE3, MFA1—
AGA2, FAR1—TEC1 and STE6—FAR1 (Spell-
man et al., 1998), and TUP1—MCM1 (Gavin et
al., 2000). We defer a more thorough discussion
on the biological validation to an extended ver-
sion of this paper.

Finally, it is worth mentioning that most of
the undirected edges scoring high confidence va-
lues in the validation phase are supported by
the existing knowledge of yeast pheromone res-
ponse. For instance, most undirected edges in
Figure 2 (right) with confidence values equal
of above 0.90 have been discussed in the pa-
ragraphs above. Therefore, we can conclude
that the framework proposed in this paper for
learning from data and validating BN models
of GRNs is accurate and reliable: The learning
phase has produced a model that is consistent
with the existing knowledge of the domain un-

der study, and the validation phase has confir-
med, independently of the existing knowledge,
that the model is indeed meaningful.

5 Discussion

Learning BN models of GRNs from gene expres-
sion data is a challenging task. On one hand,
learning BN models from data is difficult in it-
self (NP-complete and highly multimodal). On
the other hand, gene expression databases are
noisy and sparse. For these reasons, many of
the works in the literature focus on extracting
features (directed and undirected edges, direc-
ted paths and Markov blanket neighbors) from
the learning data rather than on model selec-
tion (Friedman et al., 2000; Hartemink et al.,
2002; Pe’er et al., 2001). In order to ease vi-
sualization, the features extracted for each of
the types under study are usually arranged in a
graph, with an edge between two nodes if they
are related by a feature with high confidence.
In our opinion, a major limitation of this ap-
proach is that this graph does not represent a
(global) model of the distribution of the lear-
ning data, but a collection of (local) patterns
because each feature corresponds to a piece of
local information. As a consequence, this graph
does not, in general, allow reasoning about the
conditional (in)dependencies in the distribution
of the learning data, which is a major drawback.
For instance, the lack of an edge between two
nodes in the graph does not necessarily mean
that they are marginally or conditionally inde-
pendent. Moreover, the types of features ty-
pically considered are very local, as they only
relate pairs of nodes but not triplets or sets of
nodes, and deciding when a feature scores suffi-
cient confidence is rather arbitrary. In this pa-
per, we approach the problem of learning BN
models of GRNs from gene expression data in
a rather different way: We suggest selecting a
single model of the learning data and, then, va-
lidating it. The validation step aims to assess
whether the model selected is reliable or not as
a whole. When the model fails to be reliable,
our proposal reduces to the one discussed above,
and the model is interpreted as a set of patterns.



The experimental results reported in this paper
show that our framework for model learning and
validation is accurate and consistent.

Another major difference between this pa-
per and the works cited above is the neigh-
borhood used within the model selection al-
gorithm. While they consider classical neigh-
borhoods based on local transformations (e.g.
single edge addition, removal or reversal) of a
single representative DAG of the current best
model, we use the inclusion boundary neigh-
borhood which takes into account every single
representative DAG of the current best mo-
del in order to generate the set of neighbo-
ring models. The inclusion boundary neighbo-
rhood outperforms the classical neighborhoods
in practice without compromising the runtime,
because it reduces the risk of getting stuck in a
locally but not globally optimal model (Castelo
and Kočka, 2003). Furthermore, the inclusion
boundary neighborhood allows to derive impor-
tant theoretical results about asymptotic opti-
mal learning of BN models from data (Castelo
and Kočka, 2003; Chickering, 2002; Nielsen et
al., 2003). These results guarantee that the fra-
mework for learning from data and validating
BN models of GRNs that we present in this pa-
per is asymptotically optimal under the faith-
fulness assumption. This result does not hold
when using any of the classical neighborhoods
within the model selection algorithm.

A line of research we are engaged in consists
in using the results of the validation phase to
design gene perturbations, gather new data and
refine the models obtained in the learning phase
accordingly. Combining observational and in-
terventional data will also provide insight into
the causal relations in the GRN under study.
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