
Gated Bayesian Networks for Algorithmic Trading

Marcus Bendtsen
marcus.bendtsen@liu.se

Jose M. Peña
jose.m.pena@liu.se

Department of Computer and Information Science, Linköping University, Sweden

Abstract
This paper introduces a new probabilistic graphical model called gated Bayesian network
(GBN). This model evolved from the need to represent processes that include several distinct
phases. In essence, a GBN is a model that combines several Bayesian networks (BNs) in such
a manner that they may be active or inactive during queries to the model. We use objects
called gates to combine BNs, and to activate and deactivate them when predefined logical
statements are satisfied. In this paper we also present an algorithm for semi-automatic
learning of GBNs. We use the algorithm to learn GBNs that output buy and sell decisions
for use in algorithmic trading systems. We show how the learnt GBNs can substantially
lower risk towards invested capital, while they at the same time generate similar or better
rewards, compared to the benchmark investment strategy buy-and-hold. We also explore
some differences and similarities between GBNs and other related formalisms.

1 Introduction
Bayesian networks (BNs) can be interpreted as models of causality at the macroscopic level,
where unmodelled causes add uncertainty. Cause and effect are modelled using random
variables that are placed in a directed acyclic graph (DAG). The causal model implies some
probabilistic independencies among the variables, that can easily be read off the DAG.
Therefore, a BN does not only represent a causal model but also an independence model.
The qualitative model can be quantified by specifying certain marginal and conditional
probability distributions so as to specify a joint probability distribution, which can later be
used to answer queries regarding posterior probabilities, interventions, counterfactuals, etc.
The independencies represented in the DAG make it possible to compute these posteriors
efficiently. Furthermore, they reduce the number of parameters needed to represent the joint
probability distribution, thus making it it easier to elicit the probability parameters needed
from experts or from data. See [1, 2, 3] for more details.

A feature of BNs, known as the local Markov property, implies that a node is independent
of all other non-descendent nodes given its parent nodes, where the relationships are defined
with respect to the DAG of the BN. If we define the parents of Xi as Parents(Xi), the
local Markov property allows us to factorise the joint probability distribution according to
Equation 1.

p(X1, X2, ..., Xn) =

n∏
i=1

p(Xi|Parents(Xi)) (1)

Despite their popularity and advantages, there are situations where a BN is not enough.
For instance, when trying to model the process of a trader buying and selling stock shares,
we wanted a model that switched between identifying buying opportunities and then, once
such have been found, identifying selling opportunities. The trader can be seen as being

1

X Y

ECB

Buy

W Z

ECS

Sell

Gate1

Gate2

Figure 1: GBN using two phases

X Y

ECB

U(ECB)

Buy

W Z

ECS

U(ECS)

Sell

Gate1

Gate2

Figure 2: GBN using utility nodes

in one of two distinct phases: either looking for an opportunity to buy shares and enter
the market, or an opportunity to sell shares and exit the market. These two phases can be
very different and the variables included in the BNs modelling them are not necessarily the
same. Dynamic BNs have traditionally been used to model temporal processes, and as their
name suggests, they model the dynamics among variables between typically equally spaced
time steps. However, processes that entail different models at different phases, and where
the transition between phases depend on the observations made, are not easily captured by
dynamic BNs, as they assume the same static network at each time step. The need to switch
between different BNs was the foundation for the probabilistic graphical model presented
herein, which we call gated Bayesian networks (GBNs). In Figure 1 we present a GBN that
uses two different BNs (Buy and Sell). In Section 2.2 we will explain how decisions can
be connected to the phase changes of a GBN, we will specifically show how buy and sell
decisions are connected to the phase changes for the GBN in Figure 1. It should however
be noted that we will not always connect a phase change with a decision, as there will be an
example of in Section 3.2. Sometimes a phase change is needed in order to use a different
BN without any explicit decision connected to it.

Intuitively, a GBN makes explicit the possible transitions between the contained models,
i.e. the phases, along with the driving variables in these phases. This is not only advanta-
geous from a representational point of view, but since constraints are encoded in the model,
parameter learning will be influenced by these constraints. For instance, when a transition
from the Sell BN in Figure 1 should occur will be dependent on when a transition from the
Buy BN occurs, as one must happen before the other. Imagining two experts, where one
gives recommendations of when to buy assets and the other when to sell assets, we would
want the experts to work well together. If the first expert has a long-term view and the
second expert has a short-term view, then recommendations to buy will be far apart, but as
the second expert assumes that we are after short-term profits, sell recommendations come
quickly after we have bought the assets. In extreme cases, this may end up in a strategy
where over a year the assets are only held for a few hours. Thus, the fact that buying and
selling places constraints on each other must be captured by the model, and single BNs are
not able to encode these constraints.

The example of the trader is really a simplification of a more complex process known
as algorithmic trading, which we will describe in more detail in the coming section. Our
primary intention is to use GBNs as part of algorithmic trading, however for clarity, we will
sometimes fall back to the more simple view of a single trader in this paper.

2

Research Data

Pretrade analysis Alpha model ... Alpha model Risk model Transaction cost model

Trading signal generation Portfolio construction model

Trade execution Execution model

Figure 3: Components of an algorithmic trading system

Dec 31
2007

Mar 03
2008

May 01
2008

Jul 01
2008

Sep 02
2008

Nov 03
2008

Dec 29
2008

60
70

80
90

10
0

11
0

12
0

Pr
ic

e

20
00

0
22

00
0

24
00

0

Eq
ui

ty
 c

ur
ve

Figure 4: Buy and sell signals

1.1 Algorithmic Trading
Formally, the process we intend to model is part of a larger process commonly referred to
as algorithmic trading. Algorithmic trading can be viewed as a process of actively deciding
when to own assets and when to not own assets, so as to get better risk and reward on
invested capital compared to holding on to the assets over a long period of time. At the
other end of the spectrum is the buy-and-hold strategy, where one owns assets continuously
over a period of time without making any decisions of selling or buying during the period.

An algorithmic trading system consists of several components, some of which may be
automated by a computer, and others that may be manually executed [4, 5, 6]. A schematic
overview of the components of a general algorithmic trading system is shown in Figure 3.

The type of data used at the research stage varies greatly, e.g. net profit, potential
prospects, sentiment analysis, analysis of previous trades, or technical analysis, which will
be the focus in the included application. The analysis of the data is split up into alpha, risk
and transaction cost models. The alpha models are responsible for outputting decisions for
buying and selling assets based on the data they are given. These decisions are known as
buy and sell signals, examples of which are depicted in Figure 4 (an arrow pointing upwards
is a buy signal and a downwards facing arrow is a sell signal, the signals are drawn on top
of the assets historical price). If followed, these buy and sell signals give rise to certain risk
and reward on the initial investment (which will be described further in Section 5.1).

3

The risk and transaction cost models should be seen as strategies for managing risk and
transaction costs in a system that has many alpha models. The output from these three
types of models (alpha, risk and transaction) are in their turn the input to the portfolio
construction model in the trading signal generation stage. Here the output of the previous
components are combined to decide which signals to actually execute in order to create a
portfolio that is based on a combination of alpha models. These signals can lead to decisions
to buy more of a certain asset, to sell all or a portion of assets already owned, or in some
cases to short certain assets so that reward is achieved when the asset loses value. Portfolio
construction is a widely researched topic that has been approached from both the financial
field and from an information theoretic perspective. In finance, the most common basis is the
theory of mean-variance portfolios, also known as Markowitz portfolio theory [7], where the
tradeoff between expected risk and reward is used to allocate resources amongst a basket
of assets. While from an information theoretic background the focus has been on online
porfolio construction algorithms [8], such as the universal portfolio [9] and the exponential
gradient [10], where resources are initially allocated equally, but sequentially are changed
according to varying criteria that in the long run creates optimal growth.

The final stage is the actual execution of the trading signals, which must be done in
a manner that does not affect the price of the asset that is being bought. Although all
components are important, we will not be addressing all of them in this paper, instead
our contribution is concerned with the use of GBNs as alpha models (informally the trader
buying and selling shares can be seen as an alpha model).

The rest of this paper is disposed as follows. In Section 2, we will define the structural
semantics of GBNs through a set of definitions. We will also define how GBNs can be
used in a decision making context, as well as defining how the model is executed over a
set of data. Section 3 gives a detailed example of the modelling and execution of a GBN,
as well as an example of a GBN used in another domain than the one from the initial
motivation. In Section 4 we introduce an algorithm that can be used to semi-automatically
learn GBNs, followed by a real-world application of this learning algorithm in Section 5. We
will offer a comparison of GBNs to other models and formalisms in Section 6, highlighting
key differences and similarities. Finally, we will end this paper with our conclusions of the
current work and our thoughts about future work in Section 7.

This paper unifies previous conference papers [11, 12] and extends upon them with the
introduction of utility nodes in GBNs, as well as an additional experiment using GBNs that
contain utility nodes. Furthermore, examples have become more detailed and comparisons
to related models and formalisms have been added and extended.

2 Definitions and Model Execution
Supported by the definitions in this section, we will describe the structural semantics of
GBNs, how GBNs can be used in a decision making context, as well as defining how a GBN
is executed. A GBN models a sequential process, driven by an ordered set of evidence,
thus it is natural to think of some index that identifies a unique position along the process.
We will use t to define a unique time in a temporally ordered set of evidence. It is worth
mentioning that evidence can be recorded at irregular times, thus the time interval between
t− 1 and t can be different than t and t+ 1. While reading the definitions in this section, it
may be helpful to use the example GBNs offered in Figure 1 and Figure 2 as reference. In
Section 3 we will give two examples of GBNs that clarify and put into context the definitions

4

of this section.

2.1 Structural Definitions
A GBN is a probabilistic graphical model that combines multiple BNs using objects called
gates, in order to model processes that have several distinct phases. These gates allow for
activation and deactivation of the different BNs in the model. Inference is carried out in
the currently active BNs, thus they are participating in the current phase.

Definition 1 (GBN) A GBN consists of a set of gates G, a set of BNs B and a set of
directed edges E that connect the gates with the BNs. Let BA be the set of active BNs and
BI the set of inactive BNs. BA, G and E cannot be empty. A BN cannot belong to both BA
and BI at the same time. Each BN consists of a set of nodes (chance and utility nodes1)
and a set of directed edges.

GBN = {G,B, E}
B = BA ∪ BI ,BA ∩ BI = ∅
BA,G, E 6= ∅
V (Bi) = {all chance nodes in Bi} , Bi ∈ B
U(Bi) = {all utility nodes in Bi} , Bi ∈ B
E(Bi) = {all edges in Bi} , Bi ∈ B

Thus, the sets BA and BI from Definition 1 may contain different BNs at different times
t. As mentioned earlier, at a given time t, inference is carried out in the BNs in BA, thus
they are participating in the current phase of the process and are partially responsible for
whether the process stays in the same phase or moves to another phase. When drawing a
GBN, all BNs that are active prior to any evidence being supplied to the model have their
names underscored (i.e. the initial set BA). In Figure 1 for instance, Buy is active prior to
any evidence being supplied.

Definition 2 (Connections) The directed edges E connect either a node in V (Bi) or U(Bi)
with a gate in G, or a gate in G with an entire BN in B. An edge between a node and a gate
is always directed away from the node towards the gate. An edge that connects a gate with
an entire BN is always directed away from the gate towards the BN.

Definition 3 (Parent/child) When a node is connected to a gate we consider the BN to
which the node belongs to be a parent of the gate. When an entire BN is connected to a gate
we consider the BN to be a child of the gate.

In Figure 1, two of the type of edges in E are represented, for instance the edge from
chance node ECB to Gate1 implies that the Buy BN is a parent of Gate1 while the edge
from Gate1 to the BN Sell implies that Sell is a child of Gate1. The third and final type of
edge in E is represented in Figure 2, the edge from utility node U(ECB) implies that Buy
is a parent of Gate1. Definition 2 and Definition 3 also allow for a temporal order semantic
to be given to the edges in E . A process moves in the direction of the edges, where the gates
define points where certain criteria must be met until the process can continue. Therefore,
it is the evidence available at time t, together with the BNs in BA and the gates that decide
if the process stays in the current phase, or moves into a new phase in t+1. How the criteria
in the gates are defined and met is explained in the following two definitions.

1BNs that are extended with utility and decision nodes are usually known as influence diagrams. We do
not adopt the entire framework of influence diagrams, we only use the utility node to map variables’ states
to real values. Therefore we use the term BN rather than influence diagram.

5

Definition 4 (Trigger node) A node that is connected with a gate is called a trigger node.
All nodes that are connected to a gate make up the gate’s trigger nodes. It follows from
Definition 2 that all gates are children of their trigger nodes.

Definition 5 (Trigger logic) Each trigger node of a gate Gi in G, that belongs to a BN
in BA, supplies a value to the gate each time new evidence is entered into the model. If a
trigger node belongs to a BN in BI , then the trigger node will not supply any value. Each
gate has its own trigger logic, denoted as TL(Gi). The trigger logic is a logical statement
regarding the values that the trigger nodes supply. Specifically, the values that are supplied
are:

• For trigger nodes that are chance nodes: the posterior probability of the random vari-
able taking a specific value, given some evidence.

• For trigger nodes that are utility nodes: the utility values weighted by the joint posterior
distribution of the utility node’s parents, given some evidence.

Definitions 4 and 5 complete the structural definitions by defining how the criteria for
the process to move forward are formed. Exactly how this is executed will be described in
Section 2.3. However, it should be clear that the BNs that at time t are in BA are driving
the current phase, supplying values to the gates, and when the trigger logic for one or more
gates is satisfied, the temporal process moves forward to another phase. For instance, ECB

is a trigger node for Gate1 in Figure 1, and assuming that ECB has some state positive,
Gate1 could define its trigger logic as: TL(Gate1) : p(ECB = positive|et) > τ , where et is
the evidence available at time t and τ is some threshold. It is also possible to use a utility
node as a trigger node. In Figure 2 the GBN from Figure 1 has been altered to use utility
nodes. These nodes map states from ECB and ECS to utilities, thus quantifying the value
of a positive and negative climate. The trigger logic of the gates are then statements of
the utility values weighted by the joint posterior distribution of the parents of the utility
nodes. For instance, assuming instead that ECB has six different states i = 1, ..., 6 then
summing up the weighted utilities, we can require the expected utility to be higher than
some threshold, TL(Gate1) :

∑6
i=1 p(ECB = i|e)u(ECB = i) > τ (in the discrete case).

2.2 Strategy Encoding and Decisions
The structural definitions in Section 2.1 allows us to view GBNs as encoding a strategy.
This strategy will be followed as evidence is presented to the model (exactly how will be
explained in Section 2.3). In order to clarify this, let Φ be the set of every possible evidence
set that can be presented to the GBN (i.e. it is the set of every possible configuration of the
variables in the BNs in B). The trigger logic of each gate then maps each set in Φ to either
true or false, given the current BNs in BA. Specifically, let δi be the mappings that the
trigger logic of gate i defines, we then have δi(BA,Φ) = {true, false}. We can then define
the strategy that a GBN encodes as ∆ = {δi, i = 1, ..., n}, where n is the number of gates
in the GBN. It is then clear that a GBN only encodes a strategy for when to trigger gates.

GBNs are not strictly decision models; possible decisions, actions and potential outcomes
are not made explicit in the model. However, it is possible to map the strategy that a GBN
encodes to a set of decisions, e.g. for the GBN in Figure 1 we can define which decision to
take by the decision function in Equation 2. In this example we map each evidence set e
that we observe to a decision, given the current active BNs.

6

Decision|e =

Buy if δ1(BA, e)

Sell if δ2(BA, e)

Do nothing if none of the above apply
(2)

An equivalently way of defining this decision function, one that is more manageable from
an operational standpoint, is to say that given a set of triggered gates, we return a decision
depending on which gates that triggered, as in Equation 3. Since GBNs allow for multiple
gates to trigger at the same time, consideration of such cases must be taken when defining
the decision function. For instance, the function in Equation 3 could be expanded to also
state that if both Gate1 and Gate2 triggers, then it should be considered as a signal that
the model is ambivalent regarding the market, and thus no decision should be made at all.

Decision|triggered gates =

Buy if Gate1 ∈ triggered gates
Sell if Gate2 ∈ triggered gates
Do nothing if none of the above apply

(3)

2.3 Model Execution
Having defined the structural definitions and explained how decisions can be read from the
GBN, we continue by explaining how the model is to be executed over a set of data. Here
we will offer one additional definition that is an integral part of the execution, and then
define an execution algorithm that formalises how evidence is sequentially entered into the
model, and how the model reacts given the evidence.

Definition 6 (Triggering, activation and deactivation) If evidence is supplied to a
GBN that leads to the trigger logic for some gate being satisfied, then the gate is said to
trigger. When a gate triggers, it activates all its child BNs and deactivates all its parent
BNs. If several gates trigger due to the same set of evidence then the union of all child
BNs are activated and the union of all parent BNs minus the union of all child BNs are
deactivated.

UCBN = Union of all child BNs to triggered gates
UPBN = Union of all parent BNs to triggered gates
BNs to activate = UCBN
BNs to deactivate = UPBN \ UCBN

Figure 5 represents a high-level outline of the execution algorithm, a detailed description
of the algorithm will be given in Section 2.3.1. Given a set of sequential evidence sets
[e1, ..., et, ..., eT], the algorithm starts by instantiating the variables of all active BNs with
the first evidence set e1. As was mentioned in the comment to Definition 1, which BNs
that are initially active is defined when the model is created. The trigger logic for each gate
is then checked, and if it is satisfied for any of the gates, the child BNs of these gates are
activated (according to Definition 6). If any BNs were activated, then the algorithm goes
back and instantiates all variables of active BNs with the current evidence set, checks the
trigger logic and activates BNs. Once the previous loop does not result in any new BNs
being activated, all parent BNs of triggered gates that are not child BNs of triggered gates
are deactivated (according to Definition 6). GBNs are allowed to contain cycles, however
as deactivations only occur once all activations have been handled, the execution algorithm
will always terminate, and no infinite loops will be created. If a decision function has been

7

Start: t = 1
Instantiate V (Bi) for
Bi ∈ BA with et

Evaluate TL(Gi) for Gi ∈ G
Activate all child BNs

of triggered gates,
move them toBA

Any BNs activated?

Deactivate all par-
ent BNs that are not
child BNs of triggered
gates, move them toBI

Input triggered gates
into decision function
and output decisions

t < T ?t = t + 1

Stop

Yes

No

Yes

No

Figure 5: High-level outline of execution algorithm

defined, then the set of triggered gates are used as input to the decision function, and any
returned decisions are executed.

If there exists more evidence sets, then t is incremented and the next evidence set is
processed. The active/inactive state of each BN is remembered between evidence sets.
Variables in inactive BNs are never instantiated with new evidence. A variable is instantiated
with some evidence until a new evidence set instantiates it to a different state, thus evidence
is never retracted from variables. Once no more evidence sets exist, the execution algorithm
terminates.

2.3.1 Execution algorithm

In Figure 6, a detailed description of how the execution algorithm processes a sequentially
ordered dataset D is given. On line 2, the outer loop starts that picks out the current
evidence set et and passes it to the function EVIDENCE. The result of the function call
is a set of gates that triggered due to et. These are used as input to an externally de-
fined decision function on line 4 (as discussed in Section 2.2), which returns the decisions
to take. On line 13, inside function EVIDENCE, the inner loop of the algorithm starts. In
each iteration, variable instantiations are updated for all active BNs. Variables that were
previously instantiated, but for which no new evidence has been supplied, keep their instan-
tiation. The algorithm then finds those gates that have not yet triggered and sends them
to the TRIGGER function on line 30. The function will loop over the gates that have not
yet triggered, evaluate their trigger logic, and if it is satisfied, adds the gate to the set of
triggered gates. This set of triggered gates is then returned to the calling function and these
will be added to the set ATG, which contains all the triggered gates. For each of the gates
that triggered during this iteration of the loop (that started on line 13) their parent and
child BNs are stored. Before the loop starts again, all child BNs that belong to triggered
gates are activated. This is done in order to not enforce any ordering of the gates, so we can
check the trigger logic for the gates in any order, and the same gates will trigger regardless.
As long as there are gates that trigger the loop will continue. Once the loop is done, all

8

BNs that are parents of gates that triggered, but are not children of any triggered gates, are
deactivated. The deactivation is done outside the loop for the same reasoning of unordered
gates previously mentioned. Finally all triggered gates are returned.

Notice that on line 17 we are creating a set of gates that belong to the GBN but have
not yet triggered. It is this set of gates that are sent to the TRIGGER function on line
18. So once a gate has triggered it cannot be triggered again. Therefore the algorithm will
always terminate, if not before then at least once all gates have triggered. This prevents
any form of oscillation or infinite loop of triggering gates to happen.

Variables that are in inactive BNs will not be instantiated with new evidence. Since it
is difficult for the user to predict which BNs will be activated on line 24, it is important
that all available evidence is given to the model each time new evidence is made available,
even for variables for which the evidence might not have changed since the last set. For
instance, assume that a variable A belongs to an inactive BN at time t = 1. At this time
new evidence is observed for A, however since it does not belong to an active BN it will not
be instantiated with this new evidence. Now assume that at t = 2, the BN that A belongs
to has become active but the available evidence for A has not changed since t = 1. Even
though the evidence has not changed for A between t = 1 and t = 2, it should be supplied
to the model as it should not be required by the user to remember which BNs that have
been inactive at which times in the past.

3 Execution and Modelling Examples
In order to put into context the definitions presented in Section 2, we will in this section
demonstrate the application of the execution algorithm in the domain of the initial moti-
vation for GBNs. We will also give an illustrative example of how GBNs can be used in a
different domain than algorithmic trading, and show the potential of GBNs as the number
of phases increase.

3.1 The Trader’s Problem
The trader’s problem is the scenario, in its simpler form, that initially motivated us to define
GBNs, and a precursor to the real-world application that will be presented in Section 5.
Assume that a trader wants to buy shares of a company when there is a belief that the
share price will increase (i.e. there is a positive economical climate for this company). If
the trader owns shares of the company then the trader wants to sell the shares if there is
a belief that the share price will decrease (i.e. there is a negative economical climate for
this company). The trader’s problem is to decide when to move back and forth between
the two phases of buying and selling shares, in such a way that it benefits the trader (what
constitutes to being beneficial will be discussed in Section 5.1.2). The general problem solved
by portfolio construction, such as the universal portfolio or Markowitz portfolio, is allocation
of resources to several assets. The problem posed here is therefore slightly different, as we
are only considering a single asset.

The scenario can be modelled using the GBN depicted in Figure 1. Here, X and Y
are some features that predict the economical climate ECB during the identification of
buying opportunities. Similarly, W and Z predict the economical climate ECS during the
identification of selling opportunities. While variables ECB and ECS may be representing
the same phenomenon, the posterior for these two variables will be computed at different

9

1: function Execute(GBN,D) . D contains all evidence sets
2: for et ∈ D where t = 1, ..., T do
3: triggered gates← EV IDENCE(GBN, et)
4: decisions← Decision(triggered gates) . Externally defined function
5: execute decisions . Act upon the decisions generated
6: end for
7: end function
8:
9: function Evidence(GBN, e) . e is a set of evidence

10: UCBN ← { } . children BNs of triggered gates
11: UPBN ← { } . parent BNs of triggered gates
12: ATG← { } . all gates that triggered due to e
13: repeat
14: for all Bi ∈ BA do
15: Instantiate V (Bi) according to e
16: end for
17: NotTriggered ← G \ ATG
18: Triggered ← TRIGGER(NotTriggered)
19: ATG ← ATG ∪ Triggered
20: for all Gt ∈ Triggered do
21: UCBN ← UCBN ∪ children of Gt
22: UPBN ← UPBN ∪ parents of Gt
23: end for
24: activate all Bi ∈ (UCBN)
25: until Triggered is empty
26: deactivate all Bi ∈ (UPBN \ UCBN)
27: return ATG
28: end function
29:
30: function Trigger(NotTriggered)
31: Triggered← { }
32: for all Gi ∈ NotTriggered do
33: trigger ← EV ALUATE(TL(Gi))
34: if trigger then
35: Triggered ← Triggered ∪ {Gi}
36: end if
37: end for
38: return Triggered
39: end function
40:
41: function Evaluate(TriggerLogic)
42: Return evaluation of TriggerLogic. This evaluation includes posterior probability

queries to appropriate BNs and utility calculations, as explained in Definition 5.
43: end function

Figure 6: Execution algorithm

10

times with different evidence (we use subscripts do differentiate between the variables as
they are present in both BNs). Also, ECB and ECS represent future states, thus they
would be unobservable in a real setting. The variables X, Y, W and Z come before the
unobservable variables in temporal order, therefore the edges are directed away from the
observed variables towards the unobserved variables. This allows us to directly model the
conditional probabilities p(ECB |X,Y) and p(ECS |W,Z). However, this is only tractable
if very few observed variables are considered, if the number of observed variables were to
increase, then alternatives should be explored in order to reduce the number of parameters
in the model, for instance by using BN classifiers [13].

Gate1 is programmed with trigger logic that defines when the trader wants to buy
shares, in this example we will use TL(Gate1) : p(ECB = positive|e) > 0.8, where e is
evidence. Gate2 defines when the trader wants to sell shares, in this example we will use
TL(Gate2) : p(ECS = negative|e) > 0.6. A line under the name of the BN Buy indicates
that it is active prior to any evidence being entered into the model. We will use the decision
function in Equation 3

As is evident, the two decisions to buy and sell shares are dependent on different features
(X, Y , W and Z). Furthermore, we can program the trigger logic in such a way that we can
be more sensitive to negative climate (using a lower threshold of 0.6) and less sensitive to
positive climate (using a higher threshold of 0.8). This is one way of modelling the trader’s
preferences.

Assume that all variables are binary and that the following evidence sets will be presented
to the model:

• Set 1: X = 1, Y = 0

• Set 2: X = 1, Y = 1, W = 0

• Set 3: X = 1, Y = 0, W = 0, Z = 1

• Set 4: X = 1, Y = 0, W = 1, Z = 1

The execution algorithm will then work as follows:

• Set 1: Variables X and Y belong to an active BN Buy, and so they are instantiated
according to the evidence. However, assume that this infers p(ECB = positive|e) <
0.8, and so TL(Gate1) is not satisfied and Gate1 does not trigger. Variable ECS

belongs to an inactive BN, and thus will not supply any posterior to Gate2 (according
to Definition 5), and therefore TL(Gate2) will not be satisfied. At this point in time
we have not observed any evidence for variables W and Z.

• Set 2: X and Y are updated as before. This time we will assume that p(ECB =
positive|e) > 0.8, satisfying TL(Gate1) and triggering Gate1. This will activate the
BN Sell, and W will be instantiated according to the evidence. Assume p(ECS =
negative|e) < 0.6, then Gate2 does not trigger. According to Definition 6, all parent
BNs of triggered gates that are not children of triggered gates are deactivated. This
implies that Buy is deactivated. Feeding the triggered gates into the decision function
results in a buy signal for the trader.

• Set 3: W and Z are updated according to the evidence as Sell now is active. Since
Buy now is inactive, evidence for X and Y is discarded. Assume that TL(Gate2) is
not satisfied and due to Definition 5 we know that neither is TL(Gate1).

11

State

Temp Blood

Surgery

Normal risk monitoring

State

HeartTempBlood

Surgery

High risk monitoring

Antibiotics
More
Surgery

BloodTempHeart

Discharge

Post-surgery monitoring

Temp

Heart Complication

Monitor at home

Gate2

Gate1

Gate3

Gate4

Gate5

Gate6Gate7

Gate8

Figure 7: Surgery patient monitoring using a GBN

• Set 4: W and Z are updated as before. This time we will assume that p(ECS =
negative|e) > 0.6, thus TL(Gate2) is satisfied and Gate2 triggers. This will activate
Buy, allowing A and B to be instantiated according to the new evidence. Assume
that p(ECB = positive|e) < 0.8, then Gate1 does not trigger. This leads to Sell
being deactivated. Feeding the triggered gates into the decision function results in a
sell signal for the trader.

3.2 Patient Monitoring
In this section we will introduce an illustrative example of using a GBN in a different domain
than algorithmic trading. Here the number of phases involved has increased, and not all
gates are mapped to an explicit decision. The example in this section also sets the stage for
the comparison to other models done in Section 6. The GBN in Figure 7 models a process
relating to a particular patient prior to and after surgery. Equation 4 defines the decision
function for this GBN.

Decision|triggered gates =

Perform surgery if Gate3 ∈ triggered gates
Discharge patient if Gate4 ∈ triggered gates
Readmit patient if Gate5 ∈ triggered gates
Give antibiotics if Gate6 ∈ triggered gates
Perform surgery if Gate7 ∈ triggered gates
Stop monitoring if Gate8 ∈ triggered gates
Do nothing if none of the above apply

(4)

In the BN Normal risk monitoring, we only measure the patients temperature (Temp)
and blood pressure (Blood) to decide whether or not it is appropriate to perform surgery. At
the same time we are classifying the patient as either being in a normal state or in a high risk
state (using the variable State). If the posterior probability of being in a high risk state is
above some threshold, then Gate1 will trigger, thus activating the BNHigh risk monitoring
and deactivating Normal risk monitoring (the switching model is a threshold model using
posterior probabilities). When the patient is in the high risk state we also check the heart
rate of the patient (Heart) to decide if it is time to perform surgery. Meanwhile, we are

12

monitoring the risk/normal state of the patient, and if the posterior probability of the
patient being in the normal state is above some threshold then Gate2 will trigger, thus
switching back and forth between the two monitoring phases. Notice that the triggerings
of Gate1 and Gate2 do not lead to any explicit decisions (however in this specific case it is
implicitly necessary for somebody to add or remove the heart rate monitoring device, unless
it is always connected but not used).

At any time the posterior probability of Surgery = true can exceed the threshold of
TL(Gate3), thus indicating that it is appropriate to perform surgery, triggering the gate
and deactivating both Normal risk monitoring and High risk monitoring, and activating
the BN Post-surgery monitoring. In this example some of the networks are using the same
variables and the decision stays the same (whether or not to perform surgery), however the
conditional probabilities of the variables are different, and it could also be the case that
the threshold is different in Gate3 depending on which Surgery variable is supplying the
posterior, e.g. let SurgeryNormal be the Surgery variable in Normal risk monitoring and
SurgeryHigh the variable in High risk monitoring, then it would be possible to define
TL(Gate3) : p(SurgeryNormal|e) > 0.6 ∨ p(SurgeryHigh|e) > 0.8.

After surgery, in Post-surgery monitoring, three gates can trigger, each one associated
with a decision. Either the trigger logic of Gate7 is satisfied and the decision is made to
have another round of surgery, thus coming back to the normal/high risk monitoring phases.
If the trigger logic of Gate6 is satisfied then a round of antibiotics is given to the patient,
and the post-surgery monitoring continues. If the patient is deemed healthy enough to be
discharged, then the trigger logic of Gate4 will be satisfied, and the monitoring can continue
at home using the BN Monitor at home. When the patient is at home the blood test has
been removed, but the temperature and heart rate is still measured. In case there is a high
posterior probability of complications at home, Gate5 will trigger, thus sending the patient
back to the post-surgery monitoring at the hospital.

If the patient is at home, and the posterior probability of a complication is very low,
then Gate8 will trigger, leading to the decision to stop monitoring the patient. The entire
GBN comes to a halt, as Gate8 has no child BNs and no more evidence is collected.

We will use the patient monitoring example to highlight some key differences to other
models and formalisms in Section 6.

4 Learning Algorithm
Having defined GBNs and shown examples of their use, we turn our attention to the task of
using GBNs in real-world applications. In order to do so we must somehow learn which GBN
to use in a given situation. To this end, we will in this section introduce a semi-automatic
algorithm for learning a GBN. The algorithm consists of two parts: a GBN template and
a novel combination of k-fold cross-validation and time series cross-validation (time series
cross-validation is sometimes known as rolling origin [14] or walk forward analysis [15]). We
first describe these two parts, and then define the learning algorithm itself.

4.1 Gated Bayesian Network Templates
A GBN template is a representation of the modelled phases, including the possible transi-
tions between them. The template defines where BNs and gates can be placed. For each slot
where a BN can be placed, there is a library of BNs to choose from, similarly so for gates

13

BN1 BN2

G1

G2

Library for BN1

Library for BN2

Library for G2

Library for G1

Figure 8: GBN template

(gates differ in their trigger logic, e.g. the thresholds may vary between them). BNs may be
hand-crafted by experts prior to the GBN modelling, or they may be learnt from data using
some structure learning algorithm. In any case, it is expected that the user provides the
template and the libraries, hence this is why the algorithm is semi-automatic. A template
with four slots and corresponding libraries is depicted in Figure 8.

Selecting a BN and a gate from the libraries for each slot in the template creates a
GBN (e.g. Figure 1), we call this a candidate of the template. We use Ci to denote GBN
candidate i of a GBN template. Since the structure of the BNs and the trigger logic of the
gates in the libraries are defined, the remaining free parameters of a GBN candidate Ci are
the parameters of the marginal and conditional probability distributions of the contained
BNs, which we will denote by Θ.

The only restrictions on the BNs and gates are the ones they place on each other, e.g.
if the trigger logic of the gates placed in G2 includes an expression about the posterior
probability of a negative economical climate, then the BNs placed in BN2 must contain a
node that can supply this value. Except for these restrictions, the BNs and gates can be
configured freely.

4.2 Splitting the Data
When dealing with sequential data (in time or space) it is common that the data used
to estimate the parameters of a given model always come before the data used to test the
model. Future data may contain evolutionary effects of past data, and may therefore be more
indicative of past data than past data is of future data. Thus, estimating the parameters Θ
of the marginal and conditional probability distribution on future data and testing on past
data, may be misleading if the goal is to evaluate the expected performance. A data set
D of consecutive evidence sets, e.g. observations over all or some of the random variables
in the GBN, is divided into n equally sized blocks (D1, ...,Dn) such that they are mutually
exclusive and exhaustive. Each block contains consecutive evidence sets and all evidence
sets in block Di come before all evidence sets in Dj for all i < j.

Depending on the amount of available data, k is chosen as the number of blocks used
for training. These blocks will be used to pick a promising candidate which should be
evaluated on the testing data. In order to maximise the usage of the training data, we

14

Data for 3-fold cross-validation Data withheld for testing

Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

Simulation 6

Simulation 7

Data divided into blocks 𝒟1 to 𝒟10

Figure 9: Combined k-fold cross-validation and time series cross-validation using n = 10
blocks and k = 3 folds

ignore the natural order of the data during training and use k-fold cross-validation. It
should be noted that this is safe, since we only do this when choosing a promising candidate
to evaluate, and do not use this scheme when evaluating the expected performance of the
algorithm. Training then consists of holding out one of the k blocks (known as the validation
data), and estimating the parameters Θ of the candidate using the rest of the blocks. This
continues until every block in the training data has been held-out and validated upon.

Starting from index 1, blocks 1, .., k are used for training and k + 1 for testing, thus
ensuring that the evidence sets in the testing data occurs after the training data (as in time
series cross-validation). The procedure is then repeated starting from index 2 (i.e. blocks
2, .., k + 1 are used for training and k + 2 for testing). By doing so we create repeated
simulations, moving the testing data one block forward each time. An illustration of this
procedure when n = 10 and k = 3 is show in Figure 9.

4.3 Algorithm
Let J be a score function such that J (Ci,Dj , {Dl, ...,Dm}) is the score for GBN candidate
Ci (which is candidate i of a GBN template, as defined in Section 4.1) when block j has been
used for either testing or validation and the blocks Dl, ...,Dm have been used to estimate
the parameters Θ. The algorithm then works in three steps (with an optional fourth):

1. For each simulation s, where (as discussed previously) Ds+k is the testing data and
Ds, ...,Ds+k−1 is the training data, find Cs that satisfies Equation 5. This corresponds
to finding the GBN candidate with the maximum mean score of the k evaluations
performed during k-fold cross-validation over the training data. This is done by taking
into consideration every possible candidate, thus exhausting the search space.

Cs = arg max
Ci

1

k
Σs+k−1

j=s J (Ci,Dj , {Ds, ...,Ds+k−1}\Dj) . (5)

2. For each Cs calculate its score ρsJ on the testing set with respect to the scoring function
J according to Equation 6. This corresponds to estimating Θ of the found GBN

15

candidate from Equation 5 using all training data and evaluating the performance on
the data withheld for testing.

ρsJ = J (Cs,Ds+k, {Ds, ...,Ds+k−1}) . (6)

3. The expected performance ρ̄J of the algorithm, with respect to the score function J ,
is then given by the average of the scores ρsJ , as described in Equation 7.

ρ̄J =
1

n− k
Σn−k

s=1 ρ
s
J . (7)

4. (Optional) If the objective is to find the candidate to be used on future unseen data
(i.e. block Dn+1) then Equation 5 is used once more to find Cn−k+1. This candidate
can then be used on Dn+1 with an expected performance ρ̄J .

We emphasise that to ensure that each candidate is assessed on several blocks before
selecting the one to move forward with, we allow that a validation block may come before
some blocks used for parameter estimation in Equation 5. However, this step is only used
to select a candidate to evaluate in Equation 6. The data used in Equation 6 is always
ordered, i.e. the test block is always the immediate successor of the blocks used for parameter
estimation.

In the description of the algorithm, one scoring function J has been used both for
choosing a promising candidate in Equation 5 and for evaluating the expected performance
of the algorithm in Equation 6. In Section 5.1.2 we will define several metrics used to
evaluate algorithmic trading systems. The scoring function J used in Equation 5 could
internally use many of these metrics to come up with one score to compare the different
candidates with. However, it is natural in the coming setting to expose the actual values
of these metrics in Equation 6, and so several scoring functions J can be used to get a
vector of scores [ρsJ1

, ..., ρsJm
] and use a vector of means as the performance of the algorithm

[ρ̄J1
, ..., ρ̄Jm

].

5 Application
We can now address our initial motivation for introducing GBNs, to use them as alpha
models in algorithmic trading systems (defined in Section 1.1). We aim to use our learning
algorithm to learn a GBN as an alpha model that generates buy and sell signals, such that
certain risks (that will be defined in Section 5.1.2) are mitigated as compared to the buy-
and-hold strategy, while at the same time maintaining similar or better rewards. In this
section, we first introduce several metrics that are used to evaluate the performance of alpha
models, and then we move to the experiment itself.

5.1 Evaluating Alpha Models
Regression models can be evaluated by how well they minimise some error function or
by their log predictive scores. For classification, the accuracy and precision of a model
may be of greatest interest. Alpha models may rely on regression and classification, but
cannot be evaluated as either. For an alpha model, it is not important to accurately predict
every movement of the market, but rather to identify events in the market that suggest

16

an opportune time to buy or sell. Therefore, optimising alpha models by using classical
supervised classification measures such as accuracy, precision, recall, etc. will not be in line
with the desired behaviour of the model. To clarify, it is not necessarily known prior to
learning when these opportune times are, and so the task is in this sense unsupervised, as
there is no way of guiding the model to which events it should classify correctly. An alpha
model’s performance needs to be based on its generated signals over a period of time, and
the performance must be measured by the risk and reward of the model. This is known as
backtesting.

5.1.1 Backtesting

The process of evaluating an alpha model on historic data is known as backtesting, and
its goal is to produce metrics that describe the behaviour of a specific alpha model. These
metrics can then be used for comparison between alpha models [15, 16]. A time range, price
data for assets traded and a set of signals are used as input. The backtester steps through
the time range and executes signals that are associated with the current time (using the
supplied price data) and computes an equity curve (which will be explained in Section 5.1.2).
From the equity curve it is possible to compute metrics of risk and reward. To simulate
potential transaction costs, often referred to as commission, every trade executed is usually
charged a small percentage of the total value (0.06% is a common commission charge used
in the included application).

Alpha models are backtested separately from the other components of the algorithmic
trading system, as the backtesting results are input to the other components. Therefore, we
execute every signal from an alpha model during backtesting, whereas in a full algorithmic
trading system we would have a portfolio construction model that would combine several
alpha models and decide how to build a portfolio from their signals.

5.1.2 Alpha Model Metrics

What constitutes risk and reward is not necessarily the same for every investor, and investors
may have their own personal preferences. However, there are a few metrics that are common
and often taken into consideration [16]. Here we will introduce the metrics that we will use
to evaluate the performance of our alpha models.

Although not a metric on its own, the equity curve needs to be defined in order to define
the following metrics. The equity curve represents the total value of a trading account at a
given point in time. If a daily timescale is used, then it is created by plotting the value of
the trading account day by day. If no assets are bought, then the equity curve will be flat
at the same level as the initial investment. If assets are bought that increase in value, then
the equity curve will rise. If the assets are sold at this higher value then the equity curve
will again go flat at this new level. The equity curve summarises the value of the trading
account including cash holdings and the value of all assets. We will use Et to reference the
value of the equity curve at point t.

Metric 1 (Return) The return of an investment is defined as the percentage difference
between two points on the equity curve. If the timescale of the equity curve is daily, then
rt = (Et − Et−1)/|Et−1| would be the daily return between day t and t − 1. We will use r̄
and σr to denote the mean and standard deviation of a set of returns.

17

E
qu

it
y

in
 $

Time

MDDD MDD

LVFI

TIMR 1 - TIMR

Initial investment

Figure 10: Example of an equity curve with drawdown risks

Metric 2 (Sharpe Ratio) One of the most well known metrics used is the so called Sharpe
ratio. Named after its inventor Nobel laureate William F. Sharpe, this ratio is defined as:
(r̄ − risk free rate)/σr. The risk free rate is usually set to be a "safe" investment such as
government bonds or the current interest rate, but is also sometimes removed from the
equation [16]. The intuition behind the Sharpe ratio is that one would prefer a model that
gives consistent returns (returns around the mean), rather than one that fluctuates. This
is important since investors tend to trade on margin (borrowing money to take larger posi-
tions), and it is then more important to get consistent returns than returns that sometimes
are large and sometimes small. This is why the Sharpe ratio is used as a reward metric
rather than the return.

Furthermore, under certain assumptions it can be shown that there exists an optimal
allocation of equity between alpha models (in the portfolio construction model), such that
the long-term growth rate of equity is maximised [16]. This growth rate turns out to be
g = r + S2/2, where r is the risk free rate and S is the Sharpe ratio. Thus, a high Sharpe
ratio is not only an indication of good risk adjusted return, but holding the risk free rate
constant, the optimal growth rate is an increasing function of the Sharpe ratio.

Using the Sharpe ratio as a metric will ensure that the alpha models are evaluated on
their risk adjusted return, however, there are other important alpha model behaviours that
need to be measured. A family of these, that are known as drawdown risks, are presented
here (see Figure 10 for examples of an equity curve and these metrics).

Metric 3 (Maximum Drawdown (MDD)) The percentage between the highest peak
and the lowest trough of the equity curve during backtesting. The peak must come before
the trough in time. The MDD is important from both a technical and psychological regard.
It can be seen as a measure of the maximum risk that the investment will live through.
Investors that use their existing investments that have gained in value as safety for new
investments may be put in a situation where they are forced to sell everything. Other risk
management models may automatically sell investments that are loosing value sharply. For
the individual who is not actively trading but rather placing money in a fund, the MDD is
psychologically frustrating to the point where the individual may withdraw their investment
at a loss in fear of loosing more money.

Metric 4 (Maximum Drawdown Duration (MDDD)) The longest it has taken from
one peak of the equity curve to recover to the same value as that peak. Despite its unfor-

18

tunate name it is not the duration of the MDD, but rather then longest drawdown period.
There is an old adage amongst investors to "cut your losses early". In essence it means that
it is better to take a loss straight away than to sit on an investments for months or years,
hoping that it will come back to positive returns. During this time one could have reinvested
the money elsewhere, rather then breaking-even much later (or taking a larger loss much
later). Models that have long periods of drawdown lock resources when they could have
been used better elsewhere.

Metric 5 (Lowest Value From Investment (LVFI)) The percentage between the ini-
tial investment and the lowest value of the equity curve. This is one of the most important
metrics, and has a significant impact on technical and psychological factors. For investors
trading on margin, a high LVFI will cause the lender to ask the investor for more safety
capital (known as a margin call). This can be potentially devastating, as the investor may
not have the capital required, and is then forced to sell the investment. The investor will
then never enjoy the return the investment could have produced. Individuals who are not
investing actively, but instead are choosing between funds that invest in their place, should
be aware of the LVFI as it is the worst case scenario if they need to retract their investment
prematurely.

Metric 6 (Time In Market Ratio (TIMR)) The percentage of time of the investment
period where the alpha model owned assets. This metric may seem odd to place within the
same family as the other drawdown risks, however it fits naturally in this space. We can
assume that the days the alpha model does not own any assets the drawdown risk is zero.
If we are not invested, then there is no risk of loss. In fact, we can further assume that our
equity is growing according to the risk free rate, as it is not bound in assets.

5.1.3 Buy and Hold Benchmark

At first the buy-and-hold strategy may seem naïve, however it has been shown that deciding
when to own and not own assets requires consistent high accuracy of predictions in order
to gain higher returns than the buy-and-hold strategy [17]. The buy-and-hold strategy has
become a standard benchmark, not only because of the required accuracy, but also because
it requires very little effort to execute (no complex computations and/or experts needed).
In the current setting we are dealing with buy and sell signals of single assets, however in a
wider context where several assets are considered at the same time, portfolio construction
creates a stark contrast to the the buy-and-hold strategy. Portfolio construction actively
reallocates resources between different assets, while buy-and-hold never reallocates. How-
ever, theoretical results show that in the long run the universal portfolio [9], and other
online portfolio construction algorithms [8, 10], outperform the buy-and-hold strategy un-
der certain criteria. The Markowitz portfolio [7] is another example that emphasises that
diversification and reallocation can improve expected rewards while reducing risk.

Now consider the family of metrics that we called drawdown risks. The buy-and-hold
strategy holds assets over the entire backtesting period and so will be subject to the full
force of these metrics. For instance, as an asset will be held throughout the period, the
lowest point of the assets value will coincide with LVFI. Furthermore, the initial investment
will always be locked in assets, not being able to make money from risk free rates during
periods of decreasing value.

19

Table 1: Calculation of indicators
S is a set of ordered values.

n is the number of periods used.
Moving average MAt(S, n) = 1

n

∑n−1
i=0 St−i

Moving average difference MADIFFt(S, nfast, nslow) =
MAt(S,nfast)−MAt(S,nslow)

MAt(S,nslow)

Relative strength index

Upt(S, n) = {|Si − Si−1| : Si > Si−1 with t− n < i ≤ t}

Downt(S, n) = {|Si − Si−1| : Si < Si−1 with t− n < i ≤ t}

RSt(S, n) = Upt(S,n)
Downt(S,n)

RSIt(S, n) = 100− 100
1+RSt(S,n)

5.2 Methodology
The variables used in the BNs of our GBNs were all based on so called technical analysis.
One of the major tenets in technical analysis is that the movement of the price of an asset
repeats itself in recognisable patterns. Indicators are computations of price and volume
that support the identification and confirmation of patterns used for forecasting [18, 19, 20].
Many classical indicators exists, such as the moving average (MA), which is the average price
over time, and the relative strength index (RSI) which compares the size of recent gains to
the size of recent losses. Technical analysis is a topic that is being actively developed and
researched [21, 22]. In this application we used three indicators: the MA, the RSI and the
relative difference between two MAs (MADIFF). Please see Table 1 for the calculations of
these indicators.

5.2.1 GBN Template

A GBN template with one BN per phase was created (see Figure 8), along with eight BNs
per BN slot (see Figure 11) and four gates per gate slot, giving a total of 1024 candidates.
The eight BNs used for BN1 were identical to those used in BN2, however the gates’ trigger
logic were different. The trigger logic for G1 asks for the posterior probability of a good
buying opportunity (i.e. a predicted positive future climate) while the trigger logic for G2
asks for the posterior probability of a good selling opportunity (i.e. a predicted negative
future climate). Each one of the four gates available for G1 and G2 had different thresholds
which the posterior probability had to exceed in order for the gate to trigger (the thresholds
were 0.5, 0.6, 0.7 and 0.8). The choice of variables and the structure of the eight BNs
represent different experts’ views on how to interpret the technical analysis indicators. For
instance, in Figure 11 network 2 represents an expert that believes that RSI measured at
its current value and its value five days in the past are indicative of future price movements,
while network 3 believes the same but using the difference between two moving averages.
These views are not exhaustive, however we assumed that these were the experts available
at the time of the application.

The random variables in the BNs were discretisations of technical analysis indicators
(RSI, MA and MADIFF) and their corresponding first and second order 1 and 5 day back-
ward finite differences (∇1

1,∇1
5,∇2

1 and ∇2
5) which approximate the first and second order

derivatives. The parameters used in the indicators are standard 14 day period for RSI [18]

20

A
∇2

1 MA(20)
B

∇1
1 MA(20)

S
∇1

5 MA(20)
Offset(+5)

1

A
RSI(14)
Offset(-5)

B
RSI(14)

S
∇1

5MA(20)
Offset(+5)

2

A
MADIFF
(5,20)

Offset(-5)

B
MADIFF
(5,20)

S
∇1

5MA(20)
Offset(+5)

3

A
∇2

1RSI(14)
B

∇1
1RSI(14)

C
RSI(14)

D
∇1

1RSI(14)
Offset(+5)

S
∇1

5MA(20)
Offset(+5)

4

A
∇2

1RSI(14)
B

∇1
1RSI(14)

C
RSI(14)

S
∇1

5MA(20)
Offset(+5)

5

A
∇2

1MA(20)
B

∇1
1MA(20)

C
∇1

1MA(20)
Offset(+5)

S
∇1

5MA(20)
Offset(+5)

6

A
∇2

1MADIFF
(5,20)

B
∇1

1MADIFF
(5,20)

C
MADIFF
(5,20)

S
∇1

5MA(20)
Offset(+5)

7

A
∇2

1MADIFF
(5,20)

B
∇1

1MADIFF
(5,20)

D
∇1

1MADIFF
(5,20)

Offset(+5)

C
MADIFF
(5,20)

S
∇1

5MA(20)
Offset(+5)

8

Figure 11: BNs in GBN template libraries

(written as RSI(14)), 20 day period for MA, representing 20 trading days in a month (writ-
ten as MA(20)), and 5 and 20 day period for MADIFF, where 5 days represent the 5 trading
days in a week (written as MADIFF(5,20)). We also considered the previous indicators but
with an offset of 5 days in the past and 5 days into the future. The random variables
that were offset into the future represent the future economical climate, one of which was
involved in the trigger logic of the gates. The true values for these future random variables
were naturally not part of the testing data sets. The nodes named S in Figure 11 were used
as trigger nodes for all gates. The GBN generated trading signals as it transitioned between
its two phases.

5.2.2 Data Sets

A set of actively traded stock shares were chosen for the evaluation of our learning algo-
rithm: Apple Inc. (AAPL), Amazon.com Inc. (AMZN), International Business Machines
Corporation (IBM), Microsoft Corporation (MSFT), NVIDIA Corporation (NVDA), Gen-

21

eral Electric Company (GE), Red Hat Inc. (RHT). The daily adjusted closing prices for
these stocks between 2003-01-01 and 2012-12-31 were downloaded from Yahoo! FinanceTM.
This gave a total of 10 years of price data for each stock, where each year was allocated
to a block, and thus n = 10. For the learning algorithm, k was chosen to be 3, giving
seven simulations from which to calculate [ρ̄J1

, ..., ρ̄Jm
]. The split of the data is visualised

in Figure 9.

5.2.3 Scoring Functions

The signals generated were backtested in order to calculate the relevant metrics. For step 1
in the learning algorithm (see Section 4.3) we used the Sharpe ratio. This choice was made as
it combines both risk and reward into one score, which can then easily be compared between
candidates. For step 2 we used the return and drawdown risks described in Section 5.1.2
to create a score vector. For the buy-and-hold strategy the same metrics as in step 2 were
calculated for the seven simulations.

5.3 Results and Discussion
To visualise the backtesting that was done for each simulation, Figure 12 gives two examples
of stock price, generated signals (an upward arrow indicates a buy signal and a downward
arrow indicates a sell signal) and resulting equity curve (with an initial investment of $20,000
USD) for the evaluated GBN. The solid line equity curve is the one achieved by executing
the signals from the GBN, the dashed line is the corresponding equity curve for the buy-
and-hold strategy. The GBN equity curve grows in a more monotonic fashion, which is
desirable because this decreases the drawdown risks, while at the same time generating
positive returns. The buy-and-hold strategy would have made a loss in both these examples,
because the final price is lower than the initial one, furthermore it would have displayed bad
intermediate behaviour, reflected by the high drawdown risk values that would have been
incurred. These are declining years for the shares, however the GBN does its best to get as
much value as possible from the price movements.

Table 2 presents the score vectors from the learning algorithm versus the score vector
of the buy-and-hold strategy over the seven simulations. Rows named min, max and sd
(standard deviation) are based on Equation 6, while mean corresponds to Equation 7. As
each block used by the learning algorithm had an approximate length of one year, the Sharpe
ratio that is given by dividing the mean with the sd of the return column is a yearly Sharpe
ratio based on seven years (where the risk-free rate has not been included). The acronyms
MDD, MDDD, LVFI and TIMR, represent the metrics described in Section 5.1.2. All values
are ratios except for MDDD which is measured in number of days.

5.3.1 Analysis of Results

The Sharpe ratio is our measure of reward, premiered above the raw return for reasons
discussed in Section 5.1.2. Our first concern is to ensure that the learnt GBNs are producing
similar or better Sharpe ratios than the buy-and-hold strategy over the testing period. As
can be seen in Table 2, this is the case except for NVDA and RHT. As we have previously
discussed, it requires a very high accuracy of predictions to consistently beat the Sharpe
ratio of buy-and-hold.

From this we can conclude that the GBNs do not get beaten consistently by the buy-
and-hold strategy when considering the annual Sharpe ratio, even though it is considered a

22

Dec 31
2007

Mar 03
2008

May 01
2008

Jul 01
2008

Sep 02
2008

Nov 03
2008

Dec 29
2008

60
70

80
90

10
0

11
0

12
0

P
ric

e

14
00

0
18

00
0

22
00

0

E
qu

ity
 c

ur
ve

Dec 30
2009

Mar 01
2010

May 03
2010

Jul 01
2010

Sep 01
2010

Nov 01
2010

Dec 29
2010

8
10

12
14

16
18

P
ric

e

10
00

0
15

00
0

20
00

0
25

00
0

E
qu

ity
 c

ur
ve

Figure 12: Price, signals and GBN equity curve for IBM 2008 (left) and NVDA 2010 (right)

Table 2: Metric values comparing GBN with buy-and-hold
GBN Buy-and-hold
Return MDD MDDD LVFI TIMR Return MDD MDDD LVFI TIMR

AAPL min -0.000 0.122 35.0 0.001 0.520 -0.559 0.129 28.0 0.001 1.000
max 0.851 0.331 164.0 0.184 0.944 1.419 0.589 250.0 0.590 1.000
mean 0.347 0.206 95.0 0.055 0.723 0.489 0.274 116.0 0.162 1.000
sd 0.334 0.076 50.3 0.061 0.155 0.707 0.168 82.7 0.218 0.000

Sharpe 1.041 0.691
AMZN min -0.204 0.134 56.0 0.042 0.510 -0.466 0.157 45.0 0.001 1.000

max 0.784 0.306 142.0 0.245 0.768 1.740 0.634 249.0 0.620 1.000
mean 0.271 0.218 101.7 0.109 0.630 0.463 0.317 118.6 0.215 1.000
sd 0.374 0.060 32.8 0.088 0.091 0.829 0.171 89.9 0.234 0.000

Sharpe 0.725 0.559
IBM min -0.022 0.062 53.0 0.013 0.494 -0.210 0.088 28.0 0.001 1.000

max 0.238 0.176 176.0 0.121 0.944 0.596 0.442 190.0 0.302 1.000
mean 0.125 0.117 112.3 0.044 0.712 0.170 0.174 106.4 0.086 1.000
sd 0.094 0.042 45.4 0.042 0.173 0.245 0.120 59.7 0.101 0.000

Sharpe 1.332 0.694
MSFT min -0.256 0.099 88.0 0.001 0.365 -0.457 0.141 74.0 0.001 1.000

max 0.381 0.305 197.0 0.279 0.741 0.659 0.498 250.0 0.498 1.000
mean 0.056 0.168 143.3 0.114 0.557 0.069 0.249 168.6 0.200 1.000
sd 0.202 0.068 41.9 0.091 0.156 0.338 0.119 67.8 0.155 0.000

Sharpe 0.278 0.204
NVDA min -0.420 0.182 64.0 0.032 0.241 -0.765 0.253 67.0 0.077 1.000

max 0.342 0.541 227.0 0.467 0.700 1.230 0.820 249.0 0.821 1.000
mean 0.016 0.284 148.1 0.209 0.516 0.202 0.458 172.3 0.311 1.000
sd 0.284 0.120 62.1 0.140 0.171 0.701 0.195 76.6 0.268 0.000

Sharpe 0.057 0.288
GE min -0.302 0.049 60.0 0.015 0.404 -0.555 0.089 69.0 0.001 1.000

max 0.461 0.465 217.0 0.438 0.570 0.222 0.657 217.00 0.642 1.000
mean 0.040 0.169 144.3 0.119 0.488 -0.001 0.314 157.0 0.236 1.000
sd 0.235 0.142 69.7 0.150 0.062 0.257 0.228 53.7 0.257 0.000

Sharpe 0.169 -0.005
RHT min -0.222 0.096 87.0 0.001 0.433 -0.370 0.143 40.0 0.001 1.000

max 0.436 0.428 221.0 0.348 0.784 1.341 0.676 221.0 0.617 1.000
mean 0.038 0.254 156.9 0.136 0.613 0.201 0.338 133.0 0.243 1.000
sd 0.259 0.103 45.6 0.123 0.136 0.579 0.197 61.6 0.234 0.000

Sharpe 0.145 0.346

23

nearly optimal strategy. Furthermore, we should take into consideration TIMR. The GBNs
are spending less time in the market, reducing risk to equity and possibly increasing equity
value from risk free investments. Potential gain in equity from risk free rates have not
been added to the Sharpe ratios presented in the table. Considering that the learnt GBNs
consistently spend considerably less time in the market (shown by the low TIMR values),
this could give a significant boost to the Sharpe ratios. An example of this can be seen for
NVDA where the Sharpe ratio for GBN is lower than for buy-and-hold, but the GBN only
spent on average 51.6% of the time in the market, risk free investments could potentially
drive the Sharpe ratio for the GBN above that of the buy-and-hold strategy.

Turning our attention to the drawdown risks, we first consider the MDD and MDDD.
The difference of the MDD values are substantial, the MDD mean and sd are consistently
smaller for the GBNs than they are for the buy-and-hold strategy. This signals that the
equity we gain from our investments are at less risk when using the GBNs compared to the
buy-and-hold strategy. For MDDD the means differ in favour of either approach, we would
not prefer one in front of the other given only this metric.

The LVFI is a major threat to equity (see Section 5.1.2), and it is the one metric where
buy-and-hold severely underperforms. Considering the max values we note that for NVDA
the buy-and-hold strategy wiped out 82.1% of the equity at worst, while the GBNs did
46.7% at worst for NVDA. Considering the LVFI mean and sd for all stocks we note that
they are consistently almost half for the GBNs compared to the buy-and-hold strategy.
LVFI is important because it is the risk of the initial investment, loosing much of the initial
investment may lead to premature withdrawal of funds and/or force liquidation by margin-
calls.

All in all, the results above clearly indicate that GBNs are competitive with buy-and-
hold in terms of Sharpe ratio, whereas they induce a more desirable behaviour in terms of
MDD, LVFI and TIMR.

5.3.2 Single Bayesian Network Comparison

We have made a leap into immediately assuming that having different BNs for the different
phases in Figure 8 would be an improvement above having the same BN in both phases. This
assumption stems from the underlying hypothesis of GBNs, that different BNs are required
at different phases of a process. However, in order to illuminate upon the difference between
using the same BN for each phase compared to our results in Table 2, we ran the same
experiment again, however this time only using the subset of candidate GBNs that had the
same BN in both phases. For brevity we only report the comparison of annual Sharpe ratios
in Table 3. As is evident, GBNs with different BNs in the different phases outperform the
single BN for all stocks. For some stocks the difference is marginal (NVDA, GE and RHT),
while for others the difference is substantial (AAPL, AMZN, IBM and MSFT).

From this we conclude that there is evidence for the underlying hypothesis of GBNs, that
different BNs are required at different phases of a process. Without having further inves-
tigated the origins of this improvement, it does seem to suggest that buying opportunities
and selling opportunities are not each others counterparts.

Table 3: Annual Sharpe ratio for single BN and GBN
AAPL AMZN IBM MSFT NVDA GE RHT

Single BN 0.675 0.561 0.44 0.0181 0.0432 0.142 0.12
GBN 1.041 0.725 1.332 0.278 0.057 0.169 0.145

24

∇1
2MADIFF(5,20)

∇
11 M

A
D

IF
F

(5
,2

0)

−1 0 1 2 3

−
1

0
1

2
3

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

∇1
2MADIFF(5,20)

M
A

D
IF

F
(5

,2
0)

−1 0 1 2 3

0
5

10

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

∇1
1MADIFF(5,20)

M
A

D
IF

F
(5

,2
0)

−1 0 1 2 3

0
5

10

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

Figure 13: Buy decisions using 7 from Figure 11

∇1
2RSI(14)

∇
11 R

S
I(

14
)

−40 −20 0 20

−
30

−
20

−
10

0
10

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

∇1
2RSI(14)

R
S

I(
14

)

−40 −20 0 20

30
40

50
60

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

∇1
1RSI(14)

R
S

I(
14

)

−30 −20 −10 0 10

30
40

50
60

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 14: Sell decisions using 5 from Figure 11

5.3.3 Post-Analysis

One of the benefits of using BNs is that we can get transparency as to why a particular
signal was generated. Our aim here was to look at the non-discretised values of the variables
at the time a signal was generated. We combined the signals from all simulations (regardless
of which stock was traded) and then grouped the signals by which BN generated them and
if they were buy or sell signals. We then did pair-wise combinations of the variables in each
BN to create scatter plots with values of the variables along the axes and also added an
approximated density using the frequency of signals. These scatter plots show when GBNs
are generating signals. Examples of these plots for the BNs that generated the most signals
are given in Figure 13 (using 7 from Figure 11) and Figure 14 (using 5 from Figure 11).

In Figure 13 the BN is used to look for buying opportunities. In the first plot we see
that most signals are generated when both ∇1

1MADIFF (5, 20) and ∇2
1MADIFF (5, 20)

are positive, indicating that the difference between the two MAs is growing and increasing
in speed, but not so positive so as to making it impossible to benefit from the trend. The
second two plots in Figure 13 plot ∇2

1MADIFF (5, 20) against MADIFF (5, 20) and the
∇1

1MADIFF (5, 20) againstMADIFF (5, 20). Both these confirm what we knew about the
first and second order difference, but also indicate that MADIFF (5, 20) should be positive
(so the short period MA should be above the long period MA). From a technical analysis
perspective this type of pattern is common, it indicates a trend change, as the shorter MA
is moving above and away from the longer MA. It is noteworthy to mention that we have
not set any priors on the BNs that would indicate that these are the kind of patterns we are
interested in, so our learning algorithm is able to re-discover these human-like commonly
used patterns. An example of selling signals is presented in Figure 14, here we are using RSI
which is bounded between 0 and 100. When RSI moves up towards 100 it indicates that
the buying pressure is increasing, and should drive prices higher, the opposite is true when

25

RSI moves towards 0. The first plot indicates that most selling signals are generated when
∇1

1RSI(14) is close to zero or negative (i.e. RSI has started to decrease) and ∇2
1RSI(14)

is bounded around ±10. The two other plots in Figure 14 represent ∇2
1RSI(14) against

RSI(14) and ∇1
1RSI(14) against RSI(14). These last two figures confirm our findings in

the first figure, but also indicates that the RSI(14) should be below 50 (but not too much
below 50 so as to miss the selling opportunity). This seems reasonable from a technical
analysis perspective, as RSI goes below 50 and decreases, the selling pressure increases,
indicating that the price will go lower, and so a selling signal is generated. We reemphasise
that we did not set any prior in the BNs that would suggest that these are the type of
signals we should be looking for.

5.4 Extended Experiment
In the main application we used the posterior probability of a variable being in a specific
state as input to the trigger logic of the gates. Signals generated were due to the posterior
probability being higher or lower than some threshold, and we used the Sharpe ratio to
pick a candidate after k-fold cross-validation to use on the testing data. In this way, we did
not directly communicate to the candidates that they should premier a specific score, but
instead picked the candidate that already behaved as desired. Since we did not beat the
Sharpe ratio of buy-and-hold for NVDA and RHT, we wanted to attempt to improve these
results. According to Definition 1 and Definition 5 we can introduce utility nodes into the
BNs and use them as trigger nodes. By doing so, we aimed at instructing the candidates to
behave in such a way that they premiered the Sharpe ratio.

The Sharpe ratio itself is defined as the mean of a set of returns divided by the standard
deviation of those returns (see Section 5.1.2). Therefore, it is calculated after the returns
have been realised, and is therefore not an expectation. At the time the trigger logic for
a gate is evaluated, the information available is the posterior weighted utilities given some
evidence. Thus, it is not possible to compute the Sharpe ratio for a specific set of evidence,
but rather the expected risk adjusted return. Given a discrete variable S that represents
the future return of an investment over some period of time, we can construct a logical
statement regarding the expected risk adjusted return according to Equation 8. This is a
reasonable approach for instructing the candidates to premier the Sharpe ratio.

TL(·) :
µ√∑

i(u(S = i)− µ)2p(S = i|e)
> τ

µ =
∑
i

p(S = i|e)u(S = i)

p(S = i|e) probability that S is in state i given evidence e
u(S = i) utility of S when it is in state i

(8)

All trigger nodes (S in Figure 11) represent the first order 5 day backward finite difference
of the 20 day moving average of the share price, offset 5 days into the future. These trigger
nodes were replaced with the 5 day return of the 20 day moving average, offset 5 days into
the future. We kept the 20 day moving average as a smoother in order to make as few
changes as possible between the two experiments. These new nodes were discretised into
six bins, and a utility node was added that mapped each one of these bins to the mean
value of the content of the bin (the candidates looked similar to Figure 2). The trigger logic

26

for the gates were set according to Equation 8. This implies that each time a GBN was
presented with new evidence, it calculated an expected risk adjusted return based on the
current posterior distribution of the variable S, and if this was higher or lower than some
threshold τ then it triggered, generating a signal.

The results of the extended experiment are shown in Table 4. For compactness we only
present the mean values of each score and the annual Sharpe ratio. For AAPL and AMZN
we did not improve upon the results from the main application. For IBM, MSFT, NVDA,
GE and RHT we were able to improve the Sharpe ratio. For NVDA the improvement was
clear, but not enough to beat buy-and-hold, on the other hand for RHT we were able to
improve the Sharpe ratio enough to beat buy-and-hold. It does however seem to come at a
cost, as the other score metrics were not necessarily improved upon over all stocks. This is
most likely due to the fact that we prioritised the Sharpe ratio by using the expected risk
adjusted return in the trigger logic.

Table 4: Metric values comparing GBN, GBN with utility and buy-and-hold
Sharpe MDD MDDD LVFI TIMR

AAPL GBN 1.041 0.206 95.0 0.055 0.723
GBN with utility 0.821 0.236 105 0.0857 0.807
Buy-and-Hold 0.691 0.274 116.0 0.162 1.000

AMZN GBN 0.725 0.218 101.7 0.109 0.630
GBN with utility 0.469 0.292 117 0.183 0.692
Buy-and-Hold 0.559 0.317 118.6 0.215 1.000

IBM GBN 1.332 0.117 112.3 0.044 0.712
GBN with utility 1.44 0.112 108 0.0536 0.713
Buy-and-Hold 0.694 0.174 106.4 0.086 1.000

MSFT GBN 0.278 0.168 143.3 0.114 0.557
GBN with utility 0.376 0.162 143 0.0989 0.572
Buy-and-Hold 0.204 0.249 168.6 0.200 1.000

NVDA GBN 0.057 0.284 148.1 0.209 0.516
GBN with utility 0.216 0.313 149 0.22 0.518
Buy-and-Hold 0.288 0.458 172.3 0.311 1.000

GE GBN 0.169 0.169 144.3 0.119 0.488
GBN with utility 0.416 0.129 137 0.0716 0.51
Buy-and-Hold -0.005 0.314 157.0 0.236 1.000

RHT GBN 0.145 0.254 156.9 0.136 0.613
GBN with utility 0.485 0.257 153 0.153 0.734
Buy-and-Hold 0.346 0.338 133.0 0.243 1.000

6 Comparison to Other Models
In the previous sections we have formally defined GBNs as well as introduced algorithms
that can be used when applying GBNs to real-world problems. Our intention for doing so is
to complement the set of existing probabilistic graphical models with GBNs. In this section
we will compare GBNs with existing models and formalisms, in order to highlight a few key
differences.

6.1 Influence Diagrams and Markov Decision Processes
When the decisions, actions and possible outcomes can be made explicit in the model,
then we usually consider decision models. Influence diagrams (IDs) are, within the domain
of probabilistic graphical models, the canonical models for dealing with decisions under
uncertainty. An example of an ID is drawn in Figure 15. We express decisions and possible
actions in a given scenario using decision nodes (square nodes) and express the value of each

27

A B

D1

C

D2

U1

U2

Figure 15: An example of an influence
diagram

S0

D0

R0

Si

Di

Ri

Figure 16: An example of a Markov deci-
sion process

possible outcome using utility nodes. Given a fully specified ID and a set of evidence, we are
able to extract the actions for each decision such that the expected utility is maximised [2].
This is referred to as finding the optimal strategy given the current evidence. This strategy
can be computed due to the fact that all decisions and possible outcomes are explicitly
modelled. If a decision needs to be repeated several times, it is possible to unfold the
influence diagram, much like a dynamic Bayesian network. It is then assumed that each
decision is separated by a discrete time step that does not change in length, allowing chance
and decision nodes to be connected between the time steps. Limiting the unfolding is the
fact that it is necessary to explicitly bound the number of decisions in the process. Several
obstacles when using IDs have been overcome, specifically concerning asymmetry in decision
processes [23, 24].

In situations where it is necessary to model a decision process with an unbounded number
of decisions, it is possible to use a Markov decision processes (MDP), an example of which is
shown in Figure 16. In the framework of MDPs, it is more common to phrase the problem
as deciding to move between states, given the current state and evidence, and that each
decision changes the state with some probability. Being in a specific state is associated with
some reward R (that can also be a cost if negative). Using value iteration, we can find a
utility function that maps all states to a decision such that it maximises the expected utility.
However, as the time horizon is not bounded, summing up utilities will lead to an infinite
sum, and so in order for value iteration to work one must apply constraints on the model. A
common way of doing this is to discount future rewards, so that rewards in the distant future
fades away. Value iteration finds the utility of a state by looking at the immediate reward
received at that specific state plus the maximum expected utility of all future states that are
reachable from that state [2]. Thus, if at time j you can decide to move to a state where you
own shares sj+1 = own shares or a state where you do not own shares sj+1 = do not own,
then the utility function will map the current state to a decision of which state to move to,
based on the maximum expected utility of all future states. However, the MDP and value
iteration assumes that the reward R of a state is independent of time j. This assumption
becomes problematic when the reward depends on when and if we have made a decision at
any previous time i < j. For instance, the value of our shares at time j will be different if
we bought them at time i or time k (i 6= k). This would require dynamically changing the
edges in the MDP depending on previous decisions.

In a GBN we do not explicitly model decisions and outcomes, and hence GBNs are

28

State1

Blood1 Surgery1 Blood2

State2

Surgery2

Figure 17: An example of a hidden Markov model

not decision models and do not solve the maximum expected utility problem. Instead, the
learning algorithm in Section 4 finds the candidate which induces the best strategy ∆ with
respect to some score function J . Put in other words, learning a GBN entails finding the
candidate that encodes the strategy under which switching of BNs occur in such a way that
the best score over a sequence of evidence sets is achieved. It is clear that this is different
from what IDs and MDPs achieve. GBNs repeat decisions similar to when folding out IDs,
however it severs the ties between time slices, i.e. there are no edges between different
BNs in a GBN, and can thus handle evidence at variable time steps (e.g. there is no need
to specify that decisions are separated by one hour or one day, etc.). Furthermore, GBNs
handle unbounded time horizons as MDPs do, however they do not use a discounting scheme
or value iteration. There is no reward function R used in the trigger logic, thus a gate that
triggers does not do so due to expected utility maximisation of future states, but due to the
strategy the GBN encodes.

6.2 Hidden Markov Models
In the example discussed in Section 3.2, we used a GBN to switch between two models
based on the posterior probability of a patient being in a specific unobservable state. This
is closely related to the way hidden Markov models (HMM) are used. However, there are a
few fundamental differences that we will explore.

Assume that we have some data D which contains cases that we can estimate our pa-
rameters from. In D, the true state of the patient is known, however at the time of the
decision, we cannot know the true state of the patient but must instead infer it. We can
split the data into Dnormal with cases where the patient state is at normal risk and Dhigh

where the patient state is at high risk. For the GBN in Figure 7, we estimate the param-
eters of Normal risk monitoring using Dnormal and High risk monitoring using Dhigh.
The variables Blood, Temp and Heart are always observed, thus separating State from
Surgery, however as the data has been split, Surgery in Normal risk monitoring is im-
plicitly conditioned on State in Normal risk monitoring, and so an edge between them is
not necessary.

The HMM in Figure 17 is a simplified version of the scenario discussed. For this model,
we would estimate from D the parameters of all the distributions implied by the model.
We have to add an edge between Statet and Surgeryt as Bloodt is always observed and it
would separate Statet from Surgeryt.

We have assumed that the patients state is not observable at the time of decision, hence

29

the posterior of Surgeryt will be influenced of all other variables in the HMM, for all time
steps. The HMM effectively becomes a mixture model, where the posterior of Surgeryt is
weighed by the likelihood of each state at each previous time step. Now assume that we
could observe the state of the patient at t = 2. The posterior of Surgery2 is now only
influenced by State2 and Blood2.

In the GBN, we do not estimate what is known as the transition model p(Statet+1|Statet),
thus we do not specify any conditional probability of activating and deactivating BNs. This
conditional inherently exists due to the trigger logic and the threshold, however it is never
explicitly specified. Furthermore, although State is not observable, the GBN makes an ac-
tive choice based on the strategy ∆; a GBN will deterministically select a network based on
the posterior belief that a patient is in a specific state and some threshold, there is no mix-
ture between the two networks. Thus the posterior probability of Surgery is not a mixture
of all variables of all previous time steps. This is intentional, as GBNs were introduced in
order to deal with systems of distinct phases.

The differences become even more discernible when considering the trader’s problem,
where we do not want the posterior of negative climate to become a mixture of all previous
time steps, as some of the time steps should have been modelling positive climate. This
ties into the fact that in the GBN it is straightforward to add and remove variables and
dependencies based on which phase we are in. This could potentially be done in the HMM
as well, however it would require some artificial augmenting of the nodes, edges and distri-
butions, and as one of the main reasons of using a graphical model is to use it as a tool for
communication, we prefer the explicit expressiveness of GBNs in this case.

6.3 Context Specific Independence
In the example in Section 3.2, some variables are sometimes independent of each other and
sometimes not, depending on the evidence that has been supplied. This is similar to what
is known as context specific independence [25], where previously dependent variables may
become independent given a set of evidence (i.e. a context). The DAG representing a BN
does not reveal these asymmetries, instead the conditional probability distributions must be
estimated and investigated in order to identify them. This has been viewed as a shortcoming
of BNs, and therefore extensive work has been done to represent the context specific inde-
pendencies without having to investigate the probability distribution parameters. Chain
event graphs (CEGs) were introduced as a probabilistic graphical model that represents
these asymmetries explicitly, while at the same time being able to represent the BN in case
of symmetry [26]. CEGs are defined as a function of an event tree, which represents how
a certain process may unfold, and certain symmetries in this event tree. The symmetries
are exploited to create a graph where steps in the process that are the same are collapsed.
This not only decreases the size of the event tree, but also makes explicit the asymmetric
relationships among steps in the process. CEGs have since further been developed in order
to model processes with non-finite event trees [27].

While GBNs also are capable of explicitly describing some of the asymmetries that
context specific independence entails, it is quite different from those explained by [25] and
[26]. Since GBNs use BNs to model the phases, asymmetries can still exist in these BNs
that are not made explicit in the graph. GBNs make explicit asymmetries that occur once
a process has changed phase, i.e. once a set of evidence has fulfilled the conditions of the
trigger logic of some gate. These conditions are not necessarily fulfilled by one single variable
taking one specific state, but is a joint condition on potentially several variables and the

30

threshold of the trigger logic. Therefore, it is more accurate to say that GBNs make explicit
context specific independencies that are due to the context established by a deterministic
latent variable, for which the states are determined by the strategy ∆ that the GBN encodes
(as was described in Section 2.2).

Another distinct difference between CEGs and GBNs is the fact that CEGs encode a
probability of moving from one step to another in the event tree. GBNs do not encode this
probability, i.e. it is not made explicit that with probability α the GBN in Figure 1 will
transition from the Buy phase to the Sell phase. Instead, transitions in a GBN depend on
the posterior probabilities inferred by the contained BNs over the observations made.

6.4 Other Formalisms
Taking a large BN and dividing it into smaller subnets has been researched for some time.
Notable contributions include multiply sectioned Bayesian networks [28, 29], agent encap-
sulated Bayesian networks [30], and object-oriented Bayesian networks [31]. Although these
frameworks all section the BNs into smaller parts, they still come together, unlike GBNs,
to create one large BN. Also, GBNs are sensitive to the order of the evidence supplied.
Similar evidence sensitivity can be found in research regarding structural adaptation [32]
and query based diagnostics [33]. These two approaches add or remove nodes and edges
from the graphical model to adapt to the changing data, while GBNs do not handle the
entry of new variables or dependencies into the model.

7 Conclusions and Future Work
Based upon the need to represent a process that goes back and forth between distinct phases,
we have introduced GBNs as a new probabilistic graphical model to complement the existing
set of such models. In this paper we have offered a formal definition of GBNs, as well as
an algorithm to be used to execute the GBN given a set of data. Furthermore, we have
introduced a learning algorithm to semi-automatically learn the structure of the GBN, and
shown how it can be applied in the domain of algorithmic trading.

7.1 Learning Algorithm
The semi-automatic learning algorithm proposed in Section 4 does require the availability
of a set of BNs to populate the libraries. The algorithm presented does not explicitly define
how this should be done. Depending on the context, a combination of experts and structure
learning algorithms may be helpful in designing these BNs. However, in our ongoing research
we are investigating the idea of incorporating structure learning and feature selection as part
of the overall learning algorithm for GBNs. Intuitively, this should improve upon our results
as we can explore a broader spectrum of relationships between the dynamics of the technical
analysis indicators and their predictive power of future price movements.

Although incorporating structure learning and feature selection as part of the GBN
learning algorithm may yield better results, a more pressing matter is the fact that exhaus-
tive evaluation of every possible GBN candidate from a GBN template is only feasible when
the number of BNs and gates are small. Running our experiments on a 3.2 GHz Intel Core
i5 only took six minutes per asset, allowing us to keep matters clear and not involve any
heuristics for candidate selection in the learning algorithm. However we do acknowledge the
fact that as the model grows, it will be necessary to prune the search space considerably.

31

One way of doing this, which we are currently exploring, is the use of Bayesian optimisation
[34]. Succinctly, Bayesian optimisation makes assumptions regarding the smoothness of a
score function that should be maximised, and by only testing points where the score func-
tion’s value has high uncertainty, the number of tests can be reduced significantly. In our
first experiments we are fixing the structure of the BNs, but allowing the parameterisation
of the technical indicators to be optimised by Bayesian optimisation, changing the number
of available BNs to hundreds of thousands rather than eight, while keeping similar execution
times [35] .

7.2 Application
The results show that learnt GBNs consistently reduce risk with similar or better rewards,
compared to the benchmark buy-and-hold, and do so while at the same time staying out
of the market for considerable amounts of time. During these non-invested days the equity
is at zero risk and can gain value from risk free assets. We were also able to improve the
Sharpe ratio, for some of the stocks, by introducing utility nodes as trigger nodes, thus
being able to instruct the candidates to prioritise the Sharpe ratio. As was mentioned in
Section 5.1.2, under certain assumptions the long-term mean growth rate is optimised by
optimising the Sharpe ratio, however as these assumptions may not always hold, taking into
consideration drawdown risks is still very necessary. Given this fact, and the results of our
extended experiment, it may be useful to adopt a multi-criteria scoring mechanism, such as
a weighted mean-rank, both in the trigger logic and when picking the winning candidate in
the learning algorithm.

7.3 Other Models and Formalisms
The benefit of using a GBN over a single BN was illustrated in Section 5.3.2, and evidence
was found to support the underlying hypothesis of GBNs. We also discussed how GBNs are
different from other existing frameworks, specifically how GBNs do not solve the expected
utility maximisation problem, but rather encode a strategy of how to handle a series of
evidence, where the strategy is optimised with respect to some score. We have also explained
how GBNs deterministically switch between models, rather than specifying a mixture of
models. Furthermore, we contrasted GBNs against CEGs that explicitly model conditional
independence asymmetries, something that BNs are not capable of doing, and how GBNs
do not make explicit the same types of asymmetries as CEGs . As a final note, although not
discussed previously, we have very preliminary ideas on using GBNs to give explanations to
models induced by chain graphs and vice versa [36].

Acknowledgments

The second author is funded by the Center for Industrial Information Technology (CENIIT)
and a so-called career contract at Linköping University, and by the Swedish Research Council
(ref. 2010-4808).

References
[1] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann Publishers, 1988.

32

[2] F. V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs. Springer, 2007.

[3] K. B. Korb and A. E. Nicholson, Bayesian artificial intelligence. Taylor and Francis
Group, 2011.

[4] P. Treleaven, M. Galas, and V. Lalchand, “Algorithmic trading review,” Communica-
tions of the ACM, vol. 56, no. 11, pp. 76–85, 2013.

[5] G. Nuti, M. Mirghaemi, P. Treleaven, and C. Yingsaeree, “Algorithmic trading,” Com-
puter, vol. 44, no. 11, pp. 61–69, 2011.

[6] R. K. Narang, Inside the black box. John Wiley & Sons, 2013.

[7] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91,
1952.

[8] B. Li and C. H. Hoi, “Online portfolio selection: A survey,” ACM Computing Surveys,
vol. 46, no. 3, pp. 1–36, 2014.

[9] T. M. Cover, “Universal portfolios,” Mathematical Finance, vol. 1, no. 1, pp. 1–29, 1991.

[10] D. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth, “On-line portfolio
selection using multiplicative updates,” Mathematical Finance, vol. 8, no. 4, pp. 325–
347, 1998.

[11] M. Bendtsen and J. M. Peña, “Gated Bayesian networks,” in Proceedings of the Twelfth
Scandinavian Conference on Artificial Intelligence, pp. 35–44, 2013.

[12] M. Bendtsen and J. M. Peña, “Learning gated Bayesian networks for algorithmic trad-
ing,” in Proceedings of the Seventh European Workshop, Probabilistic Graphical Models,
pp. 49–64, 2014.

[13] C. Bielza and P. Larrañaga, “Discrete Bayesian network classifiers: A survey,” ACM
Computing Surveys, vol. 47, no. 3, pp. 1–43, 2014.

[14] L. J. Tashman, “Out-of-sample tests of forecasting accuracy: an analysis and review,”
International Journal of Forecasting, vol. 16, no. 4, pp. 437–450, 2000.

[15] R. Pardo, The evaluation and optimization of trading strategies. John Wiley & Sons,
2008.

[16] E. P. Chan, Quantitative trading. John Wiley & Sons, 2009.

[17] W. F. Sharpe, “Likely gains from market timing,” Financial Analysts Journal, vol. 31,
no. 2, pp. 60–69, 1975.

[18] J. J. Murphy, Technical analysis of the financial markets. New York Institute of Finance,
1999.

[19] M. J. Pring, Technical analysis explained. McGraw-Hill, 2002.

[20] R. D. Edwards and J. Magee, Technical analysis of stock trends. Martino Publishing,
1957.

[21] “Journal of technical analysis.” www.mta.org, first published in 1978.

33

[22] “International federation of technical analysts journal.” www.ifta.org/publications, first
published in 2000.

[23] F. V. Jensen and M. Vomlelová, “Unconstrained influence diagrams,” in Proceedings of
the Eighteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 234–
241, 2002.

[24] F. V. Jensen, T. D. Nielsen, and P. P. Shenoy, “Sequential influence diagrams: a uni-
fied asymmetry framework,” International Journal of Approximate Reasoning, vol. 42,
no. 1–2, pp. 101–118, 2006.

[25] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, “Context-specific indepen-
dence in Bayesian networks,” in Proceedings of the Twelfth Annual Conference on Un-
certainty in Artificial Intelligence, pp. 115–123, 1996.

[26] J. Q. Smith and P. E. Anderson, “Conditional independence and chain event graphs,”
Artificial Intelligence, vol. 172, no. 1, pp. 42–68, 2008.

[27] L. M. Barclay, R. A. Collazo, J. Q. Smith, P. A. Thwaites, and A. E. Nicholson, “The
dynamic chain event graph,” Electronic Journal of Statistics, vol. 9, no. 2, pp. 2130–
2169, 2015.

[28] Y. Xiang and V. Lesser, “Justifying multiply sectioned Bayesian networks,” in Pro-
ceedings of the Fourth International Conference on Multi-Agent Systems, pp. 349–356,
2000.

[29] Y. Xiang, “Multiply sectioned Bayesian networks and junction forests for large
knowledge-based systems,” Computational Intelligence, vol. 9, no. 2, pp. 171–220, 1993.

[30] S. Langevin, M. Valtorta, and M. Bloemeke, “Agent-encapsulated Bayesian networks
and the rumor problem,” in Proceedings of the Nineth International Conference on
Autonomous Agents and Multiagent Systems, pp. 1553–1554, 2010.

[31] D. Koller and A. Pfeffer, “Object-oriented Bayesian networks,” in Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 302–313,
1997.

[32] S. H. Nielsen and T. D. Nielsen, “Adapting Bayes network structures to non-stationary
domains,” International Journal of Approximate Reasoning, vol. 49, no. 2, pp. 379–397,
2008.

[33] J. M. Agosta, T. R. Gardos, and M. J. Druzdzel, “Query-based diagnostics,” in Pro-
ceedings of the Fourth European Workshop, Probabilistic Graphical Models, pp. 1–8,
2008.

[34] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning,” Tech. Rep. UBC TR-2009-023 and arXiv:1012.2599, 2009.

[35] M. Bendtsen, “Bayesian optimisation of gated Bayesian networks for algorithmic trad-
ing,” Bayesian Modeling Application Workshop (BMAW), 2015, to appear.

34

[36] J. M. Peña, “Every LWF and AMP chain graph originates from a set of causal mod-
els,” in Proceedings of the 13th European Conference on Symbolic and Quantitative
Approaches to Reasoning under Uncertainty (ECSQARU 2015) – Lecture Notes in Ar-
tificial Intelligence, 2015, to appear.

35

