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Abstract. This paper introduces a new probabilistic graphical model called gated
Bayesian network (GBN). This model evolved from the need to represent real world
processes that include several distinct phases. In essence a GBN is a model that
combines several Bayesian networks (BN) in such a manner that they may be active
or inactive during queries to the model. We use objects called gates to combine
BNs, and to activate and deactivate them when predefined logical statements are
satisfied. These statements are based on combinations of posterior probabilities of
the variables in the BNs. Although GBN is a new formalism there are features
of GBNs that are similar to other formalisms and research, including influence
diagrams, context-specific independence and structural adaptation.
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Introduction

Bayesian networks (BNs) have been successfully used to reason under uncertainty within
many domains. They allow for a qualitative model using a directed acyclic graph (DAG)
that can visualise the independencies amongst variables in a joint probability distribu-
tion. This qualitative model can then be quantified by specifying certain marginal and
conditional probability distributions so that queries can be made to the network regarding
posterior probabilities. See [1] and [2] for more details.

Despite their popularity and advantages, there are situations where a BN model is
not enough. For instance, when trying to model the process of buying and selling stock
shares, we wanted to model the investors continuous flow between looking for potential
entry and exit points. The investor can be seen as being in two distinct phases: either
looking for an opportunity to buy into the market, or an opportunity to sell and exit the
market. These two phases can be very different and the variables included in the BNs
modelling them are not necessarily the same or even dependent on each other. The need
to switch between two different BNs was the foundation for the probabilistic graphical
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model presented herein. In Figure 1 we present a simple gated Bayesian network (GBN)
that uses two different BNs (BN1 and BN2).

During the development of GBNs other potential uses were found. For instance, the
model allows for multiple independent BNs, possibly having different time granularities,
to influence the decision to switch phase together.

We will first present a formal definition of the GBN, such that the reader is able to
follow along four examples that demonstrate how GBNs can be used to model general
real world situations. Once we have exemplified the use of GBNs we will present an
algorithm that can be used in conjunction with GBNs to handle observed evidence. We
will also discuss how GBNs fit in with other formalisms and research development.

1. Formal definition

A GBN is a probabilistic graphical model that combines multiple BNs using objects
called gates. These gates allow for activation and deactivation of the different BNs in
the model.

Definition 1 (GBN) A GBN can be seen as a set of gates (G(GBN)), a set of BNs
(BN(GBN)) and a set of edges (E(GBN)) that connect the gates with the BNs. Let
ABN(GBN) be the set of active BNs and IBN(GBN) the set of inactive BNs. ABN(GBN)
and E(GBN) cannot be empty. A BN cannot belong to both ABN(GBN) and IBN(GBN)
at the same time. Each BN can be seen as a set of nodes and a set of edges.

GBN = {G(GBN),BN(GBN),E(GBN)}
ABN(GBN),E(GBN) 6= /0
i f BNi ∈ ABN(GBN) ⇒ BNi /∈ IBN(GBN) , BNi ∈ BN(GBN)

V (BNi) = {all nodes in BNi} , BNi ∈ BN(GBN)

E(BNi) = {all edges in BNi} , BNi ∈ BN(GBN)

Definition 2 (Connections) The edges E(GBN) are always directed and connect either
a node in V (BNi) with a gate in G(GBN) or an entire BN in BN(GBN) with a gate in
G(GBN). An edge between a node and a gate is always directed away from the node
towards the gate. An edge that connects an entire BN and a gate can be directed either
way.

Definition 3 (Parent/child) When a node is connected to a gate we consider the BN to
which the node belongs to be a parent of the gate. When an entire BN is connected to a
gate the parent/child relationship is defined by the direction of the edge.

Definition 4 (Trigger node) A node that is connected with a gate using an edge is called
a trigger node. All nodes that are connected to a gate make up the gate’s trigger nodes.

Definition 5 (Trigger logic) Each gate has to define its own trigger logic. The trigger
logic has to be a logical statement about the gate’s trigger nodes’ posterior probability
of taking a specific value given some evidence. If a trigger node belongs to an inactive
BN, then any logical evaluation of the trigger node’s posterior probability will default to
false.

T L(Gi) = trigger logic o f Gi , Gi ∈ G(GBN)



Definition 6 (Triggering, activation and deactivation) If evidence is supplied to a
GBN that leads to the trigger logic for some gate being satisfied, then the gate is said to
trigger. When a gate triggers it activates all its child BNs and deactivates all its parent
BNs. If several gates trigger due to the same set of evidence then the union of all child
BNs are activated and the union of all parent BNs minus the union of all child BNs are
deactivated.

UCBN = Union o f all child BNs to triggered gates
UPBN = Union o f all parent BNs to triggered gates
BNs to activate = UCBN
BNs to deactivate = UPBN \UCBN

Definition 7 (Entire BN as parent) According to Definition 3 a BN can be a parent to
a gate without supplying any trigger nodes to the gate. This tells the model that the BN
would like to be deactivated in case the gate triggers, but does not want to participate in
the trigger logic.

Definition 8 (Memory and evidence handling) Handling available evidence consists
in iterating through the following step until no change occurs: First, update the variable
instantiations of BNs that are active, then evaluate the trigger logic of all gates, which
may activate some BNs according to Definition 6. Once the previous loop has completed,
BNs are deactivated according to Definition 6. The active/inactive state of BNs, as well
as variable instantiations, are remembered between evidence sets. This definition is for-
malised later in an algorithm (Algorithm 1).

Remark 1 (Supplying evidence) Due to the nature of GBNs, users may not be aware of
which BNs are active and which are not. Since evidence can be discarded from some sets
it is important that all available evidence is given to the model each time new evidence is
made available, even for variables for which the evidence might not have changed since
the last set.

2. Modelling capabilities

We will here present four examples that aim to highlight the modelling capabilities of
GBNs.

2.1. Sequence of phases

Imagine that a potential investor is tempted to buy stock shares. We can look at the
potential investor as being in one of two distinct phases: either looking for an opportunity
to enter the market, or looking for an opportunity to exit the market.

The investor has found a set of rules for when to enter the market (A, B). This set of
rules can be defined based on historic data, economical reports, etc. They have already
been modelled in a BN (BN1). BN1 also contains a variable (S) that gives the probability
of a successful investment, conditioned on the variables A and B.

There are also a set of rules (E, F) that are useful when considering selling the stock.
E and F influences the variable W, which models the probability that the potential of an
investment is peaking and that it is time to exit the market. The investor wants to model



Table 1. Trigger logic for gates G1 and G2

TL(G1) : p(W = 1 | e ) > 0.7
TL(G2) : p(S = 1 | e ) > 0.9
e is some evidence that has been supplied

Table 2. Evidence sets sent to GBN

Set 1 : A = 1, B = 0
Set 2 : A = 1, B = 1, E = 1
Set 3 : A = 1, B = 0, E = 0, F = 1
Set 4 : A = 1, B = 0, E = 1, F = 1

the variables E, F and W separately from A, B and S so that they do not influence each
other, as such they have been modelled in their own BN (BN2).

To be able to model the behaviour of the investor buying and selling, a GBN is
created using BN1 and BN2 as well as two gates (Figure 1). In the initial state of the
GBN, we can see that BN1 has an underscore in its label, indicating that it is an active
BN. BN2 does not have the underscore, and thereby is inactive.

From the node S there is a directed edge to the gate G2 (indicating that S is a trigger
node of G2 and that BN1 is a parent of G2) and from the node W there is a directed edge
to G1 (indicating that W is a trigger node of G1 and that BN2 is a parent of G1). From
G2 there is a directed edge to BN2 and from G1 there is a directed edge to BN1 (showing
parent/child relationships).

2.1.1. Numerical example of sequence of phases

Assume that we have the model described in Section 2.1 and Figure 1. Table 1 gives the
trigger logic for the gates in the network. For instance, G1 will trigger if the posterior
probability, given some evidence, of W being 1 is greater than 0.7.

The potential investor sits down by the trading terminal and starts using the new
model. Each time data is made available concerning any of the variables A, B, E or F
they are presented to the model. According to Remark 1 it is necessary that all available
evidence is sent, and not only evidence for variables that the user knows have changed.
Here we will leave S and W out, because we assume that they can not be observed
directly. Evidence is then sent four times according to the sets in Table 2.

• Set 1 : Variables A and B belong to BN1 which is active, the variables are in-
stantiated according to the evidence. Assume however that TL(G2) = f alse, so
G2 does not trigger. TL(G1) will also be false since W belongs to an inactive BN
(Definition 5). At this point in time we have not observed variables E and F, so
we do not supply any evidence for these variables.

• Set 2 : Variables A and B are updated as before, this time we will assume that
p(S = 1 | A = 1, B = 1 ) > 0.9. G2 then triggers and activates BN2 (Definition 6).
BN2 is now active and so the variable E is instantiated according to the evidence
(Definition 8). All parent BNs to triggered gates that are not children of triggered
gates are deactivated (Definition 6). This means that BN1 is deactivated. This
triggering is a cue for the investor that it is an opportune time to enter the market.

• Set 3 : Variables E and F instantiations are updated since they now belong to an
active BN. Assume that TL(G1) = f alse, and due to Definition 5 we know that
TL(G2) = f alse. Evidence for A and B are discarded.

• Set 4 : Variables E and F are updated. Assume that this time TL(G1) = true. G1
then triggers and activates BN1. Since BN1 has been activated, A and B are (due
to Definition 8) updated with new evidence A = 1 and B = 0. We will assume that
TL(G2) = f alse. BN2 is now deactivated. This triggering is a cue for the investor
that it is an opportune time to exit the market.
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2.2. Parallel measurements

The variables that the investor used in the GBN in Figure 1 by no means model the entire
picture of a stock market. There are numerous variables that might effect the pricing
of a certain stock, from price, volume, fundamental data, announcements and rumours.
Different investors will weigh the importance of this information differently.

Let us assume that our investor would like to consider different measurements when
deciding to buy stock shares. Rather than using one BN to only model the probability of
success, the investor also wants to take into consideration the confidence of the company
and market sentiment. The graphical model is shown in Figure 2. BN1 only represents
price and volume data (A, B) and the probability of a successful trade (S), BN2 represents
fundamental data about the stock (C, D) and the confidence in the company (M), BN3
represents data taken from text mining of news articles (G, H) and the sentiment of the
entire market (T). BN1-3 all make up the phase where the investor is looking to buy a
stock in a market. BN4 is only based on price and volume and make up the phase where
the investor is looking to sell the previously bought stock.

The three BNs (BN1, BN2 and BN3) model three distinct different measurements
that follow different time granularities. In BN1, price and volume data is made available
each time the underlying stock price changes, which might be several times per second.
The fundamental data about the company (BN2), which could be taken from annual
reports, might only change once a year. Finally, input from the text mining task (BN3) is
made available when news articles, tweets, etc. are posted.

When the investor sits down in front of the trading terminal any observed evidence
for the variables A, B, C, D, E, F, G and H are fed into the model. Even if only A changes
the investor supplies all evidence available (Remark 1). By defining TL(G2) using all
trigger nodes we allow BN1, BN2 and BN3 to all participate in the decision to trigger the
gate. TL(G2) could for instance be: p(S = 1 | e) > 0.7∧ p(M = 1 | e) > 0.5 ∧ p(T =
1 | e) > 0.3.

2.3. State change

In the previous two examples we have modelled situations where the triggering of a gate
has been connected to an action (e.g. buy or sell). However this tight connection between
a gate triggering and an action does not always have to be the case. Sometimes we will
switch between BNs because we want another set of variables to influence our decision.
Imagine a country where there is a set of policies that are prioritised when the country
is at peace, and a set of policies that are prioritised for when the country is at war. The



decision is the same (e.g. should we build more schools?) but the variables that influence
the decision changes.

Figure 3 is an extension of the sequence of phases example (Section 2.1). We have
introduced a new BN (BN2) as part of the first phase (i.e. prior to buying the stock).
We have also reused variables A and S in BN1 and BN2. These variables both represent
the same underlying phenomenon, however since they belong to different BNs they may
have different conditional probability distributions. If G4 triggers then this means that
the investor should buy stock, however if G2 or G3 triggers this just means that we are
shifting our attention to some other variables. The TL(G4) could be defined as p(S1 =
1 | e) > 0.7 ∨ p(S2 = 1 | e) > 0.8 where S1 is the S in BN1 and S2 is the S in BN2. If
BN2 is inactive then according to Definition 5 the statement p(S2 = 1 | e) will always be
false, yet the gate can still trigger since p(S1 = 1 | e) > 0.7 could evaluate as true, making
the entire logic statement true.

2.4. Combined example

For an investor it is possible to "go long" or "go short". In essence going long means
that the investor makes money if the stock increases in value, and going short means the
investor makes money if the stock decreases in value.

In Figure 4 we have hidden some of the details of the BNs. The entire BN1 is con-
nected to G4 and G5 as a parent, the entire BN2 is connected to G3 as a parent and the
entire BN3 is connected to G2 as a parent. These connections tell us that the BNs would
like to be deactivated in case the gate triggers (Definition 6), but they do not want to
participate in the trigger logic (Definition 7).

BN1 predicts a positive or negative sentiment of the entire market. This sentiment
basically tells us if market actors are expecting an increase in market value or a decrease.

BN2 represents a BN that uses data to decide whether or not to go long the stock.
Assume that the model is presented some evidence that sets TL(G2) = true. This will
activate BN2 as expected, however BN1 will not be deactivated since BN1 is both a
parent and a child to G2 (Definition 6). BN3 on the other hand is only a parent to G2,
and it will be deactivated (although it already was).

BN2 will start updating its variable instantiations with the supplied evidence, whilst
BN1 will continue to use evidence to predict market sentiment. In case the market senti-
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ment turns we want to know this before making any decisions. Let us assume that market
sentiment turns and TL(G3) = true. BN3 will be activated, as will BN1. Since BN2 is a
parent of G3 it will be deactivated. So now we are looking for opportunities to go short,
whilst still processing evidence regarding market sentiment in BN1.

Assume that at some point TL(G5) = true (i.e. the investor goes short). This activates
BN5 and deactivates BN3. Since BN1 is also a parent of G5 it is also deactivated.

3. Handling evidence

As we have seen in the examples there are several things that happen when evidence
is supplied to a GBN, including variable instantiation and gate triggering. Algorithm 1
formalises evidence handling in GBNs.

On line 5 the main loop of the algorithm starts. In each iteration variable instantia-
tions are updated for any active BNs. The algorithm then finds those gates that have not
yet triggered and send them to the TRIGGER function on line 21, along with the supplied
evidence. The TRIGGER function will return with any gates that triggered, and these
will be added to the set AT G, which contains all the triggered gates. For each of the gates
that triggered during this iteration of the loop (that started on line 5) their parent and
child BNs are stored. Before the loop starts again all child BNs that belong to triggered
gates are activated. This is done in order to not enforce any ordering of the gates, so we
can check the trigger logic for the gates in any order, and the same gates will trigger
regardless. As long as there are gates that trigger the loop will continue. Once the loop is
done, all BNs that are parents of gates that triggered, but are not children of any triggered
gates, are deactivated. The deactivation is done outside the loop for the same reasoning
of unordered gates previously mentioned. Finally all triggered gates are returned.

Notice that on line 9 we are creating a set of gates that belong to the GBN but have
not yet triggered. It is this set of gates that are sent to the TRIGGER function on line 10.
So once a gate has triggered it can not be triggered again. Therefore the algorithm will
always terminate, if not before then at least once all gates have triggered. This prevents
any form of oscillation or infinite loop of triggering gates to happen.

The function TRIGGER on line 21 will simply loop over the gates that have not
yet triggered, evaluate their trigger logic, and if it is satisfied add the gate to the set of
triggered gates. This set of triggered gates is then returned to the calling function.

4. Other formalisms and research

We have not found any research that focuses on developing models that switch between
multiple BNs based on logical statements of posterior probabilities. However some of the
features of GBNs that have been highlighted throughout the examples have similarities
to other research and formalisms.

4.1. Bayesian networks and influence diagrams

It might be tempting to remove the gates in GBNs and simply replace them with nodes,
and by doing so creating one large BN. However there are some problems when attempt-



Algorithm 1 Evidence handling
1: function EVIDENCE(GBN,Z) . Z is a set of evidence
2: UCBN←{ } . children BNs of triggered gates
3: UPBN←{ } . parent BNs of triggered gates
4: AT G←{ } . all gates that triggered due to Z
5: repeat
6: for all BNi in ABN(GBN) do
7: Instantiate V (BNi) according to Z
8: end for
9: NotTriggered ← G(GBN) \ AT G

10: Triggered ← T RIGGER(NotTriggered,Z)
11: AT G ← AT G ∪ Triggered
12: for all Gt in Triggered do
13: UCBN ← UCBN ∪ children o f Gt
14: UPBN ← UPBN ∪ parents o f Gt
15: end for
16: activate all BNs in (UCBN)
17: until Triggered is empty
18: deactivate all BNs in (UPBN \UCBN)
19: return AT G
20: end function
21: function TRIGGER(NotTriggered,Z)
22: Triggered←{ }
23: for all G in NotTriggered do
24: trigger← EVALUAT E(T L(G))
25: if trigger then
26: Triggered ← Triggered ∪ {G}
27: end if
28: end for
29: return Triggered
30: end function
31: function EVALUATE(TriggerLogic)
32: Return evaluation of TriggerLogic. This evaluation includes posterior probability queries to appropri-

ate BNs.
33: end function

ing to do this. We will not discuss this in detail here, but instead we will offer a few
observations that should make clear some of these problems.

Adding a node between the networks inevitably allows information to flow between
the variables in the previously independent BNs. Also GBNs are allowed to be cyclic, so
swapping the gates for nodes would in some cases create an illegal BN.

When creating GBNs we have an extra building block that is not available when
creating BNs. When building BNs we estimate marginal and conditional probabilities
as part of the building process, however in GBNs we are also interested in, and need to
work with, posterior probabilities. This is one of the main differences between BNs and
GBNs, which makes it hard or impossible to replace gates with nodes.

Influence diagrams represent dependencies among random variables and decisions
[3]. Already in the initial definition there was a strong connection made between deci-
sions and their direct influence on some cost, i.e. the underlying problem is to maximise
some expected utility. Influence diagrams can, in a clear way, supply a set of decisions to
form a policy that suits a specific problem domain. Influence diagrams can be explained
as decision trees, and in the tree a path is found that maximises the expected utility.

GBNs can also be seen as a decision support model, however they are not as tightly
connected to an exact cost function. GBNs do not produce a set of decisions that max-



imise the expected utility, rather GBNs only model when to activate or deactive BNs
based on posterior probabilities. If thought of as a decision tree, GBNs allow the user to
go into a branch, but then go back and reverse the decision in a way that is not strongly
defined in influence diagrams (see section 2.4 for an example of this where the decision
was made to look for long opportunities and then reversed to look for short opportuni-
ties).

The lack of policy generation and expected utility maximisation has its roots in the
initial need for GBNs to be able to switch between BNs, rather than trying to choose
an optimal decision. Decisions can be made based on observing which gates trigger in
a GBN, but a gate triggering is not formally defined as a decision being made, rather an
observation of posterior probabilities.

4.2. Similarity to other research

Taking a large BN and dividing it into to smaller subnets has been researched for some
time. Notable contributions include multiply sectioned Bayesian network (MSBN) [4,
5] and agent encapsulated Bayesian network (AEBN) [6]. Although these models all
section the BNs into smaller parts, they still come together to create one large BN.

We see some similarities between features of GBNs and what is known as context-
specific independence (CSI) [7]. Specifically the highlights of the state change exam-
ple where variables can sometimes be independent of each other and sometimes not,
depending on what evidence has been supplied.

GBNs are sensitive to the order of the evidence supplied. Similar evidence sensitivity
can be found in research regarding structural adaptation [8] and query based diagnostics
[9]. These two approaches add or remove nodes and edges from the graphical model
while GBNs do not handle the entry of new variables or dependencies into the model.

5. Future work

GBNs have yet to prove themselves useful in any real world application, as such it is
one of the main paths of future work. The financial problem domain presented in the
examples can be modelled in many different ways and is therefore a good candidate to
test the features of GBNs. In our development we have come across several extensions
of GBNs that may be of interest in the future. This includes explicitly adding decision
nodes to gates that are bound to decisions, as well as the use of utility nodes (as in
influence diagrams) that also could be part of the trigger logic (e.g. constraining a gate
from triggering unless an expected utility is found to be sufficient).

There is an open question regarding how trigger logic is constructed. Presently, trig-
ger logic is assumed to be decided using a combination of experts and data. However it
could be possible to find ways of learning trigger logic entirely from data.

6. Conclusion

Based upon the need to represent a process that goes back and forth between two distinct
phases we have theoretically defined a new probabilistic graphical model. We have given
a formal definition of GBNs as well as an algorithm to handle new evidence when it



is made available. In the examples enclosed we have highlighted features of GBNs that
we hope will be useful in solving the initial problem. During the development we also
found other situations where the model may be found useful, such as combining BNs
with different time granularities.

We have used the domain of investment to exemplify GBNs, however we see other
areas where GBNs may demonstrate useful. In a medical setting a doctor could choose
between different tests and medicines given a patient with extreme high fever, however
choose between a different set of tests and medicines if the fever is normal, this could be
modelled similarly to the state change example. Interactive help guides or failure analysis
systems could use different BNs depending on the response of the user, following a
sequence of phases.
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