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Abstract

Bayesian networks (BNs) are advantageous when representing single independence models, how-
ever they do not allow us to model changes among the relationships of the random variables over
time. Due to such regime changes, it may be necessary to use different BNs at different times
in order to have an appropriate model over the random variables. In this paper we propose two
extensions to the traditional hidden Markov model, allowing us to represent both the different
regimes using different BNs, and potential driving forces behind the regime changes, by modelling
potential dependence between state transitions and some observable variables. We show how ex-
pectation maximisation can be used to learn the parameters of the proposed model, and run both
synthetic and real-world experiments to show the model’s potential.
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1 INTRODUCTION

Introduced by Judea Pearl [1], Bayesian networks
(BNs) consist of two components: a qualitative
representation of independencies amongst random
variables through a directed acyclic graph (DAG),
and a quantification of certain marginal and condi-
tional probability distributions, so as to define a full
joint probability distribution over the random vari-
ables. A feature of BNs, known as the local Markov
property, implies that a variable is independent of
all other non-descendant variables given its parent
variables, where the relationships parent and de-
scendant are defined with respect to the DAG of
the BN. Let X be a set of random variables in a
BN, and let pa(Xi) represent the set of variables
that consists of the parents of variable Xi ∈ X,
then the local Markov property allows us to fac-
torise the joint probability distribution according
to Equation 1.

p(X) =
∏
Xi∈X

p(Xi|pa(Xi)) (1)

From Equation 1 it is evident that the indepen-
dencies represented by the DAG allow for a repre-
sentation of the full joint distribution via smaller
marginal and conditional probability distributions,
thus making it easier to elicit the necessary parame-
ters, and allowing for efficient computation of pos-
terior probabilities. For a full treatment of BNs,
please see [2, 3, 1].

While a BN has advantages when representing a
single independence model, it does not allow us to
model changes of the independencies amongst the
modelled variables over time. One reason why we
would take such changes into consideration is that
we may wish to use different models for different
sequential tasks, such as buying and selling shares
in a stock market. This was the main reason for in-
troducing gated Bayesian networks (GBNs) [4, 5],
allowing the investor to create different BNs for the
different phases of trading.1 Another reason may
be that the system that the modelled variables rep-
resent undergoes regime changes, i.e. there may be

1The GBN model also allows completely different ran-
dom variables within each BN, something that we shall not
explore further in this paper.



states of the world among which the independencies
and distributions over the variables are different [6].

From the view of graphical models, the archetype
approach for modelling regimes is to use a hid-
den Markov model (HMM), where the regimes are
modelled using hidden random variables, and we
observe the random variables that we are mod-
elling under different states of these hidden vari-
ables. When using standard HMMs, it is common
to assume that the observable variables are inde-
pendent of each other given the hidden regime vari-
able, and not to model any potential dependencies
among the observed variables directly.

In this paper we are proposing an extension of
the HMM, which we shall call GBN-HMM, where
we bring in two of the fundamental ideas behind
the GBN model. First, we shall allow for differ-
ent BNs over the observable variables under the
different states of the hidden variables, to have a
regime-dependent model over the observable vari-
ables. Second, we shall model a potential depen-
dence between one of the observable variables and
the next hidden state. The second extension stems
from one of the building blocks of GBNs, where
the change of state is dependent on the posterior
probability of a specific variable. The main differ-
ence between the GBN-HMM and the GBN is that
GBNs identify one distinct BN as the model that
represents the current regime, whereas the GBN-
HMM defines a mixture of independence models,
thus being a generative model of the data.

The rest of the paper is disposed as follows. In
Section 2 we shall consider other existing extensions
of the HMM, found in the literature, that are re-
lated to the extension that we shall propose. In Sec-
tion 3 we will introduce and define the model that
we are proposing, describing some of its underlying
properties. Since there are hidden variables in the
proposed model, parameter estimation is not im-
mediately straightforward, and we shall therefore
explore how we can use expectation maximisation
(EM) in Section 4 to estimate the parameters of
our model. In Section 5 we wish to demonstrate
the appropriateness of the GBN-HMM using syn-
thetic data, and compare it with the HMM as well
as two other HMM variants. We then turn our
attention to using the GBN-HMM in a real-world
situation, namely trading shares in a stock market,
in Section 6. Finally, we shall end this paper with
our conclusions and a summary in Section 7.

2 RELATED WORK

HMMs have been applied and extended extensively
throughout the literature, and we shall here not
attempt an overview of all that has been explored.
The interested reader may instead wish to consider
the summary provided by Murphy [7]. Instead, we
shall pay brief attention to a few existing variations
that have a connection with the ideas that we are
putting forward in this paper.

In [8] a HMM is described were some control sig-
nal is given as input to the hidden state and the
observable variables, and offer an EM algorithm
to update the parameters of the observational and
transition distributions conditional on a sequence
of input. As a variation on this theme, [9] proposes
that transitions between hidden states in a HMM
may not only depend on the immediately previous
state, but also on the immediately proceeding ob-
servation. This potential dependence between the
observed variables at time t and the hidden state
at time t+ 1 is also present in the GBN-HMM that
we are proposing. We shall use the model proposed
in [9] as a comparison model in our experiments.

The auto-regressive HMM (AR-HMM), also
know as the regime switching Markov model [10],
incorporates potential dependence directly between
an observable variable at time t and its counterpart
at t+ 1. While the AR-HMM may be extended to
higher orders, i.e. allowing for even longer depen-
dence than only between t and t + 1, the depen-
dence is between counterparts in each time slice.
However, dynamic Bayesian multinets (DBMs) pro-
posed in [11] allow not only for dependence across
time slices among observational counterparts, but
arbitrarily among the observed variables. Further-
more, DBMs allow these potential dependencies to
change depending on the hidden states, thus allow-
ing for a more complex dependence structure across
time. The model that we are proposing does not
include potential direct dependence among observ-
able variables across time, but rather within each
time slice.

In the next section we shall formally introduce
the GBN-HMM that we are proposing, and then
subsequently discuss parameter estimation and ex-
periments comparing the GBN-HMM with other
HMM variants.



3 MODEL DEFINITION

The GBN-HMM that we are proposing consists
of a set of discrete random variables H1:T =
{H1, H2, ...,HT } that represent the hidden state
at each time t ∈ [1, T ]. We call these the hid-
den state variables, and they each have the same
number of possible states N . We use ht to de-
note a specific instantiation of the variable Ht, and
use hj:k to denote a sequence of states from time
j to k. For each t, we will also model a set of dis-
crete random variables Ot = {O1

t , O
2
t , ..., O

M
t } for

which we can observe their values. We will refer to
these variables as the observable variables. We let
ot = {o1t , o2t , ..., oMt } be a particular instantiation
of the observable variables at time t, and use Oj:k

and oj:k when considering all observable random
variables and their respective values from time j to
k.

Since we wish to model the observable variables
depending on the current state, we will have one
BN for each state of the hidden state variable Ht,
that is, there are N BNs over the variables Ot, and
the value of Ht selects one of these. One of the
variables in Ot is of particular interest, as we will
model a potential dependence between this variable
and the state of Ht+1. We will refer to this variable
as the Z variable when we need to distinguish it
from the other observable variables. Notation wise
we let Zt represent the Z variable at time t, and zt
an instantiation of the Z variable at time t.

Note that, although not made explicit, we have
made use of certain independence assumptions
among the variables H1:T and O1:T . First, we as-
sume that Ot are conditionally independent of all
previous random variables O1:t−1 and H1:t−1, given
the current hidden state variable Ht (thus knowing
the current state renders the past irrelevant). Sec-
ond, the current hidden state variable Ht is con-
ditionally independent of O1:t−1 \Zt−1 and H1:t−2
given Ht−1 and Zt−1 (thus knowing the value of
the previous state and Z variable renders the rest
of the past irrelevant). We can represent these as-
sumptions using a graph, an example of which is
depicted in Figure 1. In the figure we can see that
it is O3

t that is the Z variable, as we are modelling a
potential dependence between it and the next hid-
den state.

The final assumption that we will make is that
of stationarity of the model. That is, the distribu-

tions and independencies that govern the model are
independent of t. This implies that the probabil-
ity of moving from one hidden state to another is
the same regardless of t, and that the BNs selected
by Hi are the same as for Hj for all i, j ∈ [1, T ].
Furthermore, the Z variable is always the same ob-
servable variable, regardless of t or the state of Ht.

3.1 Factorisation

Using the independence assumptions implied by the
model, and the chain rule of probability, we can
factorise the joint distribution over H1:T and O1:T

into marginal and conditional distributions that to-
gether require fewer parameters than the full joint.
To illustrate this factorisation in a succinct manner,
we shall factorise the GBN-HMM given in Figure 1.
We assume that the hidden state variables have two
states, i.e. N = 2, however expanding this exam-
ple to any number of observable variables, hidden
states and time steps is straightforward. We be-
gin the example by observing that we can isolate
the variables O1

3, O2
3 and O3

3 by conditioning on H3

alone, which follows from Equation 2.
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Since the hidden variables in a GBN-HMM se-
lect among several BNs over the observable vari-
ables, the two states of H3 select between two joint
distribution specifications over O1

3, O2
3 and O3

3. If
we let paj(O

1
3) represent the parents of the variable

O1
3 with respect to the DAG of the BN selected by

H3 = j, then using the local Markov property of
BNs we can continue the factorisation according to
Equation 3.
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Figure 1: Graph representation of the GBN-HMM with three time steps.
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In Equation 3 we let δ(H3 = j) represent the
Kronecker delta, i.e. when H3 takes the value j it
equates to unity, otherwise zero.

The next step of the factorisation is to break
out H3 from the remaining variables, which follows
from Equation 4. It should then be clear that we
can continue the same operations for the remain-
der of the variables, ending the factorisation with
a marginal distribution over H1.

2∏
j=1

3∏
i=1

p(Oi3|paj(Oi3))δ(H3=j)×

p(H3|��O
1
1 ,��O

2
1 ,��O

3
1 ,��O

1
2 ,��O

2
2 , O

3
2,��H1 , H2)×

p(O1
1, O

2
1, O

3
1, O

1
2, O

2
2, O

3
2, H1, H2) =

2∏
j=1

3∏
i=1

p(Oi3|paj(Oi3))δ(H3=j)p(H3|H2, O
3
2)×

p(O1
1, O

2
1, O

3
1, O

1
2, O

2
2, O

3
2, H1, H2)

(4)

The GBN-HMM factorisation for T time steps,
with N hidden states and M observable variables,
is given in Equation 5.

p(H1)

T∏
t=2

p(Ht|Ht−1, Zt−1)×

T∏
t=1

N∏
j=1

M∏
i=1

p(Oit|paj(Oit))δ(Ht=j)

(5)

3.2 Likelihood

Considering a specific sequence of observations o1:T

and hidden states h1:T , we can use the factorisation
to compute the likelihood of this data under a set of
parameters Θ. We let πi represent the probability
p(H1 = i|Θ), aijk the probability p(Ht = j|Ht−1 =
i, Zt−1 = k,Θ), and bij(ot) represent the probability

p(Oit = oit|paj(Oit) = o
paj(O

i
t)

t ,Θ)δ(Ht=j), where we

let o
paj(O

i
t)

t represent the values that the parent set
takes in ot. Then the likelihood p(o1:T , h1:T |Θ) can
be expressed by Equation 6.

p(o1:T , h1:T |Θ) =

πh1

T∏
t=2

aht−1,ht,zt−1

T∏
t=1

M∏
i=1

biht
(ot)

(6)

If we could observe both o1:T and h1:T then esti-
mating the parameters Θ that maximised the like-
lihood would be straightforward. However, since
H1:T are hidden variables we cannot observe their
values, and must therefore apply a more involved
technique for estimating Θ.

4 PARAMETER ESTIMA-
TION

The canonical way of solving the parameter esti-
mation problem in regular HMMs (and in their ex-



tensions) is to employ EM. We shall also adopt this
approach, and in this section describe the computa-
tions necessary for iteratively updating the param-
eters Θ for the GBN-HMM that we are currently
proposing.

As before, let o1:T represent a sequence of
observations over the variables O1:T and let
h1:T = {h1, h2, ..., hT } represent a sequence of
states. Let H represent the set of all state se-
quences h1:T . The current parameters for our
model are denoted Θ′, and we seek parame-
ters Θ such that p(o1:T |Θ) ≥ p(o1:T |Θ′). It
can be shown [12] that this task can be con-
verted into a maximisation problem of Q(Θ,Θ′) =∑
h1:T∈H p(o1:T , h1:T |Θ′) log p(o1:T , h1:T |Θ).

Substituting p(o1:T , h1:T |Θ) in the Q function
with the likelihood expression in Equation 6, gives
us the expanded Q function in Equation 7. From
this expansion we can conclude that the individual
terms do not interact, thus they can be maximised
separately.

Q(Θ,Θ′) =∑
h1:T∈H

p(o1:T , h1:T |Θ′) log p(o1:T , h1:T |Θ) =

∑
h1:T∈H

p(o1:T , h1:T |Θ′) log πh1
+

∑
h1:T∈H

p(o1:T , h1:T |Θ′)
T∑
t=2

log aht−1,ht,zt−1
+

∑
h1:T∈H

p(o1:T , h1:T |Θ′)
T∑
t=1

M∑
i=1

log biht
(ot)

(7)

The derivation of which values for the individual
terms that maximise the Q function is relatively
lengthy. We therefore defer all details to the sup-
plementary material2, and here only account for the
results of the derivation and show how to compute
the necessary quantities.

4.1 Estimating new parameters

Computing new parameters πi for the initial hidden
state distribution that maximise the Q function is
done according to Equation 8. Here we are taking
the conditional probability of each possible state N

2Please find the supplementary material here: https://

www.ida.liu.se/~marbe92/pdf/gbn-hmm.supp.pdf

given the observed data and the current parameters
Θ′.

πi =
p(o1:T , h1 = i|Θ′)

p(o1:T |Θ′)
(8)

The new parameters aijk can be computed using
Equation 9, where we use δ(zt−1 = k) to represent
the Kronecker delta which is unity when zt−1 takes
on value k, and zero otherwise. Essentially, we are
taking into consideration the expected number of
times that we have observed a transition from state
i to j when z took value k, divided by the expected
number of times we have seen transitions away from
i when z took value k.

aijk =∑T
t=2 p(o1:T , ht−1 = i, ht = j|Θ′)δ(zt−1 = k)∑T

t=2 p(o1:T , ht−1 = i|Θ′)δ(zt−1 = k)

(9)

The final set of parameters that we shall com-
pute to maximise Q are the parameters of the dis-
tributions over the observed variables. We let bijkl
denote the parameter of the distribution for ob-
servable variable i when it takes on value l, given
the hidden state j and its k:th parent configura-
tion. An observation ot will identify one such pa-
rameter for each observable variable under a spe-
cific hidden state. We let δ(ot, b

i
jkl) represent the

Kronecker delta such that it is unity when the pa-
rameter identified by ot given ht = j is bijkl, and

zero otherwise, and likewise let δ(ot, b
i
jk) be unity

when the k:th parent set is identified given hidden
state j (regardless of the value of l). We can then
compute each bijkl such that Q is maximised using
Equation 10. This can again be seen as dividing
the number of times that we expect to encounter
a certain event (j, k, l) with the number of times
we expect to encounter a superset of these events
(j, k).

bijkl =

∑T
t=1 p(o1:T , ht = j|Θ′)δ(ot, bijkl)∑T
t=1 p(o1:T , ht = j|Θ′)δ(ot, bijk)

(10)

4.2 Computing necessary quantities

While Equation 8, 9 and 10 describe which quanti-
ties are needed to compute the values necessary to
maximise Q, the calculation of these quantities are
not immediately available. In this section we turn

https://www.ida.liu.se/~marbe92/pdf/gbn-hmm.supp.pdf
https://www.ida.liu.se/~marbe92/pdf/gbn-hmm.supp.pdf


our attention to the computation of these necessary
quantities. As before, we defer some of the details
to the supplementary material, and here offer the
results from the derivation.

The two quantities that we require, which we
shall call γ and ξ, are presented and expanded in
Equation 11 and 12. Apart from the quantities α
and β, the expansions consists of known quantities
(readily available from the model under parameters
Θ′).

γj(t) = p(o1:T , ht = j|Θ′) =

p(ot+1:T |ot, ht = j,Θ′)p(o1:t, ht = j|Θ′) =

βj(t)αj(t)

(11)

ξij(t) = p(o1:T , ht−1 = i, ht = j|Θ′) =

p(ot+1:T |ot, ht = j,Θ′)p(ot|ht = j,Θ′)×
p(ht = j|ot−1, ht−1 = i,Θ′)×
p(o1:t−1, ht−1 = i|Θ′) =

βj(t)

M∏
k=1

bkj (ot)aijzt−1αi(t− 1)

(12)

What is left to do is to define recursively α and β,
and then all required quantities are either already
available or computable. We finish this section by
defining these two quantities in Equation 13 and
14.

αj(t) = p(o1:t, ht = j|Θ′) =

M∏
k=1

bkj (ot)

N∑
i=1

aijzt−1
αi(t− 1)

(13)

βj(t) = p(ot+1:T |ot, ht = j|Θ′) =

N∑
i=1

βi(t+ 1)

M∏
k=1

bki (ot+1)ajizt
(14)

Note that the equations given here are slightly
different from those used when estimating the pa-
rameters of a traditional HMM. In Equation 9 we
are only considering cases under different values of
the Z variable, and in Equation 10 we are con-
sidering different parent configurations rather than
just the hidden state. Also, the definition of β in
Equation 14 includes conditioning on ot, since the
Z variable at time t may influence the hidden state
at t+ 1.

The only part that is left to take into considera-
tion is how we find the parent sets of each observ-
able variable within each hidden state, i.e. how do
we learn the structure of the BNs. We shall take
this into consideration in the next section, and then
move on to synthetic and real-world experiments.

4.3 Structure learning

Taking the approach of [13], we wish to identify the
model over the observable variables that, together
with the parameters, maximises the last term of
Equation 7. While advances in exact learning of
graphical model structures have been made [14, 15],
we shall here rely on a heuristic approach. There-
fore, we use a greedy thick thinning algorithm [16]
to identify the structure over the observed vari-
ables, such that the term over the observable vari-
ables is maximised in Equation 7. Thus within each
iteration of the EM algorithm, we also heuristically
identify the best structure over the observed vari-
ables within each regime.

5 EXPERIMENTS USING
SYNTHETIC DATA

We shall in this section account for our experiments
using synthetic data to compare the GBN-HMM
with three other models. The comparison models
are: the standard HMM with observation variables
that are independent of each other given the hidden
state, the SDO-HMM proposed in [9], where ob-
servations are again independent given the hidden
state, but where we have (using our term) a Z vari-
able, and finally a version of our GBN-HMM but
without the Z variable, which we shall call MULTI-
HMM (due to their relationship to Bayesian multi-
nets).

5.1 Methodology and data genera-
tion

A single sample was generated as follows (with in-
put to the procedure the predictive power of the Z
variable):

Four BNs were created by randomly generating
four DAG structures3 over four variables, and then

3We used the R package bnlearn which uses the method



uniformly at random generating parameters for the
resulting conditional distributions.4 The number of
states for each variable was determined uniformly
between two and five, except for the Z variable
which was given four states.

The first data point in the sample was generated
from the first BN. The value of the Z variable then
determined which BN to take the second data point
from, with a certain level of predictiveness (the sup-
plied predictive power). For instance, if the Z vari-
able took value two, and the predictive power was
0.6, then there was a 60% chance that the next data
point would come from the second BN, and a 40%
that the next data point would come from the same
BN as the previous data point. We repeated this
until there were 1000 data points in the sample.

Following this procedure we generated 50 sam-
ples for each of the predictive powers 0.6, 0.7, 0.8
and 0.9.

For the synthetic experiments we were interested
in how well the models fit held out test data. There-
fore, for each sample, we employed a 5-fold cross-
validation procedure using two thirds of the data
to determine the number of hidden states, estimate
the parameters of the models, and to learn the BN
structures for GBN-HMM and MULTI-HMM. For
SDO-HMM and GBN-HMM the models were told
which Z variable to use. The remaining third was
treated as held out test data, the likelihood of which
will be reported.

5.2 Results and discussion

In Table 1 the results from the synthetic experi-
ments are reported. Each row represents a certain
predictive power. The values in the table are the
means of the log-likelihoods of the held out test
data, over the 50 samples, given each model.

Already when the Z variable has a predictive
power of 0.6, the GBN-HMM had a considerably
better fit to the data than both HMM and MULTI-
HMM (note that this is log-scale). However, the
SDO-HMM was also able to utilise this predictive
power to get a similar fit as the GBN-HMM. As
the predictive power of the Z variable increased
to 0.7, the difference between the GBN-HMMs’ fit
of the data and the other models increased, sug-
gesting that taking this predictiveness into account,

proposed in [17] to generate DAGs uniformly at random.
4Using the method described in [18].

Table 1: Means of log-likelihoods of held out data,
using different predictive powers of the Z variable.

HMM SDO-HMM MULTI-HMM GBN-HMM

Predictive power = 0.6

-1546.438 -1537.453 -1558.732 -1536.529

Predictive power = 0.7

-1538.541 -1526.940 -1550.820 -1518.590

Predictive power = 0.8

-1535.269 -1509.830 -1546.112 -1506.726

Predictive power = 0.9

-1513.058 -1476.529 -1526.843 -1475.436

and allowing for multiple BNs, can improve the
appropriateness. When we look at the outcomes
when the predictive power was increased to 0.8 and
0.9, the two models that do not utilise a Z vari-
able (HMM and MULTI-HMM) drift further from
the GBN-HMM, while the HMM-SDO reversed and
came closer again. Although the GBN-HMM out-
performs the other models throughout all experi-
ments, it is interesting to see that the SDO-HMM
can outperform HMM and MULTI-HMM by utilis-
ing the Z variables predictive power.

While the experiments that we have reported in
this section work well as a confirmation of the pro-
posed model’s appropriateness, we shall now turn
our attention to experiments where we wish to em-
ploy the model for a specific task. In Section 6
we shall explore the performance of the four mod-
els when they are used for systematic stock market
trading.

6 TRADING THE STOCK
MARKET

In this section we shall employ the models under
comparison for trading stock shares, with the goal
of balancing the risk and reward of such trading.

We shall first offer a brief introduction to some
of the ideas and concepts surrounding systematic
stock trading, and then employ the GBN-HMM in
such trading, using the same models as in Section 5
as comparison (HMM, SDO-HMM and MULTI-
HMM).



6.1 Systematic stock trading con-
cepts

The general idea of systematic stock trading is to
use some collected data to create rules that iden-
tify opportune times to own certain stock shares,
and times when it is less beneficial to own them.
Usually this is referred to as generating buy and
sell signals. For the purpose of the experiments
that we shall undertake, this type of all-or-nothing
approach will suffice. However, in a more mature
systematic trading system one may very well wish
to trade several different shares at different quan-
tities, utilising diversification in one’s favour.

If signals from a system are executed, then this
will generate a certain risk and reward in terms of
the initial investment. For instance, if we execute
a buy signal then any change in the price of the
bought shares will also give us a proportional (pos-
itive or negative) return on our investment. Nat-
urally, one seeks a positive return on one’s invest-
ment, however simply using the raw return as the
only goal of investment is not necessarily the best
approach. Instead it is common to take into consid-
eration the variation of the returns an investment
yields. Therefore we shall seek a high Sharpe ratio
(named after Nobel Laureate William F. Sharpe),
where we take the mean of our returns, less the risk
free rate, divided by the standard deviation of our
returns. Here, the risk free rate is the return that
we can expect from interest, or some other ”safe”
asset such as government bonds. As our compari-
son will be among models, rather than investment
strategies, we shall remove the risk free rate from
the Sharpe ratio and simply consider the mean re-
turn divided by the standard deviation of the re-
turns.

The type of data that is used in stock trading sys-
tems vary greatly, however a common approach is
to take the historical price and apply so called tech-
nical analysis indicators to gauge whether prices
are trending, shares are overpriced, etc. For our
purposes we shall consider two such indicators: the
relative difference between two moving averages,
often referred to as MACD [19], and the relative
strength index (RSI) [20], which compares recent
price increases with recent price decreases. The
MACD is computed by first calculating two mov-
ing averages with different length windows, one us-
ing the most recent five days of prices, and one

using the most recent ten days of prices. The dif-
ference between the two then becomes a gauge for
the trend in the market, if it is positive it means
that the five day moving average is above the ten
day moving average, indicating an upswing in price
(and vice versa). The RSI computes the average of
all price increases the past 14 days and divides by
the average of all price decreases the past 14 days,
a high RSI indicates that prices have been increas-
ing strongly and may therefore be overpriced (and
vice versa). For sake of brevity we shall leave out
the exact calculations of these indicators, and refer
the interest reader to the referred literature.

6.2 Methodology

The MACD and RSI gave us two observable vari-
ables in our models, and we additionally considered
the first order backward difference of these variables
(i.e. we approximated the indicators’ first order
derivatives), giving us a total of four observed vari-
ables. The MACD was discretised into two states,
positive and negative, and used as the Z variable.
The rest of the indicators were discretised into four
states, using their respective mean and one stan-
dard deviation below and above their mean as cut
points.

We used daily data between 2003-01-01 and
2012-12-28 for seven actively traded stocks: Ap-
ple (AAPL), Amazon (AMZN), IBM (IBM), Mi-
crosoft (MSFT), Red Hat (RHT), Nvidia (NVDA)
and General Electric (GE). To create multiple sim-
ulations from this data we divided the data into
ten blocks (one year per block), and created seven
simulations by first using block one, two and three
as training data and block four as testing data, and
then block two, three and four as training data and
block five as testing data, and so on.

As in the experiments in Section 5, we employed
a 5-fold cross-validation procedure using the train-
ing data to decide upon the number of hidden
states, the parameters of the models, and the BN
structures within the GBN-HMMs and MULTI-
HMMs. For SDO-HMM and GBN-HMM the mod-
els were told to use the MACD variable as the Z
variable.

While ones first intuition may be to attempt to
label the hidden states of our models as ”buy”,
”sell”, etc. and thereby generate signals that can
be executed, this is not the approach we will take



in this application. We do not know how many hid-
den states will be identified in each simulation, thus
it would require some automatic labelling based on
the number of states and historical advantage of
different types of labelling. Instead, we shall build
our rules as follows:

• On day t, when we know the values of O1:t, we
shall make a prediction of the MACD variable
at time t+ 1.

• If p(MACDt+1 = positive | O1:t) > θ, then
generate a buy signal.

• If p(MACDt+1 = negative | O1:t) > θ, then
generate a sell signal.

We are thus generating buy and sell signals when
enough of the probability mass indicates that the
MACD is positive/negative. The particular θ used
was determined for each model by generating trade
signals using the training data. For each simula-
tion we generated signals for each block reserved
for training (three blocks per simulation) and cal-
culated the Sharpe ratio per block using different
θ (0.50, 0.55, ..., 0.90, 0.95). The θ used on the
test data was then the θ with the highest average
Sharpe ratio over the training blocks.

6.3 Results and discussion

Signals were generated for each held out test block,
and the annual return and standard deviation was
calculated for each block and model, giving rise to
an annual Sharpe ratio for each model and traded
stock. The annual Sharpe ratios are given in Ta-
ble 2.

From the table we can see that the use of mul-
tiple BNs (i.e. MULTI-HMM and GBN-HMM)
yields a higher annual Sharpe ratio for five of the
seven stocks, losing out to SDO-HMM for RHT and
HMM for IBM. In four out of the five cases where
using multiple BNs was better, the GBN-HMM
outperformed the MULTI-HMM. Thus in general,
allowing for multiple BNs over the observable vari-
ables does increase the performance of the trading
systems. Similarly, when considering the models
that include a Z variable against those which did
not, we see that the Z variable models won five
against two. When comparing the use of both mul-
tiple BNs and a Z variable, i.e. the GBN-HMM,
the outcome is four against three in favour of the

Table 2: Annual Sharpe ratio comparison.

HMM SDO-HMM MULTI-HMM GBN-HMM

Apple (AAPL)

0.844 0.708 0.849 0.718

Amazon (AMZN)

0.466 0.580 0.449 0.592

IBM (IBM)

0.713 0.521 0.699 0.616

Microsoft (MSFT)

0.091 -0.189 -0.307 0.219

Red Hat (RHT)

-0.198 0.111 -0.780 -0.085

Nvidia (NVDA)

0.113 0.211 0.262 0.308

General Electric (GE)

0.0621 0.362 -0.378 0.419

GBN-HMM. So even when all the other models are
counted as one, the GBN-HMM wins. It should
be noted that the models are all generative, thus
they have been learnt with the goal of explaining
the data generating process, and not to the specific
task of stock trading. The case of SDO-HMM out-
performing GBN-HMM on RHT is evidence of this
difference between goals, as the GBN-HMM should
always explain the data better, or the same, as the
SDO-HMM, as the former is capable of mimicking
the same structure as the latter.

It seems that the different models are advanta-
geous under different circumstance, although the
GBN-HMM seems to have an advantage in gen-
eral. However, since GBN-HMMs embrace the
other three models, we could take the structure
learning further than only for the individual BNs,
and learn which one of the four models considered
is the most appropriate for the current task. We
however leave such exploration to future work.

7 CONCLUSIONS & SUM-
MARY

Many real-world systems undergo changes over
time, perhaps due to human intervention or natural



causes, and we do not expect probabilistic relation-
ships among the random variables that we observe
to stay static throughout these changes. We there-
fore find the use of multiple BNs for the different
resulting regimes intriguing. In this paper we have
proposed a model, which we call GBN-HMM, that
incorporates these regime changes by using differ-
ent BNs for the different regimes. Furthermore, the
GBN-HMM allows us to model potential driving
forces behind the regime changes by utilising some
observational variables. We have shown the ben-
efits of using the GBN-HMM in comparison with
three related models, both by comparing fitness to
data using synthetic data, and in a real-world sys-
tematic trading task.
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