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ABSTRACT
Motivation: For the last few years, Bayesian networks (BNs) have
received increasing attention from the computational biology com-
munity as models of gene networks, though learning them from
gene expression data is problematic: Most gene expression databa-
ses contain measurements for thousands of genes, but the existing
algorithms for learning BNs from data do not scale to such high-
dimensional databases. This means that the user has to decide in
advance which genes are included in the learning process, typically
no more than a few hundreds, and which genes are excluded from it.
This is not a trivial decision. We propose an alternative approach to
overcome this problem.
Results: We propose a new algorithm for learning BN models of gene
networks from gene expression data. Our algorithm receives a seed
gene S and a positive integer R from the user, and returns a BN for
those genes that depend on S such that less than R other genes
mediate the dependency. Our algorithm grows the BN, which initially
only contains S, by repeating the following step R+1 times and, then,
pruning some genes: Find the parents and children of all the genes
in the BN and add them to it. Intuitively, our algorithm provides the
user with a window of radius R around S to look at the BN model of
a gene network without having to exclude any gene in advance. We
prove that our algorithm is correct under the faithfulness assumption.
We evaluate our algorithm on simulated and biological data (Rosetta
compendium) with satisfactory results.
Contact: jmp@ifm.liu.se

1 INTRODUCTION
Much of a cell’s complex behavior can be explained through the
concerted activity of genes and gene products. This concerted acti-
vity is typically represented as a network of interacting genes.
Identifying this gene network is crucial for understanding the beha-
vior of the cell which, in turn, can lead to better diagnosis and
treatment of diseases.

For the last few years, Bayesian networks (BNs) (Neapolitan,
2003; Pearl, 1988) have received increasing attention from the com-
putational biology community as models of gene networks, e.g.
(Badea, 2003; Bernard and Hartemink, 2005; Friedmanet al., 2000;
Harteminket al., 2002; Ottet al., 2004; Pe’eret al., 2001; Pẽna,
2004). A BN model of a gene network represents a probability
distribution for the genes in the network. The BN minimizes the
number of parameters needed to specify the probability distribution
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by taking advantage of the conditional independencies between the
genes. These conditional independencies are encoded in an acyclic
directed graph (DAG) to help visualization and reasoning. Learning
BN models of gene networks from gene expression data is proble-
matic: Most gene expression databases contain measurements for
thousands of genes, e.g. (Hugheset al., 2000; Spellmanet al., 1998),
but the existing algorithms for learning BNs from data do not scale
to such high-dimensional databases (Friedmanet al., 1999; Tsamar-
dinoset al., 2003). This implies that in the papers cited above, for
instance, the authors have to decide in advance which genes are
included in the learning process, in all the cases less than 1000, and
which genes are excluded from it. This is not a trivial decision. We
propose an alternative approach to overcome this problem.

In this paper, we propose a new algorithm for learning BN models
of gene networks from gene expression data. Our algorithm receives
a seed geneS and a positive integerR from the user, and returns a
BN for those genes that depend onS such that less thanR other
genes mediate the dependency. Our algorithm grows the BN, which
initially only containsS, by repeating the following stepR+1 times
and, then, pruning some genes: Find the parents and children of all
the genes in the BN and add them to it. Intuitively, our algorithm
provides the user with a window of radiusR aroundS to look at the
BN model of a gene network without having to exclude any gene in
advance.

The rest of the paper is organized as follows. In Section 2, we
review BNs. In Sections 3, we describe our new algorithm. In
Section 4, we evaluate our algorithm on simulated and biological
data (Rosetta compendium (Hugheset al., 2000)) with satisfactory
results. Finally, in Section 5, we discuss related works and possible
extensions to our algorithm.

2 BAYESIAN NETWORKS
The following definitions and theorem can be found in most books
on Bayesian networks, e.g. (Neapolitan, 2003; Pearl, 1988). We ass-
ume that the reader is familiar with graph and probability theories.
We abbreviate if and only if by iff, such that by st, and with respect
to by wrt.

LetU denote a non-empty finite set of random variables. A Baye-
sian network (BN) forU is a pair(G, θ), whereG is an acyclic
directed graph (DAG) whose nodes correspond to the random varia-
bles inU, andθ are parameters specifying a conditional probability
distribution for each nodeX given its parents inG, p(X|PaG(X)).
A BN (G, θ) represents a probability distribution forU, p(U),
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through the factorizationp(U) =
∏

X∈U p(X|PaG(X)). Her-
eafter,PCG(X) denotes the parents and children ofX in G, and
NDG(X) the non-descendants ofX in G.

Any probability distributionp that can be represented by a BN
with DAG G, i.e. by a parameterizationθ of G, satisfies cer-
tain conditional independencies between the random variables in
U that can be read fromG via the d-separation criterion, i.e. if
d-sepG(X,Y|Z) thenX⊥⊥pY|Z with X, Y andZ three mutually
disjoint subsets ofU. The statementd-sepG(X,Y|Z) is true when
for every undirected path inG between a node inX and a node in
Y there exits a nodeW in the path st either (i)W does not have two
parents in the path andW ∈ Z, or (ii) W has two parents in the path
and neitherW nor any of its descendants inG is in Z. A probability
distributionp is said to be faithful to a DAGG whenX⊥⊥pY|Z iff
d-sepG(X,Y|Z).

The nodesW , X andY form an immorality in a DAGG when
X → W ← Y is the subgraph ofG induced byW , X andY . Two
DAGs are equivalent when they represent the same d-separation
statements. The equivalence class of a DAGG is the set of DAGs
that are equivalent toG.

Theorem 1. Two DAGs are equivalent iff they have the same
adjacencies and the same immoralities.

Two nodes are at distanceR in a DAGG when the shortest undi-
rected path inG between them is of lengthR. G(X)R denotes the
subgraph ofG induced by the nodes at distance at mostR from X
in G.

3 GROWING PARENTS AND CHILDREN
ALGORITHM

A BN models a gene network by equating each gene with a random
variable or node. We note that the DAG of a BN model of a gene
network does not necessarily represent physical interactions bet-
ween genes but conditional (in)dependencies. We aim to learn BN
models of gene networks from gene expression data. This will help
us to understand the probability distributions underlying the gene
networks in terms of conditional (in)dependencies between genes.

Learning a BN from data consists in, first, learning a DAG and,
then, learning a parameterization of the DAG. Like the works cited
in Section 1, we focus on the former task because, under the ass-
umption that the learning data contain no missing values, the latter
task can be efficiently solved according to the maximum likelihood
(ML) or maximum a posteriori (MAP) criterion (Neapolitan, 2003;
Pearl, 1988). To appreciate the complexity of learning a DAG, we
note that the number of DAGs is super-exponential in the number of
nodes (Robinson, 1973). In this section, we present a new algorithm
for learning a DAG from a databaseD. The algorithm, named gro-
wing parents and children algorithm orAlgorithmGPC for short,
is based on the faithfulness assumption, i.e. on the assumption that
D is a sample from a probability distributionp faithful to a DAG
G. AlgorithmGPC receives a seed nodeS and a positive inte-
ger R as input, and returns a DAG that is equivalent toG(S)R.
AlgorithmGPC grows the DAG, which initially only containsS,
by repeating the following stepR+1 times and, then, pruning some
nodes: Find the parents and children of all the nodes in the DAG
and add them to it. Therefore, a key step inAlgorithmGPC is the
identification ofPCG(X) for a given nodeX in G. The functions

AlgorithmPCD andAlgorithmPC solve this step. We have pre-
viously introduced these two functions in (Peñaet al., 2005) to learn
Markov boundaries from high-dimensional data. They are correct
versions of an incorrect function proposed in (Tsamardinoset al.,
2003).

Hereafter, X 6⊥⊥ DY |Z (X ⊥⊥ DY |Z) denotes conditional
(in)dependence wrt the learning databaseD, anddepD(X, Y |Z)
is a measure of the strength of the conditional dependence wrtD.
In order to decide onX 6⊥⊥DY |Z or X⊥⊥DY |Z, AlgorithmGPC
runs aχ2 test whenD is discrete and a Fisher’sz test whenD
is continuous and, then, uses the negative p-value of the test as
depD(X, Y |Z). See (Spirteset al., 1993) for details on these tests.

Table 1 outlinesAlgorithmPCD. The algorithm receives the
nodeS as input and returns a superset ofPCG(S) in PCD. The
algorithm tries to minimize the number of nodes not inPCG(S)
that are returned inPCD. The algorithm repeats the following three
steps untilPCD does not change. First, some nodes not inPCG(S)
are removed fromCanPCD, which contains the candidates to
enterPCD (lines 4-8). Second, the candidate most likely to be in
PCG(S) is added toPCD and removed fromCanPCD (lines 9-
11). Since this step is based on the heuristic at line 9, some nodes not
in PCG(S) may be added toPCD. Some of these nodes are remo-
ved fromPCD in the third step (lines 12-16). The first and third
steps are based on the faithfulness assumption.AlgorithmPCD is
correct under some assumptions. See Appendix A for the proof.

Theorem 2. Under the assumptions that the learning databaseD
is an independent and identically distributed sample from a probabi-
lity distributionp faithful to a DAGG and that the tests of conditio-
nal independence are correct, the output ofAlgorithmPCD(S)
includesPCG(S) but does not include any node inNDG(S) \
PaG(S).

The assumption that the tests of conditional independence are
correct means thatX⊥⊥DY |Z iff X⊥⊥pY |Z.

The output ofAlgorithmPCD(S) must be further processed in
order to obtainPCG(S), because it may contain some descendants
of S in G other than its children. These nodes can be easily iden-
tified: If X is in the output ofAlgorithmPCD(S), thenX is a
descendant ofS in G other than one of its children iffS is not in the
output ofAlgorithmPCD(X). AlgorithmPC, which is outli-
ned in Table 1, implements this observation. The algorithm receives
the nodeS as input and returnsPCG(S) in PC. AlgorithmPC is
correct under some assumptions. See Appendix A for the proof.

Theorem 3. Under the assumptions that the learning database
D is an independent and identically distributed sample from a pro-
bability distributionp faithful to a DAGG and that the tests of con-
ditional independence are correct, the output ofAlgorithmPC(S)
is PCG(S).

Finally, Table 1 outlinesAlgorithmGPC. The algorithm
receives the seed nodeS and the positive integerR as input,
and returns a DAG inDAG that is equivalent toG(S)R.
The algorithm works in two phases based on Theorem 1. In
the first phase, the adjacencies inG(S)R are added toDAG,
which initially only containsS, by repeating the following step
R + 1 times and, then, pruning some nodes:PCG(X) is obtai-
ned by callingAlgorithmPC(X) for each nodeX in DAG
(lines 3-4) and, then,PCG(X) is added toDAG by calling
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Table 1. AlgorithmPCD, AlgorithmPC andAlgorithmGPC

AlgorithmPCD(S)

1 PCD = ∅
2 CanPCD = U \ {S}
3 repeat

/* step 1: remove false positives fromCanPCD */
4 for eachX ∈ CanPCD do
5 Sep[X] = arg minZ⊆PCDdepD(X, S|Z)
6 for eachX ∈ CanPCD do
7 if X⊥⊥DS|Sep[X] then
8 CanPCD = CanPCD \ {X}

/* step 2: add the best candidate toPCD */
9 Y = arg maxX∈CanPCDdepD(X, S|Sep[X])

10 PCD = PCD ∪ {Y }
11 CanPCD = CanPCD \ {Y }

/* step 3: remove false positives fromPCD */
12 for eachX ∈ PCD do
13 Sep[X] = arg minZ⊆PCD\{X}depD(X, S|Z)

14 for eachX ∈ PCD do
15 if X⊥⊥DS|Sep[X] then
16 PCD = PCD \ {X}
17 until PCD does not change
18 return PCD

AlgorithmPC(S)

1 PC = ∅
2 for eachX ∈ AlgorithmPCD(S) do
3 if S ∈ AlgorithmPCD(X) then
4 PC = PC ∪ {X}
5 return PC

AlgorithmGPC(S, R)

1 DAG = {S}
2 for 1, . . . , R + 1 do
3 for eachX ∈ DAG do
4 PC[X] = AlgorithmPC(X)
5 for eachX ∈ DAG do
6 AddAdjacencies(DAG, X, PC[X])
7 Prune(DAG)
8 AddImmoralities(DAG)
9 return DAG

AddAdjacencies(DAG, X, PCG(X)) for each nodeX in DAG
(lines 5-6). The functionAddAdjacencies(DAG, X, PCG(X))
simply adds the nodes inPCG(X) to DAG and, then, links each
of them toX with an undirected edge. In practice,AlgorithmPC
and AddAdjacencies are not called for each node inDAG but
only for those they have not been called before for. Since lines 3-6
are executedR+1 times, the nodes at distanceR+1 fromS in G are
added toDAG, though they do not belong toG(S)R. These nodes
are removed fromDAG by callingPrune(DAG) (line 7). In the
second phase ofAlgorithmGPC, the immoralities inG(S)R are
added toDAG by callingAddImmoralities(DAG) (line 8). For
each triplet of nodesW , X andY st the subgraph ofDAG induced
by them isX −W − Y , the functionAddImmoralities(DAG)
adds the immoralityX → W ← Y to DAG iff X 6⊥⊥ DY |Z ∪
{W} for any Z st X ⊥⊥ DY |Z and X, Y /∈ Z. In practice,
such aZ can be efficiently obtained:AlgorithmPCD must have
found such aZ and could have cached it for later retrieval. The
function AddImmoralities(DAG) is based on the faithfulness
assumption.

We note that the only directed edges inDAG are those in the
immoralities. In order to obtain a DAG, the undirected edges in
DAG can be oriented in any direction as long as neither directed
cycles nor new immoralities are created. Therefore, strictly spea-
king,AlgorithmGPC returns an equivalence class of DAGs rather
than a single DAG (Theorem 1).AlgorithmGPC is correct under
some assumptions. See Appendix A for the proof.

Theorem 4. Under the assumptions that the learning databaseD
is an independent and identically distributed sample from a probabi-
lity distributionp faithful to a DAGG and that the tests of conditio-
nal independence are correct, the output ofAlgorithmGPC(S, R)
is the equivalence class ofG(S)R.

Though the assumptions in Theorem 4 may not hold in practice,
correctness is a desirable property for an algorithm to have and,
unfortunately, most of the existing algorithms for learning BNs from
data lack it.

4 EVALUATION
In this section, we evaluateAlgorithmGPC on simulated and
biological data (Rosetta compendium (Hugheset al., 2000)).

4.1 Simulated Data
We consider databases sampled from two discrete BNs that have
been previously used as benchmarks for algorithms for learning BNs
from data, namely the Alarm BN (37 nodes and 46 edges) (Hers-
kovits, 1991) and the Pigs BN (441 nodes and 592 edges) (Jensen,
1997). We also consider databases sampled from Gaussian networks
(GNs) (Geiger and Heckerman, 1994), a class of continuous BNs.
We generate random GNs as follows. The DAG has 50 nodes, the
number of edges is uniformly drawn from [50, 100], and the edges
link uniformly drawn pairs of nodes. Each node follows a Gaussian
distribution whose mean depends linearly on the value of its parents.
For each node, the unconditional mean, the parental linear coeffi-
cients and the conditional standard deviation are uniformly drawn
from [-3, 3], [-3, 3] and [1, 3], respectively. We consider three
sizes for the databases sampled, namely 100, 200 and 500 instan-
ces. We do not claim that the databases sampled resemble gene
expression databases, apart from the number of instances. However,
they make it possible to compare the output ofAlgorithmGPC
with the DAGs of the BNs sampled. This will provide us with some
insight into the performance ofAlgorithmGPC before we turn
our attention to gene expression data in the next section. Since we
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Table 2. Adjacency precision and recall ofAlgorithmGPC

Data Size R Precision Recall Precision5 Recall5

Alarm 100 1 0.88±0.06 0.52±0.05 0.89±0.06 0.34±0.04
Alarm 100 2 0.87±0.08 0.33±0.05 0.87±0.10 0.23±0.04

Alarm 200 1 0.94±0.04 0.64±0.06 0.97±0.06 0.45±0.05
Alarm 200 2 0.93±0.05 0.44±0.06 0.96±0.04 0.35±0.06

Alarm 500 1 0.97±0.03 0.78±0.03 0.99±0.03 0.57±0.07
Alarm 500 2 0.97±0.04 0.63±0.03 0.99±0.01 0.49±0.04

Pigs 100 1 0.70±0.01 0.75±0.02 0.85±0.03 0.55±0.02
Pigs 100 2 0.58±0.02 0.53±0.02 0.68±0.03 0.36±0.02

Pigs 200 1 0.85±0.02 0.93±0.01 0.96±0.01 0.81±0.01
Pigs 200 2 0.80±0.02 0.78±0.02 0.87±0.02 0.63±0.03

Pigs 500 1 0.88±0.01 1.00±0.00 0.96±0.02 1.00±0.00
Pigs 500 2 0.85±0.01 1.00±0.00 0.90±0.01 1.00±0.00

GNs 100 1 0.86±0.06 0.51±0.10 0.91±0.09 0.38±0.09
GNs 100 2 0.84±0.07 0.29±0.10 0.88±0.10 0.20±0.08

GNs 200 1 0.88±0.05 0.60±0.12 0.92±0.09 0.43±0.12
GNs 200 2 0.85±0.06 0.38±0.15 0.88±0.10 0.26±0.12

GNs 500 1 0.88±0.05 0.67±0.10 0.91±0.06 0.51±0.14
GNs 500 2 0.85±0.07 0.46±0.13 0.86±0.09 0.33±0.14

useR = 1, 2 in the next section, it seems reasonable to useR = 1, 2
in this section as well.

The comparison between the output ofAlgorithmGPC and the
DAGs of the BNs sampled should be done in terms of adjacencies
and immoralities (Theorem 1). Specifically, we proceed as follows
for each database sampled from a BN with DAGG. We first run
AlgorithmGPC with each node inG as the seed nodeS and
R = 1, 2 and, then, report the average adjacency (immorality)
precision and recall for each value ofR. Adjacency (immorality)
precision is the number of adjacencies (immoralities) in the output
of AlgorithmGPC that are also inG(S)R divided by the number
of adjacencies (immoralities) in the output. Adjacency (immorality)
recall is the number of adjacencies (immoralities) in the output of
AlgorithmGPC that are also inG(S)R divided by the number of
adjacencies (immoralities) inG(S)R. We find important to monitor
wether the performance ofAlgorithmGPC is sensitive or not to
the degree ofS. For this purpose, we also report the average adja-
cency (immorality) precision and recall over the nodes inG with
five or more parents and children (four nodes in the Alarm BN and
39 nodes in the Pigs BN). The significance level for the tests of
conditional independence is the standard 0.05.

Table 2 summarizes the adjacency precision and recall of
AlgorithmGPC. The columns Precision and Recall show the ave-
rage adjacency precision and recall, respectively, over all the nodes.

Table 3. Immorality precision and recall ofAlgorithmGPC

Data Size R Precision Recall Precision5 Recall5

Alarm 100 1 0.82±0.14 0.28±0.09 0.00±0.00 0.00±0.00
Alarm 100 2 0.79±0.12 0.18±0.06 0.56±0.31 0.06±0.04

Alarm 200 1 0.80±0.11 0.46±0.07 1.00±0.00 0.03±0.04
Alarm 200 2 0.78±0.10 0.29±0.05 0.52±0.11 0.12±0.03

Alarm 500 1 0.90±0.07 0.62±0.04 1.00±0.00 0.19±0.12
Alarm 500 2 0.92±0.05 0.46±0.06 0.82±0.13 0.24±0.05

Pigs 100 1 0.65±0.02 0.46±0.03 0.49±0.05 0.35±0.05
Pigs 100 2 0.55±0.02 0.41±0.03 0.59±0.06 0.27±0.02

Pigs 200 1 0.83±0.02 0.76±0.03 0.69±0.08 0.64±0.04
Pigs 200 2 0.76±0.02 0.71±0.02 0.73±0.04 0.58±0.03

Pigs 500 1 0.90±0.01 0.97±0.02 0.89±0.05 0.94±0.04
Pigs 500 2 0.83±0.02 0.95±0.02 0.82±0.04 0.94±0.02

GNs 100 1 0.59±0.22 0.15±0.09 0.41±0.32 0.04±0.07
GNs 100 2 0.59±0.22 0.09±0.07 0.55±0.28 0.05±0.08

GNs 200 1 0.70±0.17 0.25±0.12 0.52±0.32 0.09±0.11
GNs 200 2 0.70±0.17 0.17±0.11 0.59±0.29 0.08±0.07

GNs 500 1 0.67±0.14 0.34±0.13 0.56±0.29 0.19±0.17
GNs 500 2 0.68±0.14 0.24±0.13 0.61±0.21 0.13±0.11

The columns Precision5 and Recall5 show the average adjacency
precision and recall, respectively, over the nodes with five or more
parents and children. Each row in the table shows average and stan-
dard deviation values over 10 databases of the corresponding size
for the Alarm and Pigs BNs, and over 50 databases for the GNs. We
reach two conclusions from the table. First, the adjacency precision
of AlgorithmGPC is high in general, though it slightly degrades
with R. Second, the adjacency recall ofAlgorithmGPC is lower
than the adjacency precision, and degrades with both the degree of
S andR. This is not surprising given the small sizes of the learning
databases.

Table 3 summarizes the immorality precision and recall of
AlgorithmGPC. The main conclusion that we obtain from the
table is thatAlgorithmGPC performs better for learning adja-
cencies than for learning immoralities. This is particularly noti-
ceable for GNs. The reason is that learning adjacencies as in
AlgorithmGPC is more robust than learning immoralities. In
other words, learning immoralities as inAlgorithmGPC is more
sensitive to any error previously made than learning adjacencies.
This problem has been previously noted in (Badea, 2003, 2004;
Spirteset al., 1993). A solution to it has been proposed in (Badea,
2003, 2004). We plan to implement it in a future version of
AlgorithmGPC.
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Fig. 1. BN model of the iron homeostasis pathway learnt byAlgorithmGPC from the Rosetta compendium with ARN1 as the seed geneS andR = 2.
Gray-colored genes are related to iron homeostasis according to (Jensen and Culotta, 2002; Lesuisseet al., 2001; Philpottet al., 2002; Protchenkoet al., 2001),
while white-colored genes are not known to us to be related to iron homeostasis.

In short, the most noteworthy feature ofAlgorithmGPC is its
high adjacency precision. This is an important feature because it
implies that the adjacencies returned are highly reliable, i.e. there
are few false positives among them.

4.2 Biological Data
We use the Rosetta compendium (Hugheset al., 2000) in order to
illustrate the usefulness ofAlgorithmGPC to learn biologically
coherent BN models of gene networks from gene expression data.
The Rosetta compendium consists of 300 full-genome expression
profiles of the yeastSaccharomyces cerevisiae. In other words, the
learning database consists of 300 instances and 6316 continuous
random variables.

Iron is an essential nutrient for virtually every organism, but it is
also potentially toxic to cells. We are interested in learning about
the iron homeostasis pathway in yeast, which regulates the uptake,
storage, and utilization of iron so as to keep it at a non-toxic level.
According to (Lesuisseet al., 2001; Philpottet al., 2002; Protchenko
et al., 2001), yeast can use two different high-affinity mechanisms,
reductive and non-reductive, to take up iron from the extracellular
medium. Genes FRE1, FRE2, FTR1 and FET3 control the reductive
mechanism, while genes ARN1, ARN2, ARN3 and ARN4 control
the non-reductive mechanism. Genes FIT1, FIT2 and FIT3 facilitate
iron transport. The iron homeostasis pathway in yeast has been pre-
viously used in (Margolinet al., 2004; Pe’eret al., 2001) to evaluate
the accuracy of their algorithms for learning models of gene net-
works from gene expression data. Specifically, both papers report
models of the iron homeostasis pathway learnt from the Rosetta
compendium, centered at ARN1 and with a radius of two. The-
refore, we runAlgorithmGPC with ARN1 as the seed geneS
andR = 2. The significance level for the tests of conditional inde-
pendence is the standard 0.05. The output ofAlgorithmGPC is
depicted in Figure 1. Gray-colored genes are related to iron homeo-
stasis, while white-colored genes are not known to us to be related
to iron homeostasis. The gray-colored genes include nine of the 11
genes mentioned above as related to iron homeostasis, plus SMF3
which has been proposed to function in iron transport in (Jensen and
Culotta, 2002). IfR = 1, then the output involves four genes, all of

them related to iron homeostasis. IfR = 2, then the output involves
17 genes, 10 of them related to iron homeostasis. Therefore, the out-
put ofAlgorithmGPC is rich in genes related to iron homeostasis.
We note that all the genes related to iron homeostasis are dependent
one on another, and that any node that mediates these dependencies
is also related to iron homeostasis. This is consistent with the con-
clusions drawn in Section 4.1, namely that the adjacencies returned
by AlgorithmGPC are highly reliable. Regarding running time,
AlgorithmGPC takes 6 minutes forR = 1 and 37 minutes for
R = 2 (C++ implementation, not particularly optimized for speed,
and run on a Pentium 2.4 GHz, 512 MB RAM and Windows 2000).
Roughly speaking, we expect the running time ofAlgorithmGPC
to be exponential inR. However,R will usually be small because
we will usually be interested in those genes that depend onS and
none or few other genes mediate the dependency. This is also the
case in (Margolinet al., 2004; Pe’eret al., 2001).

In comparison, the model of the iron homeostasis pathway in
(Margolinet al., 2004) involves 26 genes (16 related to iron homeo-
stasis), while the model in (Pe’eret al., 2001) involves nine genes
(six related to iron homeostasis). Further comparison with the latter
paper which, unlike the former, learns BN models of gene networks
makes clear the main motivation of our work. In order for their algo-
rithm to be applicable, Pe’eret al. focus on 565 relevant genes
selected in advance and, thus, exclude the remaining 5751 genes
from the learning process. On the other hand,AlgorithmGPC
produces a biologically coherent output, only requires identifying
a single relevant gene in advance, and no gene is excluded from the
learning process.

5 DISCUSSION
We have introducedAlgorithmGPC, an algorithm for growing
BN models of gene networks from seed genes. We have evaluated it
on synthetic and biological data with satisfactory results. In (Hashi-
motoet al., 2004), an algorithm for growing probabilistic Boolean
network models of gene networks from seed genes is proposed. Our
work can be seen as an extension of the work by Hashimotoet al.
to BN models of gene networks. However, there are some other
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significant differences between both works. Unlike them, we have
proved the correctness of our algorithm. Their algorithm requires
binary data, while ours can learn from both discrete and continuous
data. They report results for a database with only 597 genes, while
we have showed that our algorithm can deal with databases with
thousands of genes. Other work that is related to ours, though in a
less degree, is (Tanay and Shamir, 2001) where an algorithm that
suggests expansions to a given gene pathway is presented.

Most of the previous works on learning BN models of gene net-
works from gene expression data, e.g. (Badea, 2003; Bernard and
Hartemink, 2005; Harteminket al., 2002; Ottet al., 2004; Pẽna,
2004), do not address the poor scalability of the existing algorithms
for learning BNs from data. They simply reduce the dimensionality
of the gene expression data in advance so that the existing algo-
rithms are applicable. To our knowledge, (Friedmanet al., 2000;
Pe’eret al., 2001) are the only exceptions to this trend. These works
build upon the algorithm in (Friedmanet al., 1999) which, in order
to scale to high-dimensional data, restricts the search for the parents
of each node to a small set of candidate parents that are heuristically
selected in advance. Unfortunately, they do not report results for
databases with more than 800 genes. Moreover, the performance of
their algorithm heavily depends on the number of candidate parents
allowed for each node, which is a user-defined parameter, and on the
heuristic for selecting them. For instance, if the user underestimates
the number of parents of a node, then the node will lack some of its
parents in the final BN and, even worse, these errors may propagate
to the rest of the BN.AlgorithmGPC does not involve any heuri-
stic or parameter that may harm performance. Instead, it copes with
high-dimensional data by learning a local BN around the seed node
rather than a global one.

We are currently extendingAlgorithmGPC with the following
two functionalities. In order to release the user from having to spe-
cify the radiusR, we are developing an automatic criterion to decide
when to stop growing the BN. In order to assist the user in the
interpretation of the BN learnt, we are implementing the methods
in (Friedmanet al., 2000; Pe’eret al., 2001; Pẽna, 2004) to assess
the confidence in the BN learnt.
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APPENDIX A: PROOFS OF THE THEOREMS
For any probability distributionp that can be represented by a
BN with DAG G, the d-separation criterion enforces the local
Markov property, i.e.X⊥⊥pNDG(X) \ PaG(X)|PaG(X) (Nea-
politan, 2003; Pearl, 1988). Therefore,X⊥⊥pY |PaG(X) for all
Y ∈ NDG(X) \ PaG(X) due to the decomposition property
(Pearl, 1988).

PROOF OFTHEOREM 2. First, we prove that the nodes in
PCG(S) are included in the outputPCD. If X ∈ PCG(S), then
X 6⊥⊥ pS|Z for all Z st X, S /∈ Z due to the faithfulness ass-
umption. Consequently,X entersPCD at line 10 and does not
leave it thereafter due to the assumption that the tests of conditional
independence are correct.

Second, we prove that the nodes inNDG(S) \ PaG(S) are not
included in the outputPCD. It suffices to study the last time that

lines 12-16 are executed. At line 12,PaG(S) ⊆ PCD due to
the paragraph above. Therefore, ifPCD still contains someX ∈
NDG(S) \ PaG(S), thenX⊥⊥ pS|Z for someZ ⊆ PCD \ {X}
due to the local Markov and decomposition properties. Conse-
quently,X is removed fromPCD at line 16 due to the assumption
that the tests of conditional independence are correct.

PROOF OFTHEOREM 3. First, we prove that the nodes in
PCG(S) are included in the outputPC. If X ∈ PCG(S), then
S ∈ PCG(X). Therefore,X andS satisfy the conditions at lines 2
and 3, respectively, due to Theorem 2. Consequently,X entersPC
at line 4.

Second, we prove that the nodes not inPCG(S) are not included
in the outputPC. Let X /∈ PCG(S). If X does not satisfy the
condition at line 2, thenX does not enterPC at line 4. On the
other hand, ifX satisfies the condition at line 2, thenX must be a
descendant ofS in G other than one of its children and, thus,S does
not satisfy the condition at line 3 due to Theorem 2. Consequently,
X does not enterPC at line 4.

PROOF OFTHEOREM 4. We have to prove that the outputDAG
has the same adjacencies and the same immoralities asG(S)R due
to Theorem 1. It is immediate thatDAG has the same adjacencies
asG(S)R at line 8 due to Theorem 3. Likewise, it is immediate that
DAG has the same immoralities asG(S)R at line 9 due to the faith-
fulness assumption and the assumption that the tests of conditional
independence are correct.
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