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Abstract. We apply MCMC sampling to approximately calculate some
quantities, and discuss their implications for learning directed and acyclic
graphs (DAGs) from data. Specifically, we calculate the approximate
ratio of essential graphs (EGs) to DAGs for up to 31 nodes. Our ratios
suggest that the average Markov equivalence class is small. We show
that a large majority of the classes seem to have a size that is close to
the average size. This suggests that one should not expect more than a
moderate gain in efficiency when searching the space of EGs instead of
the space of DAGs. We also calculate the approximate ratio of connected
EGs to connected DAGs, of connected EGs to EGs, and of connected
DAGs to DAGs. These new ratios are interesting because, as we will see,
the DAG or EG learnt from some given data is likely to be connected.
Furthermore, we prove that the latter ratio is asymptotically 1.

Finally, we calculate the approximate ratio of EGs to largest chain graphs
for up to 25 nodes. Our ratios suggest that Lauritzen-Wermuth-Frydenberg
chain graphs are considerably more expressive than DAGs. We also re-
port similar approximate ratios and conclusions for multivariate regres-
sion chain graphs.

1 Introduction

Graphical models are a formalism to represent sets of independencies, also known
as independence models, via missing edges in graphs whose nodes are the random
variables of interest.1 The graphical models are divided into families depending
on whether the edges are directed, undirected, and/or bidirected. Undoubtedly,
the most popular family is that consisting of directed and acyclic graphs (DAGs),
also known as Bayesian networks. A DAG is a graph that contains directed edges
and no directed cycle, i.e. no sequence of edges of the form X → Y → . . .→ X.
As we will see later, it is well-known that different DAGs can represent the same
independence model. For instance, the DAGs X → Y and X ← Y represent the
empty independence model. All the DAGs representing the same independence
model are said to form a Markov equivalence class. Probably the most common
approach to learning DAGs from data is that of performing a search in the space

1 All the graphs considered in this paper are labeled graphs.
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of either DAGs or Markov equivalence classes. In the latter case, the classes are
typically represented as essential graphs (EGs). The EG corresponding to a class
is the graph that has the directed edge A→ B iff A→ B is in every DAG in the
class, and the undirected edge A−B iff A→ B is in some DAGs in the class and
A← B is in some others.3 For instance, the graph X−Y is the EG corresponding
to the class formed by the DAGs X → Y and X ← Y . Knowing the ratio of EGs
to DAGs for a given number of nodes is a valuable piece of information when
deciding which space to search. For instance, if the ratio is low, then one may
prefer to search the space of EGs rather than the space of DAGs, though the
latter is usually considered easier to traverse. Unfortunately, while the number
of DAGs can be computed without enumerating them all,18 the only method
for counting EGs that we are aware of is enumeration. Specifically, Gillispie and
Perlman enumerated all the EGs for up to 10 nodes by means of a computer
program.7 They showed that the ratio is around 0.27 for 7-10 nodes. They also
conjectured a similar ratio for more than 10 nodes by extrapolating the exact
ratios for up to 10 nodes.

Enumerating EGs for more than 10 nodes seems challenging: To enumerate
all the EGs over 10 nodes, the computer program of Gillispie and Perlman needed
2253 hours in a ”mid-1990s-era, midrange minicomputer”. We obviously prefer to
know the exact ratio of EGs to DAGs for a given number of nodes rather than an
approximation to it. However, an approximate ratio may be easier to obtain and
serve as well as the exact one to decide which space to search. Therefore, Peña
proposed a Markov chain Monte Carlo (MCMC) approach to approximately
calculate the ratio while avoiding enumerating EGs.15 The approach consisted
of the following steps. First, the author constructed a Markov chain (MC) whose
stationary distribution was uniform over the space of EGs for the given number
of nodes. Then, the author sampled that stationary distribution and computed
the fraction R of EGs containing only directed edges (EDAGs) in the sample.
Finally, the author transformed this fraction into the desired approximate ratio
of EGs to DAGs as follows: Since #EGs

#DAGs can be expressed as #EDAGs
#DAGs

#EGs
#EDAGs ,2

then we can approximate it by #EDAGs
#DAGs

1
R where #DAGs and #EDAGs can

be computed as described in the literature.18;21 The author reported the so-
obtained approximate ratio for up to 20 nodes. The approximate ratios agreed
well with the exact ones available in the literature and suggested that the exact
ratios are not very low (the approximate ratios were in the range [0.26, 0.27] for
7-20 nodes). This suggests that one should not expect more than a moderate
gain in efficiency when searching the space of EGs instead of the space of DAGs.
Of course, this is a bit of a bold claim since the gain is dictated by the ratio
over the EGs visited during the search and not by the ratio over all the EGs in
the search space. For instance, the gain is not the same if we visit the empty

2 We use the symbol # followed by a family of graphs to denote the cardinality of the
family.
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Fig. 1: Families of graphical models considered in this paper. An arrow from a
family to another means that every independence model that is representable
by the latter family is also representable by the former. For those families where
several members may represent the same independence model, we give within
parenthesis a unique representative of all such members.

EG, whose ratio is 1, or the complete EG, whose ratio is 1/n! for n nodes.3

Unfortunately, it is impossible to know beforehand which EGs will be visited
during the search. Therefore, the best we can do is to draw (bold) conclusions
based on the ratio over all the EGs in the search space.

In the work cited above, the author does not only try to elicit which is the
most convenient search space for the independence models represented by DAGs,
but also to compare the size of this search space with that of a more general fam-
ily of graphical models known as chain graphs. In other words, the author com-
pares the expressivity of DAGs and chain graphs. Chain graphs (CGs) are graphs
with possibly directed and non-directed (i.e. undirected or bidirected) edges, and
no semidirected cycle, i.e. no sequence of edges of the form X → Y ⇀ . . . ⇀ X
where ⇀ is a non-directed edge or a directed edge → but never ←. Then, CGs
extend DAGs and, thus, they can represent at least as many independence mod-
els as DAGs. However, unlike DAGs whose interpretation is unique, there are
three interpretations of CGs as independence models: The Lauritzen-Wermuth-
Frydenberg (LWF) interpretation,13 the multivariate regression (MVR) interpre-
tation,5 and the Andersson-Madigan-Perlman (AMP) interpretation.2 It should
be mentioned that no interpretation subsumes any other, i.e. any interpreta-
tion can represent independence models that cannot be represented by the other
two interpretations.20 Figure 1 illustrates how the different families of graphi-
cal models considered in this paper are related one to another. For any of the
three CG interpretations, knowing the ratio of independence models that can
be represented by DAGs to independence models that can be represented by

3 In the latter case, note that there are n! orderings of the nodes in the EG and, thus,
there are n! orientations of all the undirected edges in the EG, one per ordering, and
none of them has directed cycles.
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CGs is a valuable (although not the only) piece of information when deciding
which family of graphical models to use. For instance, if the ratio is low, then
one may prefer to use CGs rather than DAGs, though the latter are easier to
manipulate and reason with. Unfortunately, the only method for computing the
fraction that we are aware of is by enumerating all the independence models that
can be represented by CGs. This is what Volf and Studený did for LWF CGs
by means of a computer program.22 Specifically, it is well-known that different
LWF CGs can represent the same independence model. All such CGs are said
to form a Markov equivalence class, which is typically represented by the largest
CG (LCG) in the class. The LCG in a class is the CG that has the directed
edge A → B iff A → B is in every CG in the class.6 The computer program of
Volf and Studený enumerated all the LCGs for up to 5 nodes, which enabled the
authors to show the ratio of EGs to LCGs is 1 for 2-3 nodes, 0.93 for 4 nodes,
and 0.76 for 5 nodes.

That Volf and Studený ran their computer program only up to 5 nodes
indicates that enumerating LCGs is challenging. Therefore, Peña proposed a
MCMC approach to approximately calculate the ratio of EGs to LCGs without
having to enumerate LCGs.15 The approach consisted of the following steps.
First, the author constructed a MC whose stationary distribution is uniform over
the space of LCGs for the given number of nodes. Then, the author sampled this
stationary distribution and computed the fraction of the independence models
represented by the LCGs in the sample that could also be represented by a
DAG. The author reported the so-obtained approximate fraction for up to 13
nodes. The approximate fractions agreed well with the exact ones available in
the literature and suggested that the ratio of EGs to LCGs is considerably low
(the approximate ratio was 0.04 for 13 nodes). This suggests that one should use
CGs instead of DAGs because they are considerably more expressive.

In this paper, we extend the work of Peña in the following four directions.

– We report the approximate ratio of EGs to DAGs for up to 31 nodes. Our
ratios are always greater than 0.26, which suggests that the average Markov
equivalence class is small.

– We show that a large majority of the Markov equivalence classes of DAGs
seem to have a size that is close to the average size.

– We report some new approximate ratios for EGs and DAGs. Specifically,
we report the approximate ratio of connected EGs to connected DAGs, of
connected EGs to EGs, and of connected DAGs to DAGs. These new ratios
are interesting because, as we will see, the DAG or EG learnt from some
given data is likely to be connected.

– We report the approximate ratio of EGs to LCGs for up to 25 nodes. We
also report similar approximate ratios for MVR CGs. Our results suggest
that both LWF CGs and MVR CGs are considerably more expressive than
DAGs.

The rest of the paper is organized as follows. Section 2 presents our results
for DAGs. Section 3 presents our results for LWF CGs and MVR CGs. Finally,
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Table 1: Exact and approximate #EGs
#DAGs and #EDAGs

#EGs .

NODES EXACT OLD APPROXIMATE NEW APPROXIMATE
#EGs

#DAGs
#EDAGs

#EGs
#EGs

#DAGs
#EDAGs

#EGs
#EGs

#DAGs
#EDAGs

#EGs

2 0.66667 0.50000 0.66007 0.50500 0.67654 0.49270

3 0.44000 0.36364 0.43704 0.36610 0.44705 0.35790

4 0.34070 0.31892 0.33913 0.32040 0.33671 0.32270

5 0.29992 0.29788 0.30132 0.29650 0.29544 0.30240

6 0.28238 0.28667 0.28118 0.28790 0.28206 0.28700

7 0.27443 0.28068 0.27228 0.28290 0.27777 0.27730

8 0.27068 0.27754 0.26984 0.27840 0.26677 0.28160

9 0.26888 0.27590 0.27124 0.27350 0.27124 0.27350

10 0.26799 0.27507 0.26690 0.27620 0.26412 0.27910

11 0.26179 0.28070 0.26179 0.28070

12 0.26737 0.27440 0.26825 0.27350

13 0.26098 0.28090 0.27405 0.26750

14 0.26560 0.27590 0.27161 0.26980

15 0.27125 0.27010 0.26250 0.27910

16 0.25777 0.28420 0.26943 0.27190

17 0.26667 0.27470 0.26942 0.27190

18 0.25893 0.28290 0.27040 0.27090

19 0.26901 0.27230 0.27130 0.27000

20 0.27120 0.27010 0.26734 0.27400

21 0.26463 0.27680

22 0.27652 0.26490

23 0.26569 0.27570

24 0.27030 0.27100

25 0.26637 0.27500

26 0.26724 0.27410

27 0.26950 0.27180

28 0.27383 0.26750

29 0.27757 0.26390

30 0.28012 0.26150

31 0.27424 0.26710

Section 4 recalls our findings and discusses future work. The paper ends with
two appendices devoted to technical details.

2 Directed and Acyclic Graphs

2.1 Average Markov Equivalence Class Size

In this section, we report the approximate average Markov equivalence class size
for 2-31 nodes. To be exact, we report the approximate ratio of EGs to DAGs
for 2-31 nodes and, thus, the average class size corresponds to the inverse of the
ratio. To obtain the ratios, we run the same computer program implementing
the MCMC approach described above as Peña does.15 The experimental settings
is also the same for up to 30 nodes, i.e. each approximate ratio reported is based
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on a sample of 1e+4 EGs, each obtained as the state of the MC after performing
1e+6 transitions with the empty EG as initial state. For 31 nodes though, each
EG sampled is obtained as the state of the MC after performing 2e+6 transitions
with the empty EG as initial state. In other words, the ratios reported are based
on running in parallel 1e+4 MCs of length 1e+6 for 2-30 nodes and of length
2e+6 for 31 nodes. We elaborate later on why we double the length of the MCs
for 31 nodes.

Table 1 presents our new approximate ratios #EGs
#DAGs and #EDAGs

#EGs , together
with the old approximate ones and the exact ones available in the literature.
The first conclusion that we draw from the table is that the new ratios are very
close to the exact ones, as well as to the old ones. This makes us confident on
the accuracy of the ratios for 11-31 nodes, where no exact ratios are available in
the literature due to the high computational cost involved in calculating them.
Another conclusion that we draw from the table is that the ratios seem to be
in the range [0.26, 0.28] for 11-31 nodes. This agrees well with the conjectured
ratio of 0.27 for more than 10 nodes reported by Gillispie and Perlman.7 A
last conclusion that we draw from the table is that the fraction of EGs that
represent a unique DAG, i.e. #EDAGs

#EGs , is in the range [0.26, 0.28] for 11-31
nodes, a substantial fraction.

Recall from the previous section that we slightly modified the experimental
setting for 31 nodes, namely we doubled the length of the MCs. The reason
is as follows. We observed an increasing trend in #EGs

#DAGs for 25-30 nodes, and
interpreted this as an indication that we might be reaching the limits of our
experimental setting. Therefore, we decided to double the length of the MCs for
31 nodes in order to see whether this broke the trend. As can be seen in Table
1, it did. This suggests that approximating the ratio for more than 31 nodes will
require larger MCs and/or samples than the ones used in this work.

Finally, note that we can approximate the number of EGs for up to 31 nodes
as #EGs

#DAGs#DAGs, where #EGs
#DAGs comes from Table 1 and #DAGs comes from

the literature.18 Alternatively, we can approximate it as #EGs
#EDAGs#EDAGs,

where #EGs
#EDAGs comes from Table 1 and #EDAGs can be computed as described

in the literature.21

2.2 Variability of the Markov Equivalence Class Size

In the previous section, we have shown that #EGs
#DAGs is approximately in the

range [0.26, 0.28] for 6-31 nodes. This means that the Markov equivalence class
size is approximately in the range [3.6, 3.9] on average for 6-31 nodes. In this
section, we report on the variability of the class size for 10-32 nodes. Recall that,
for n nodes, the class size can vary between 1 and n!. However, it has been shown
by Gillispie and Perlman by enumerating all the DAGs in all the classes for up
to 10 nodes,7 that a large majority of the classes for a given number of nodes
have size ≤ 4.4 In this section, we provide evidence that that result may hold for

4 It is difficult to appreciate the exact percentage of classes having size ≤ 4 from their
figures, but we estimate that it is not smaller than 70 %.
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Table 2: Statistics for the lower and upper bounds of class size.

NODES STATISTIC ARROWS LINES LOWER BOUND UPPER BOUND

10 Minimum 8 0 1 1

Q1 21 0 1 1

Q2 23 1 2 2

Q3 25 3 2 6

Maximum 35 19 120 2073600

15 Minimum 35 0 1 1

Q1 51 0 1 1

Q2 55 1 2 2

Q3 58 3 2 8

Maximum 74 17 240 1990656

20 Minimum 72 0 1 1

Q1 94 0 1 1

Q2 99 1 2 2

Q3 104 3 2 6

Maximum 127 22 720 2073600

25 Minimum 117 0 1 1

Q1 150 0 1 1

Q2 155 1 2 2

Q3 161 3 2 6

Maximum 187 17 120 345600

30 Minimum 90 0 1 1

Q1 218 0 1 1

Q2 224 1 2 2

Q3 231 3 2 6

Maximum 265 117 39916800 1.996e+50

32 Minimum 58 0 1 1

Q1 248 0 1 1

Q2 255 1 2 2

Q3 263 3 2 8

Maximum 304 185 8.718e+10 8.827e+83

10-32 nodes too. Therefore, for any number of nodes in the range [2, 32], a large
majority of the classes seem to have a size relatively close to the average size
which is in the range [3.6, 3.9] and, thus, this average value may be a reasonable
estimate of the size of a randomly chosen class.

To arrive at the conclusion above, we ran the same computer program as
in the previous section to sample 2e+4 EGs, each obtained as the state of the
MC after performing 2e+6 transitions with the empty EG as initial state. The
only reason why we doubled parameters as compared to the previous section is
because time permitted it. However, time did not permit to compute the sizes of
all the classes represented by all the EGs sampled by enumerating all the DAGs
in the classes. Therefore, we decided to bound the class sizes instead. A lower
bound can be obtained by first finding the largest clique in each connectivity
component of the EG and, then, taking the product of the factorials of the
sizes of these cliques. An upper bound can be obtained as the product of the
factorials of all the cliques in all the connectivity components in the EG. To see
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how we arrived at these bounds, note that all the connectivity components of an
EG are chordal.3 Then, we can orient the undirected edges in each connectivity
component such that neither immoralities nor directed cycles appear in any
former connectivity component.12 This together with the fact that an EG is a
CG that has no induced subgraph of the form A→ B −C 3 ensure that neither
new immoralities nor directed cycles appear in the resulting directed graph.
Then, the resulting directed graph is a DAG that belongs to the class represented
by the EG. Specifically, the algorithm arranges all the cliques in a connectivity
component in a tree, chooses any of them as the root of the tree, and then orients
all the undirected edges in any way that respects the following constraint: A−B
cannot get oriented as A→ B if B belongs to a clique that is closer to the root
than the clique A belongs to. Therefore, if we choose the largest clique as the
root of the clique tree, then we arrive at our lower bound. On the other hand,
if we disregard the constraint mentioned when orienting the undirected edges,
then we arrive at our upper bound. Our bounds are probably rather loose but,
on the other hand, they are easy to compute and, as we will see, tight enough
for our purpose. The source code used in this section and the results obtained
are publicly available at https://github.com/mgomez-olmedo/pgm-mcmc.

From the 2e+4 EGs sampled, we computed the following statistics: Minimum,
maximum, and first, second and third quartiles (Q1, Q2 and Q3) of the number
of directed edges (arrows), undirected edges (lines), and lower and upper bounds.
The results for 10, 15, 20, 25, 30 and 32 nodes can be seen Table 2. The results
for the rest of the numbers of nodes considered are very similar to the ones in
the table and, thus, we decided to omit them. The first conclusion that we can
draw from the table is that whereas Q1, Q2 and Q3 for the number of arrows
grow with the number of nodes, Q1, Q2 and Q3 for the number of lines remain
low and constant as the number of nodes grows. This implies that, as we can
see in the table, Q1, Q2 and Q3 for the lower and upper bounds do not vary
substantially with the number of nodes. Recall that all the DAGs in a class only
differ in the orientation of some of the lines in the corresponding EG. So, if the
EG has few lines, then the class must be small. Note however that the maxima
of the lower and upper bounds do vary substantially with the number of nodes,
specially between 25 and 30 nodes. We interpret this, again, as an indication that
30 nodes might be the limit of our experimental setting. The second conclusion
that we can draw is that Q1 for the lower and upper bounds is 1. Therefore,
≥ 25% of the classes sampled have size 1. This is not a surprise because, as
shown in the previous section, #EDAGs

#EGs which represents the fraction of classes

of size 1 is in the range [0.26, 0.28] for 7-31 nodes. The third conclusion that we
can draw is that Q2 for the lower and upper bounds is 2. Therefore, ≥ 50% of
the classes sampled have size ≤ 2 and, thus, they are smaller than the average
size which is in the range [3.6, 3.9]. The fourth conclusion that we can draw is
that Q3 for the upper bound is 8. Therefore, ≥ 75% of the classes sampled have
size ≤ 8 and, thus, relatively close to the average size which is in the range [3.6,
3.9]. It is worth mentioning that the last three conclusions agree well with the
class size distributions reported by Gillispie and Perlman for up to 10 nodes.7
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Table 3: Approximate #CEGs
#CDAGs , #CEGs

#EGs and #CDAGs
#DAGs .

NODES NEW APPROXIMATE
#CEGs

#CDAGs
#CEGs
#EGs

#CDAGs
#DAGs

2 0.51482 0.50730 0.66667

3 0.39334 0.63350 0.72000

4 0.32295 0.78780 0.82136

5 0.29471 0.90040 0.90263

6 0.28033 0.94530 0.95115

7 0.27799 0.97680 0.97605

8 0.26688 0.98860 0.98821

9 0.27164 0.99560 0.99415

10 0.26413 0.99710 0.99708

11 0.26170 0.99820 0.99854

12 0.26829 0.99940 0.99927

13 0.27407 0.99970 0.99964

14 0.27163 0.99990 0.99982

15 0.26253 1.00000 0.99991

16 0.26941 0.99990 0.99995

17 0.26942 1.00000 0.99998

18 0.27041 1.00000 0.99999

19 0.27130 1.00000 0.99999

20 0.26734 1.00000 1.00000

21 0.26463 1.00000 1.00000

22 0.27652 1.00000 1.00000

23 0.26569 1.00000 1.00000

24 0.27030 1.00000 1.00000

25 0.26637 1.00000 1.00000

26 0.26724 1.00000 1.00000

27 0.26950 1.00000 1.00000

28 0.27383 1.00000 1.00000

29 0.27757 1.00000 1.00000

30 0.28012 1.00000 1.00000

31 0.27424 1.00000 1.00000

∞ ? ? ≈ 1

In summary, despite the class size can vary between 1 and n! for n nodes, our
results suggest that a large majority of the classes have a size relatively close to
the average size which is in the range [3.6, 3.9] and, thus, this average value may
be a reasonable estimate of the size of a randomly chosen class.

2.3 Average Markov Equivalence Class Size for Connected DAGs

In this section, we report the approximate ratio of connected EGs (CEGs) to
connected DAGs (CDAGs). We elaborate below on the relevance of knowing this
ratio. For completeness, we also report the approximate ratios of CEGs to EGs,
and of CDAGs to DAGs. The approximate ratio of CEGs to CDAGs is computed
from the sample obtained in Section 2.1 as follows. First, we compute the ratio
R′ of EDAGs to CEGs in the sample. Second, we transform this approximate
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ratio into the desired approximate ratio of CEGs to CDAGs as follows: Since
#CEGs
#CDAGs can be expressed as #EDAGs

#CDAGs
#CEGs
#EDAGs , then we can approximate it by

#EDAGs
#CDAGs

1
R′ where #EDAGs and #CDAGs can be computed as described in

the literature.17;21 The approximate ratio of CEGs to EGs is computed directly
from the sample. The approximate ratio of CDAGs to DAGs is computed as
described in the literature.17;18

Gillispie and Perlman state that ”the variables chosen for inclusion in a
multivariate data set are not chosen at random but rather because they occur
in a common real-world context, and hence are likely to be correlated to some
degree”.7 This implies that the DAG or EG learnt from some given data is likely
to be connected. We agree with this observation, because we believe that humans
are good at detecting sets of mutually uncorrelated variables so that the original
learning problem can be divided into smaller independent learning problems,
each of which results in a CEG. Therefore, although we still cannot say which
EGs will be visited during the search, we can say that some of them will most
likely be connected and some others disconnected. This raises the question of
whether #CEGs

#CDAGs ≈
#DEGs
#DDAGs where DEGs and DDAGs stand for disconnected

EGs and disconnected DAGs. Table 3 shows that #CEGs
#CDAGs is in the range [0.26,

0.28] for 6-31 nodes and, thus, #CEGs
#CDAGs ≈

#EGs
#DAGs . That the two ratios coincide

is not by chance because #CEGs
#EGs is in the range [0.95, 1] for 6-31 nodes, as

can be seen in the table. A problem of this ratio being so close to 1 is that
sampling a DEG is so unlikely that we cannot answer the question of whether
#CEGs
#CDAGs ≈

#DEGs
#DDAGs with our sampling scheme. Therefore, we have to content

with having learnt that #CEGs
#CDAGs ≈

#EGs
#DAGs .

From the results in Tables 1 and 3, it seems that the asymptotic values for
#EGs
#DAGs , #EDAGs

#EGs , #CEGs
#CDAGs and #CEGs

#EGs should be around 0.27, 0.27, 0.27 and
1, respectively. It would be nice to have a formal proof of these results. In this
paper, we have proven a related result, namely that the ratio of CDAGs to
DAGs is asymptotically 1. The proof can be found in Appendix A. Note from
Table 3 that the asymptotic value is almost achieved for 6-7 nodes already. Our
result adds to the list of similar results in the literature, e.g. the ratio of labeled
connected graphs to labeled graphs is asymptotically 1.10

Note that we can approximate the number of CEGs for up to 31 nodes
as #CEGs

#EGs #EGs, where #CEGs
#EGs comes from Table 3 and #EGs can be com-

puted as shown in the previous section. Alternatively, we can approximate it as
#CEGs
#CDAGs#CDAGs, where #CEGs

#CDAGs comes from Table 3 and #CDAGs can be

computed as described in the literature.17

3 Chain Graphs

Chain graphs (CGs) is a family of graphical models containing two types of
edges, directed edges and a secondary type of edge. The secondary type of edge
is then used to create components in the graph that are connected by directed
edges similarly as the nodes in a DAG. This allows CGs to represents a much
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larger set of independence models compared to DAGs, while still keeping some
of the simplicity that makes DAGs so useful.

As noted in the introduction, there exist three interpretations of how to read
independencies from a CG. However, the three coincide when the CG has only
directed edges. Hence, DAGs are a subfamily of the three CG interpretations. It
should also be noted that CGs of the LWF interpretation (LWF CGs) and AMP
interpretation (AMP CGs) are typically represented with directed and undi-
rected edges, while CGs of the MVR interpretation (MVR CGs) are typically
represented with directed and bidirected edges. LWF CGs and AMP CGs con-
taining only undirected edges are also called Markov networks (MNs), whereas
MVR CGs containing only bidirected edges are also called covariance graphs
(covGs).

In this work, we have chosen to focus on the LWF and MVR interpretations
of CGs. More specifically, we study the ratio of independence models that can
be represented by MNs and DAGs (resp. covGs and DAGs) to the indepen-
dence models that can be represented by LWF CGs (resp. MVR CGs). Here-
inafter, these ratios are denoted as RLWFtoMNs, RLWFtoDAGs, RMVRtoCovGs

and RMVRtoDAGs. Knowing these ratios is a valuable (although not the only)
piece of information when deciding which family of graphical models to use. If a
ratio is large (close to 1) then the gain of using the more complex CGs is small
compared to using the simpler subfamily, while if it is small then one might
prefer to use CGs instead of the simpler subfamily.

As mentioned in the introduction, the ratios described above have previously
been approximated for LWF CGs for up to 13 nodes.15 Specifically, the author
used a MCMC sampling scheme to sample the space of largest chain graphs
(LCGs), because each LCG represents one and only one of the independence
models that can be represented by LWF CGs. To our knowledge, we are the
first to propose a similar scheme to sample the space of independence models
that can be represented by MVR CGs. To do so, we had to overcome some
major problems. First of all, there existed no unique representative for each
independence model that can be represented by MVR CGs. Hence, one such
representative, called essential MVR CGs, had to be defined and characterized.
Secondly, no operations for creating a MC over essential MVR CGs existed. This
meant that such a set of operations had to be defined so that it could be proven
that the stationary distribution of the MC was the uniform distribution. Hence
the major contributions in this section, apart from the calculated ratios and their
implications, are the essential MVR CGs and the corresponding MC operators.

The rest of the section is structured as follows. First, we define essential MVR
CGs and the corresponding MC operators. Then, we move on to the results with
a short discussion. Finally, we also discuss some open questions. We have chosen
to move theoretical proofs and some additional material for essential MVR CGs
to Appendix B.
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3.1 Essential MVR CGs

We start by introducing some notation. All graphs in this paper are defined over
a finite set of variables V . If a graph G contains an edge between two nodes V1
and V2, we denote with V1 → V2 a directed edge, with V1 ←→ V2 a bidirected edge
and with V1−V2 an undirected edge. Moreover we say that the edge V1 ← V2
has an arrowhead towards V1 and a non-arrowhead towards V2. The parents of
a set of nodes X of G is the set paG(X) = {V1|V1 → V2 is in G, V1 /∈ X and
V2 ∈ X}. The spouses of X is the set spG(X) = {V1|V1 ←→ V2 is in G, V1 /∈ X and
V2 ∈ X}. The neighbours of X is the set nbG(X) = {V1|V1−V2 is in G, V1 /∈ X
and V2 ∈ X}. The adjacents of X is the set adG(X) = {V1|V1 → V2,V1 ← V2,
V1 ←→ V2 or V1−V2 is in G, V1 /∈ X and V2 ∈ X}. A route from a node V1 to a
node Vn in G is a sequence of nodes V1, . . . , Vn such that Vi ∈ adG(Vi+1) for all
1 ≤ i < n. A path is a route containing only distinct nodes. A path is called a
cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1)∪spG(Vi+1)∪nbG(Vi+1)
for all 1 ≤ i < n. A path is strictly descending if Vi ∈ paG(Vi+1) for all 1 ≤ i < n.
The strict descendants of a set of nodes X of G is the set sdeG(X) = {Vn| there
is a strict descending path from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. The strict
ancestors of X is the set sanG(X) = {V1|Vn ∈ sdeG(V1), V1 /∈ X,Vn ∈ X}).
A cycle is called a semi-directed cycle if it is descending and Vi → Vi+1 is in
G for some 1 ≤ i < n. An undirected (resp. bidirected) component C of a
graph is a maximal (wrt set inclusion) set of nodes such that there exists a
path between every pair of nodes in C containing only undirected edges (resp.
bidirected edges). A node B is a collider in G if G has an induced subgraph of
the form A → B ← C, A → B ←→ C, or A ←→ B ← C. Otherwise, B is called
non-collider. If A and C are adjacent in G, then B is called a shielded collider or
non-collider. Otherwise, B is called unshielded collider or non-collider. A MVR
CG is a graph containing only directed and bidirected edges but no semi-directed
cycles.

Let X, Y and Z denote three disjoint subsets of V . We say that X is separated
from Y given Z in a MVR CG G, denoted as X⊥GY |Z, iff there exists no Z-
connecting path between X and Y in G. A path is said to be Z-connecting in
G iff (1) every non-collider on the path is not in Z, and (2) every collider on
the path is in Z or sanG(Z). A node B is said to be a collider on the path if
the path contains any of the following subpaths: A→ B ← C, A→ B ←→ C, or
A ←→ B ← C. We say that G represents an independence iff the corresponding
separation holds in G. The independence model represented by G is the set of
independencies whose corresponding separation statements hold in G. As with
DAGs and LWF CGs, different MVR CGs can represent the same independence
model. All such MVR CGs are said to form a Markov equivalence class. As we
have discussed, EGs were introduced to represent Markov equivalence classes of
DAGs. EGs were then extended to represent Markov equivalence classes of so-
called ancestral graphs.1 Since ancestral graphs are a superset of MVR CGs, we
know on the one hand that all results presented by Ali et al. also hold for MVR
CGs, and hence the extended EGs can be used to represent Markov equivalence
classes of MVR CGs. On the other hand, we also know that more restrictions
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and characteristics might be (and is) possible to assert on the structure of the
extended EGs if we only consider MVR CGs rather than ancestral graphs. That
is why we define an essential MVR CG as follows.

Definition 1. A graph G∗ is said to be the essential MVR CG of a MVR CG
G if it has the same skeleton as G and contains all and only the arrowheads
common to every MVR CG in the Markov equivalence class of G.

From this definition it is clear that an essential MVR CG is an unique rep-
resentation of a Markov equivalence class of MVR CGs. Note that an essential
MVR CG is not actually a MVR CG but might contain undirected edges as well.
Each undirected edge implies that there exists two MVR CGs in the Markov
equivalence class that have a directed edge between the same two nodes but in
opposite directions. Hence, essential MVR CGs contain components containing
only undirected edges (undirected components) as well as components contain-
ing only bidirected edges (bidirected components). It can be also be shown that
no node can be an endnode of both an undirected edge and a bidirected edge and
hence that these components are connected to each other with directed edges
similarly as the components of any other CG. Using the separation criterion
defined above for MVR CGs on essential MVR CGs, we can state the following
theorem.

Theorem 1. An essential MVR CG G∗ represents the same independence model
as every MVR CG G it is the essential for.

Now, if we define an indifferent arrowhead as an arrowhead that exists in all
the members of a given Markov equivalent class of MVR CGs, then we can give
a characterization of essential MVR CGs.

Theorem 2. A graph G containing bidirected edges, directed edges and/or undi-
rected edges is an essential MVR CG iff (1) it contains no semi-directed cycles,
(2) all arrowheads are indifferent, (3) all undirected components are chordal, and
(4) all nodes in the same undirected component share the same parents but have
no spouses.

Finally, we can state the following lemmas.

Lemma 1. There exists a DAG representing the same independence model as
an essential MVR CG G∗ iff G∗ contains no bidirected edges. Moreover, the
essential MVR CG is then an EG.

Lemma 2. There exists a covG representing the same independence model as
an essential MVR CG G∗ iff every non-collider in G∗ is shielded.

The proofs of the theorems and lemmas above as well as an algorithm for
finding the essential MVR CG for a given MVR CG can be found in Appendix
B.
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3.2 MC operations

In this section, we propose eight operators that can be used to create a MC
whose stationary distribution is the uniform distribution over the space of es-
sential MVR CGs for a given number of nodes. The transition matrix of the MC
corresponds to choosing uniformly one of the eight operators and applying it to
the current essential MVR CG. Specifically, let Gi be the essential MVR CG
before applying operator and Gi+1 the essential MVR CG after applying the
operator. The operators are the following ones.

Definition 2. MC Operators

1. Add Undirected Edge Choose two nodes X and Y in Gi uniformly and with
replacement. If the two nodes are non-adjacent in Gi and the graph resulting
from adding an undirected edge between them is an essential MVR CG, then
let Gi+1 = Gi ∪ {X−Y }, otherwise let Gi+1 = Gi.

2. Remove Undirected Edge Choose two nodes X and Y in Gi uniformly and
with replacement. If the two nodes are neighbours in Gi and the graph re-
sulting from removing the undirected edge between them is an essential MVR
CG, then let Gi+1 = Gi \ {X−Y }, otherwise let Gi+1 = Gi.

3. Add Directed Edge Choose two nodes X and Y in Gi uniformly and with
replacement. If the two nodes are non-adjacent in Gi and the graph resulting
from adding a directed edge from X to Y is an essential MVR CG, then let
Gi+1 = Gi ∪ {X → Y }, otherwise let Gi+1 = Gi.

4. Remove Directed Edge Choose two nodes X and Y in Gi uniformly and with
replacement. If there exist a directed edge X → Y between them in Gi and the
graph resulting from removing the directed edge between them is an essential
MVR CG, then let Gi+1 = Gi \ {X → Y }, otherwise let Gi+1 = Gi.

5. Add Bidirected Edge Choose two nodes X and Y in Gi uniformly and with
replacement. If the two nodes are non-adjacent in Gi and the graph resulting
from adding a bidirected edge between them is an essential MVR CG, then
let Gi+1 = Gi ∪ {X ←→ Y }, otherwise let Gi+1 = Gi.

6. Remove Bidirected Edge Choose two nodes X and Y in Gi uniformly and
with replacement. If the two nodes are spouses in Gi and the graph resulting
from removing the bidirected edge between them is an essential MVR CG,
then let Gi+1 = Gi \ {X−Y }, otherwise let Gi+1 = Gi.

7. Add V-collider Chose a node X in Gi uniformly. If |adGi(X)| ≥ 2, let k =
rand(1, |adGi(X)|) and let Vk be k nodes taken uniformly from adGi(X)
with replacement. If all edge-endings towards X from every node in Vk are
non-arrows, and the graph resulting from replacing these edge-endings with
arrows is an essential MVR CG, then let Gi+1 be such a graph. Otherwise
let Gi+1 = Gi.

8. Remove V-collider Chose a node X in Gi uniformly. If |adGi
(X)| ≥ 2, let

k = rand(1, |adGi
(X)|) and let Vk be k nodes taken uniformly from adGi

(X)
with replacement. If all edge-endings towards X from every node in Vk are
arrows, and the graph resulting from replacing these edge-endings with non-
arrows is an essential MVR CG, then let Gi+1 be such a graph. Otherwise
let Gi+1 = Gi.
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Table 4: Exact and approximate RLWFtoMNs, RLWFtoDAGs and RLWFpureCGs.

NODES EXACT APPROXIMATE

RLWFtoMNs RLWFtoDAGs RLWFpureCGs RLWFtoMNs RLWFtoDAGs RLWFpureCGs

2 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000

3 0.72727 1.00000 0.00000 0.71883 1.00000 0.00000

4 0.32000 0.92500 0.06000 0.31217 0.93266 0.05671

5 0.08890 0.76239 0.22007 0.08093 0.76462 0.21956

6 0.01650 0.58293 0.40972

7 0.00321 0.41793 0.57975

8 0.00028 0.28602 0.71375

9 0.00018 0.19236 0.80746

10 0.00001 0.12862 0.87137

11 0.00000 0.08309 0.91691

12 0.00000 0.05544 0.94456

13 0.00000 0.03488 0.96512

14 0.00000 0.02371 0.97629

15 0.00000 0.01518 0.98482

16 0.00000 0.00963 0.99037

17 0.00000 0.00615 0.99385

18 0.00000 0.00382 0.99618

19 0.00000 0.00267 0.99733

20 0.00000 0.00166 0.99834

21 0.00000 0.00105 0.99895

22 0.00000 0.00079 0.99921

23 0.00000 0.00035 0.99965

24 0.00000 0.00031 0.99969

25 0.00000 0.00021 0.99979

Theorem 3. The MC created from the operators in Definition 2 reaches the
uniform distribution over the space of essential MVR CGs for the given number
of nodes when the number of transitions goes to infinity.

3.3 Results

Using the MC operations described by Peña15 and those described above, LCGs
and essential MVR CGs were sampled and the above described ratios calculated.
Specifically, 1e+5 LCGs and 1e+5 essential MVR CGs were sampled with 1e+5
transitions between each sample. To check if the independence model represented
by a LCG could be represented by a DAG or MN, we made use of the results in
the literature.4 To check if the independence model represented by an essential
MVR CG could be represented by a DAG or covG, we made use of Lemma 1
and Lemma 2. The source code used in this section and the results obtained are
publicly available at
www.ida.liu.se/divisions/adit/data/graphs/CGSamplingResources/.

The calculated approximate ratios can be found in Tables 4 and 5. In addi-
tion to these, we also present the exact ratios found through enumeration for
up to 5 nodes. Finally we have also added a third ratio, RLWFpureCGs resp.
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Table 5: Exact and approximate RMVRtoCovGs, RMVRtoDAGs, and
RMVRpureCGs.

NODES EXACT APPROXIMATE

RMV RtoCovGs RMV RtoDAGs RMV RpureCGs RMV RtoCovGs RMV RtoDAGs RMV RpureCGs

2 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000

3 0.72727 1.00000 0.00000 0.72547 1.00000 0.00000

4 0.28571 0.82589 0.10714 0.28550 0.82345 0.10855

5 0.06888 0.59054 0.36762 0.06967 0.59000 0.36787

6 0.01241 0.40985 0.57921

7 0.00187 0.28675 0.71145

8 0.00028 0.19507 0.80465

9 0.00002 0.13068 0.86930

10 0.00000 0.08663 0.91337

11 0.00000 0.05653 0.94347

12 0.00000 0.03771 0.96229

13 0.00000 0.02385 0.97615

14 0.00000 0.01592 0.98408

15 0.00000 0.00983 0.99017

16 0.00000 0.00644 0.99356

17 0.00000 0.00485 0.99515

18 0.00000 0.00267 0.99733

19 0.00000 0.00191 0.99809

20 0.00000 0.00112 0.99888

21 0.00000 0.00073 0.99927

22 0.00000 0.00048 0.99952

23 0.00000 0.00035 0.99965

24 0.00000 0.00017 0.99983

25 0.00000 0.00014 0.99986

RMVRpureCGs, describing the ratio of pure LCGs resp. pure essential MVR CGs
to all independence models representable by the corresponding interpretation.
A pure LCG resp. essential MVR CG represents an independence model that
cannot be represented by any DAG or MN resp. DAG or covG. Note that this is
not equal to all the independence models that can be represented by LWF CGs
minus those that can be represented by DAGs or MNs, since some models can
be represented by both DAGs and MNs (and similarly for MVR CGs).

Regarding the accuracy of the approximations, we can see that in both tables
the approximations agree well with the exact values. Moreover, plotting the
approximated values results in smooth curves, indicating that the LCGs and
essential MVR CGs were sampled from an almost uniform distribution. This is
further supported by plots of the average number of directed edges, undirected
edges or bidirected edges. We omit this results for brevity. For more than 25
nodes, we could however notice inconsistencies in the approximations indicating
that not enough MC transitions were performed.

Regarding the approximate ratios themselves, we can see that RLWFtoDAGs

and RMVRtoDAGs decrease exponentially when the number of nodes grows. This
agrees well with previous results. However, we are the first to identify that this
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trend is exponential. Specifically, for more than three nodes, the approximate
(and exact) RLWFtoDAGs resp. RMVRtoDAGs almost perfectly follows the curve
9.379 ∗ 0.6512n resp. 5.352 ∗ 0.6614n where n is the number of nodes. Moreover,
as RLWFtoMNs and RMVRtoCovGs suggest, MNs and covGs can only represent
a very small set of the independence models that CGs and also DAGs can rep-
resent. Already for 10 nodes the ratios are ≤ 1e-5 and hence, since only 1e+5
graphs were sampled, they are unreliable. Finally, we can see that RLWFpureCGs

and RMVRpureCGs grow very fast so that they are ≥ 0.99 for already 15 nodes.
Hence, this indicates that there is a large gain in using the more advanced family
of CGs compared to DAGs, MNs or covGs, in terms of expressivity.

Note that we can obtain approximate numbers of LCGs and essential MVR
CGs for up to 25 nodes by just multiplying the inverse of RLWFtoMNs and
RMVRtoCovGs by the corresponding number of independence models that can

be represented by MNs and covGs, which is 2
n(n−1)

2 for n nodes. Alternatively,
we can multiply the inverse of RLWFtoDAGs and RMVRtoDAGs by the numbers
of EGs, which are known exactly for up to 10 nodes or can be estimated for up
to 31 nodes as we have described in Section 2.1.

4 Discussion

Gillispie and Perlman have shown that #EGs
#DAGs ≈ 0.27 for 7-10 nodes.7 We have

shown in this paper that #EGs
#DAGs is in the range [0.26, 0.28] for 11-31 nodes.

These results indicate that the average Markov equivalence class size is in the
range [3.6, 3.9] and, thus, one should not expect more than a moderate gain in
efficiency when searching the space of EGs instead of the space of DAGs. We
have also shown that a large majority of the classes have a size relatively close
to the average size which is in the range [3.6, 3.9] and, thus, this average value
may be a reasonable estimate of the size of a randomly chosen class. We have
also shown that #CEGs

#CDAGs is in the range [0.26, 0.28] for 6-31 nodes and, thus,
#CEGs
#CDAGs ≈

#EGs
#DAGs . Therefore, when searching the space of EGs, the fact that

some of the EGs visited will most likely be connected does not seem to imply
any additional gain in efficiency beyond that due to searching the space of EGs
instead of the space of DAGs.

Some questions that remain open and that we would like to address in the
future are checking whether #CEGs

#CDAGs ≈
#DEGs
#DDAGs , and computing the asymp-

totic ratios of EGs to DAGs, EDAGs to EGs, CEGs to CDAGs, and of CEGs
to EGs. Recall that in this paper we have proven that the asymptotic ratio of
CDAGs to DAG is 1. Another topic for further research would be improving the
graphical modifications that determine the MC transitions, because they rather
often produce a graph that is not an EG. Specifically, the MC transitions are de-
termined by choosing uniformly one out of seven modifications to perform on the
current EG. Actually, one of the modifications leaves the current EG unchanged.
Therefore, around 14 % of the modifications cannot change the current EG and,
thus, 86 % of the modifications can change the current EG. In our experiments,
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however, only 6-8 % of the modifications change the current EG. The rest up to
the mentioned 86 % produce a graph that is not an EG and, thus, they leave
the current EG unchanged. This problem has been previously pointed out by
Perlman.16 Furthermore, he presents a set of more complex modifications that
are claimed to alleviate the problem just described. Unfortunately, no evidence
supporting this claim is provided. The problem discussed would not be such if we
were to sample the space of DAGs. Specifically, a MCMC approach whose opera-
tors only produce DAGs by book-keeping local information has been proposed.8

As mentioned above, we are not interested in sampling DAGs but independence
model represented by DAGs, hence we sample the space of EGs. More recently,
He et al. have proposed an alternative set of modifications having a series of
desirable features that ensure that applying the modifications to an EG results
in a different EG.11 Although these modifications are more complex than those
by Peña15, the authors show that their MCMC approach is thousands of times
faster for 3, 4 and 6 nodes. However, they also mention that it is unfair to com-
pare these two approaches: Whereas 1e+4 MCs of 1e+6 transitions each are run
by Peña to obtain a sample, they only run one MC of between 1e+4 and 1e+5
transitions. Therefore, it is not clear how their MCMC approach scales to 10-30
nodes as compared to the one by Peña. The point of developing modifications
that are more effective than ours at producing EGs is to make a better use of
the running time by minimizing the number of graphs that have to be discarded.
However, this improvement in effectiveness has to be weighed against the com-
putational cost of the modifications, so that the MCMC approach still scales to
the number of nodes of interest.

In this paper, we have also studied the LWF and MVR interpretations of
CGs and shown that only a very small portion of the independence models
represented by these can be represented by DAGs, MNs or covGs. More specifi-
cally, we have identified that this ratio decreases exponentially when the number
of nodes grows. During the process to obtain these results, we have defined and
characterized a unique representative for each independence model representable
by MVR CGs similar to LCGs for LWF CGs and EGs for DAGs. This allows for
future research in what independence models MVR CGs can represent as well
how the number of members varies in the different Markov equivalence classes
of MVR CGs. In the future, it would also be interesting to look further on how
the results for these two interpretations relate to similar results for the AMP
interpretation of CGs. Apart from these topics, a future follow-up work could
of course consider larger number of nodes. For the MC operations described
here for CGs, only about 8 % of the MC transitions were successful, similarly
as noted for DAGs. In our experiments, we also observed that the majority of
the runtime was spent on checking whether the modified graphs were LCGs
or essential MVR CGs. Both these checks can however be done in polynomial
time but they can of course be improved, e.g. it may be the case that the check
can be done locally depending on the operation applied. One problem with in-
creasing the number of nodes in the experiments is however that RLWFtoDAGs

and RMVRtoDAGs decrease exponentially with the number of nodes. Hence, to
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get good approximations, the number of graphs sampled would also have to be
increased exponentially. For instance, according to the equations fitted to the ap-
proximate ratios reported, we can estimate that RMVRtoDAGs is approximately
2e-5 for 30 nodes, and hence only two essential MVR CGs whose independence
models could be represented by DAGs would be sampled on average for a sample
size of 1e+ 5.

Appendix A: Asymptotic Behavior of CDAGs

Theorem 4. The ratio of CDAGs to DAGs with n nodes tends to 1 as n tends
to infinity.

Proof. Let An and an denote the numbers of DAGs and CDAGs with n nodes,
respectively. Specifically, we prove that (An/n!)/(an/n!) → 1 as n → ∞. This
holds if the following three conditions are met:24

(i) log((An/n!)/(An−1/(n− 1)!))→∞ as n→∞,
(ii) log((An+1/(n + 1)!)/(An/n!)) ≥ log((An/n!)/(An−1/(n − 1)!)) for all large

enough n, and
(iii)

∑∞
k=1(Ak/k!)2/(A2k/(2k)!) converges.

We start by proving that the condition (i) is met. Note that from every DAG
G over the nodes {v1, . . . , vn−1} we can construct 2n−1 different DAGs H over
{v1, . . . , vn} as follows: Copy all the arrows from G to H and make vn a child in
H of each of the 2n−1 subsets of {v1, . . . , vn−1}. Therefore,

log((An/n!)/(An−1/(n− 1)!)) ≥ log(2n−1/n)

which clearly tends to infinity as n tends to infinity.
We continue by proving that the condition (ii) is met. Every DAG over the

nodes V ∪ {w} can be constructed from a DAG G over V by adding the node w
to G and making it a child of a subset Pa of V . If a DAG can be so constructed
from several DAGs, we simply consider it as constructed from one of them. Let
H1, . . . ,Hm represent all the DAGs so constructed from G. Moreover, let Pai
denote the subset of V used to construct Hi from G. From each Pai, we can
now construct 2m DAGs over V ∪ {w, u} as follows: (i) Add the node u to Hi

and make it a child of each subset Paj ∪ {w} with 1 ≤ j ≤ m, and (ii) add the
node u to Hi and make it a parent of each subset Paj ∪ {w} with 1 ≤ j ≤ m.
Therefore, An+1/An ≥ 2An/An−1 and thus

log((An+1/(n+ 1)!)/(An/n!)) = log(An+1/An)− log(n+ 1)

≥ log(2An/An−1)−log(n+1) ≥ log(2An/An−1)−log(2n) = log(An/An−1)−log n

= log((An/n!)/(An−1/(n− 1)!)).

Finally, we prove that the condition (iii) is met. Let G and G′ denote two
(not necessarily distinct) DAGs with k nodes. Let V = {v1, . . . , vk} and V ′ =
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{v′1, . . . , v′k} denote the nodes in G and G′, respectively. Consider the DAG H
over V ∪V ′ that has the union of the arrows in G and G′. Let w and w′ denote two
nodes in V and V ′, respectively. Let S be a subset of size k−1 of V ∪V ′\{w,w′}.
Now, make w a parent in H of all the nodes in S ∩ V ′, and make w′ a child in
H of all the nodes in S ∩ V . Note that the resulting H is a DAG with 2k nodes.
Note that there are k2 different pairs of nodes w and w′. Note that there are(
2k−2
k−1

)
different subsets of size k − 1 of V ∪ V ′ \ {w,w′}. Note that every choice

of DAGs G and G′, nodes w and w′, and subset S gives rise to a different DAG
H. Therefore, A2k/A

2
k ≥ k2

(
2k−2
k−1

)
and thus

∞∑
k=1

(Ak/k!)2/(A2k/(2k)!) =

∞∑
k=1

A2
k(2k)!/(A2kk!2)

≤
∞∑
k=1

((k − 1)!(k − 1)!(2k)!)/(k2(2k − 2)!k!2) =

∞∑
k=1

(4k − 2)/k3

which clearly converges. ut

Appendix B: Proof for Section 3

In this appendix we give the proofs for the theorems defined in Section 3. These
proofs do however require some more notation to be defined. Hence this section
will start with a notation subsection. This is then followed by the proofs for
essential MVR CGs and finally the proof of Theorem 3 is given.

Notation

Note that some of the definitions below were introduced in Section 3.1. We repeat
them here for completeness. All graphs in this paper are defined over a finite
set of variables V . If a graph G contains an edge between two nodes V1 and V2,
we denote with V1 → V2 a directed edge, with V1 ←→ V2 a bidirected edge and
with V1−V2 an undirected edge. By V1 ←(V2 we mean that either V1 → V2 or
V1 ←→ V2 is in G. By V1 ( V2 we mean that either V1 → V2 or V1 − V2 is in G.
By V1 (( V2 we mean that there exists an edge between V1 and V2 in G. A set
of nodes is said to be complete if there exist edges between all pairs of nodes in
the set. Moreover we say that the edge V1 ← V2 has an arrowhead towards V1
and a non-arrowhead towards V2.

The parents of a set of nodes X of G is the set paG(X) = {V1|V1 → V2 is in G,
V1 /∈ X and V2 ∈ X}. The children of X is the set chG(X) = {V1|V2 → V1 is in
G, V1 /∈ X and V2 ∈ X}. The spouses of X is the set spG(X) = {V1|V1 ←→ V2 is
in G, V1 /∈ X and V2 ∈ X}. The neighbours of X is the set nbG(X) = {V1|V1−V2
is in G, V1 /∈ X and V2 ∈ X}. The boundary of X is the set bdG(X) = paG(X)∪
nbG(X)∪spG(X). The adjacents ofX is the set adG(X) = {V1|V1 → V2,V1 ← V2,
V1 ←→ V2 or V1−V2 is in G, V1 /∈ X and V2 ∈ X}.
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A route from a node V1 to a node Vn in G is a sequence of nodes V1, . . . , Vn
such that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A path is a route containing only
distinct nodes. The length of a path is the number of edges in the path. A
path is called a cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1) ∪
spG(Vi+1) ∪ nbG(Vi+1) for all 1 ≤ i < n. A path π = V1, . . . , Vn is minimal
if there exists no other path π2 between V1 and Vn such that π2 ⊂ π holds.
The descendants of a set of nodes X of G is the set deG(X) = {Vn| there is a
descending path from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. A path is strictly
descending if Vi ∈ paG(Vi+1) for all 1 ≤ i < n. The strict descendants of a
set of nodes X of G is the set sdeG(X) = {Vn| there is a strict descending
path from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. The ancestors (resp. strict
ancestors) of X is the set anG(X) = {V1|Vn ∈ deG(V1), V1 /∈ X,Vn ∈ X} (resp.
sanG(X) = {V1|Vn ∈ sdeG(V1), V1 /∈ X,Vn ∈ X}). A cycle is called a semi-
directed cycle if it is descending and Vi → Vi+1 is in G for some 1 ≤ i < n.

An undirected (resp. bidirected) component C of a graph is a maximal (wrt
set inclusion) set of nodes such that there exists a path between every pair of
nodes in C containing only undirected edges (resp. bidirected edges). If the type
(undirected resp. bidirected) is not specified we mean either type of component.
We denote the set of all connectivity components in a graph G by cc(G) and the
component to which a set of nodes X belong in G by coG(X). A subgraph of G
is a subset of nodes and edges in G. A subgraph of G induced by a set of its
nodes X is the graph over X that has all and only the edges in G whose both
ends are in X.

In this appendix we deal with three families of graphs; directed acyclic graphs
(DAGs), multivariate regression chain graphs (MVR CGs) and joined chain
graphs (JCGs). A DAG contains only directed edges and no semi-directed cycles.
A MVR CG is a graph containing only directed and bidirected edges but no semi-
directed cycles. Joined graphs are graphs created by joining ancestral graphs.1

JCGs have a similar definition with the exception that the graphs joined must
be MVR CGs of the same Markov equivalence class. Hence we can define JCGs
as:

Definition 3. Joined Chain Graph If G1 and G2 are two MVR CGs belonging
to the same Markov equivalence class then define the joined chain graph G =
G1∨G2 to be the graph with the same adjacencies such that, on an edge between
X and Y , there is an arrowhead towards X in G if and only if there is an
arrowhead towards X in both G1 and G2.

Let X, Y and Z denote three disjoint subsets of V . We say that X is separated
(in the families of graphs described above) from Y given Z denoted as X⊥GY |Z
iff there exists no Z-connecting path between X and Y . A path is said to be Z-
connecting iff (1) every non-collider on the path is not in Z, (2) every collider on
the path is in Z or sanG(Z), and (3) no arrowheads meet any undirected edges. A
node B is said to be a collider in a JCG, MVR CG or DAG G between two nodes
A and C on a path if one of following configurations exists in G: A ←(B ←( C
while for any other configuration (A (B ( C,A ←(B ( C or A (B ←( C)
is considered a non-collider. Note that the definition simplifies somewhat for
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example MVR CGs since they cannot contain any undirected edges. We also say
that a collider resp. non-collider is shielded if A and C is adjacent, otherwise we
say that it is unshielded.

The independence model M induced by a graph G, denoted as I(G) or
IPGM−family(G), is the set of separation statements X ⊥GY |Z that hold in
G according to the interpretation to which G belongs or the subscripted PGM-
family. We say that two graphs G and H are Markov equivalent (under the
same interpretation) or that they are in the same Markov equivalence class iff
I(G) = I(H). If an arrowhead occurs on an edge between the same nodes in all
graphs of a Markov equivalence class we say that it is indifferent, otherwise we
say that it is not indifferent. Moreover we also say that an edge is indifferent if
it exists in every graph of a Markov equivalence class. Finally we do also define
the skeleton of a graph G as a graph with the same structure as G with the
exception that all edges have been replaced by undirected edges.

Essential MVR CGs

As noted in section 3.1 an essential MVR CG G∗ of a MVR CG G if it has the
same skeleton as G and contain all and only the arrowheads that are shared by
all MVR CGs in the Markov equivalence class of G. Hence another definition
can be that the essential MVR CG G∗ of a MVR CG G is the JCG created when
all MVR CGs in the Markov equivalence class of G are joined.

We can now go on to prove Theorem 1:

Proof. We know that any other MVR CG G′ in the same Markov equivalence
class as G must contain the same adjacencies as well as the same unshielded
colliders.23 Since a collider over a node Y between two nodes X and Z is a
subgraph of the form X ←(Y ←( Z with arrowheads towards Y we know that
these arrowheads must be in every MVR CG G′ in the same Markov equivalence
class as G. Hence we know that the collider also must be in G∗. Since the
definition of d-separation is the same for the JCGs and MVR CGs, and no new
colliders can be created or removed when graphs of the same Markov equivalence
class are joined, we know that the theorem must hold. ut

For the proofs for the remainder of the theorems in subsection 3.1 we do
however need to show how an essential MVR CG G∗ can be found from a MVR
CG G. In their work of presenting essential graphs for AGs Ali et al. defines
an algorithm for transforming an ancestral graph into its essential graph. Since
MVR CGs are a subfamily of AGs this algorithm do of course also work for
creating the essential MVR CG of some MVR CG. However, just like for the
characteristics some simplifications (and optimizations) can be made if one only
considers the more restricted MVR CGs. The goal of the algorithm is to find all
indifferent arrowheads in a graph, i.e. all the arrowheads that must exist in all
graphs of that Markov equivalent class. This is exactly what is done in (parts
of) the PC-algorithm and hence the MVR CG PC-algorithm19 can be used to
transform a MVR CG into its essential graph. If one studies the algorithm given
by Ali et al. it can in fact also be seen that if it is simplified to only work for MVR
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CGs it becomes similar to the MVR CG PC-algorithm. We have here added the
MVR-PC-algorithm (row 2 to 9) slightly modified to find the essential graph:

Transformation Algorithm
Given a MVR CG G the algorithm learns a joined graph G∗ that is the essential
graph of G

1 Let G∗ be the skeleton of G
2 Orient any induced subgraph X (( Y ( Z in G∗ to X ←(Y ←( Z

iff X and Z form an unshielded collider over Y in G.
3 Apply the rules in Figure 2 onto G∗ until no further arrowheads are added.

Algorithm 1: Transformation algorithm

A

B C

⇒

A

B C

A

B C

⇒

A

B C

A

B C

D

⇒

A

B C

D

Fig. 2: The rules

Theorem 5. The transformation algorithm given in Algorithm 1 is correct and
always learns the essential MVR CG G∗ given an MVR CG G as input.

Proof. To see that the transformation algorithm is correct we have to show two
things. First, that the algorithm given in Algorithm 1 gives the same result as
the first 9 lines of the PC-algorithm for MVR CGs19 when we have a MVR
CG G instead of a probability distribution p faithful to G as input. Here we
know that line 1 to 7 in the MVR CG PC-algorithm finds the skeleton of G,
and hence, since we already have the skeleton of G, can be replaced by line 1 in
the transformation algorithm shown here. We can also replace rule 0 in line 8 in
the MVR CG PC-algorithm by line 2 in the transformation algorithm since we
know that any node B for which rule 0 can be applicable must be an unshielded
collider in G. Finally line 9 in the MVR CG PC-algorithm can be replaced by
line 3 here since we know that all unshielded colliders are found and orientated
in G∗ in line 2 in the transformation algorithm. Hence for any triplet of nodes
A,B,C, such that the induced subgraph A (( B ( exists in G∗, B must be
in the separator of A and C if it reaches line 3. Hence this prerequisite can
be removed from the rules, which are otherwise the same as for the MVR CG
PC-algorithm.

Secondly, we must show that first 9 lines of the MVR-PC algorithms gives
the essential graph. This follows directly from that all the rules are sound19

and that any node can be chosen to be node of order 0 when orientating the
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remaining undirected edges in line 10 to 14. That the rules are sound means
that the arrowheads introduced must exist in every MVR CG of the Markov
equivalence class of G. Hence all arrowheads in G∗ after line 3 in Algorithm 1
are indifferent in the Markov equivalence class of G. That any node can be chosen
to have order 0 means that any remaining undirected edge can be orientated as
a directed edge in either direction and the resulting MVR CG can still belong to
the same Markov equivalence class if the rest of the undirected edges are oriented
appropriately. Hence all undirected edges X−Y have at least one MVR CG G1

such that I(G1) = I(G) where the edge X → Y exists in G1 and one MVR CG
G2 such that I(G2) = I(G) where the edge X ← Y exists in G2. ut

Having this transformation algorithm we can now define some characteristics
of essential MVR CGs:

Lemma 3. For any essential MVR CG G∗ we know that:

1. All bidirected edges are indifferent in the Markov equivalence class of MVR
CGs that G∗ is the essential MVR CG for.

2. No undirected edge can share an endnode with a bidirected edge.

3. An induced subgraph of the form A → B−C cannot exist in an essential
MVR CG. Hence all nodes in any undirected component must share the
same parents.

4. Any undirected component is chordal.

5. No semi-directed cycles can occur.

Proof. Point 1 follows directly from that all arrowheads are indifferent.

Point 2 follows from existing results.19

Point 3 must hold or the first rule in Figure 2 would be applicable which is
a contradiction.

Point 4 follows from existing results.19.

Point 5 must hold since we know that there exist a MVR CG G with the
same directed and bidirected edges as G∗ but where every undirected edge is
made directed such that I(G) = I(G∗). Hence we know that no semi-directed
cycle can occur in G∗ with only directed and bidirected edges since such a semi-
directed cycle then would occur in G which is a contradiction. On the other
hand, if an undirected edge X−Y is part of the semi-directed cycle we know
that paG∗(X) = paG∗(Y ) by point 3 above, and hence there must also exist a
semi-directed cycle without the undirected edge in G∗ because X and Y have no
spouses by point 2 above. This reasoning can be repeated for every undirected
edge in the semi-directed cycle. This means that if there existed a semi-directed
cycle containing undirected edges there also must exist a semi-directed cycle
without any undirected edges, which we know cannot be the case. Hence we
have a contradiction. ut

Which finally allows us to prove Theorem 2:
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Proof. We will first prove that if any of the conditions are not fulfilled than the
graph cannot be an essential MVR CG. Point 1 follows directly from point 5 in
Lemma 3. Point 2 follows from the definition of indifferent arrowheads. Point
3 follows from point 4 in Lemma 3 and point 4 follows from point 2 and 3 in
Lemma 3.

To show that the graph must be an essential MVR CG it is enough to show
that if the conditions are fulfilled then an MVR CG exists in the same Markov
equivalence class since we know that all arrowheads in G are indifferent. Hence
we need to show that the undirected edges in G can be oriented as directed
edges such that no new unshielded colliders are added or semi-directed cycles
are created. Since the undirected components are chordal we know that there
exists a way to orient every edge as a directed edge such that no semi-directed
cycles or unshielded colliders are added including only the oriented edges.12

However, we still need to show that no new unshielded colliders or semi-directed
cycles are created including the already directed edges in G. To see this note
that no new unshielded colliders can be created since paG(X) = paG(Y ) and
spG(X) = spG(Y ) = ∅ for any two X and Y in the same undirected component.
In addition, since all nodes in the same undirected component share the same
parents it follows that if a semi-directed cycle, including a directed edge in G,
would be created when the undirected edges are oriented, then there also must
exist a semi-directed cycle in G. From point 1 we do however know that this
is not the case, and hence there must exist an MVR CG in the same Markov
equivalence class as G for which the undirected edges have been oriented. ut

We can also prove Lemma 1 given in section 3:

Proof. Let G be the Markov equivalence class of G∗. That a DAG G ∈ G exists
must hold since we know that there exist a MVR CG G′ ∈ G with the same
structure as G∗ with the exception that all undirected edges have been replaced
by directed edges. Hence G′ only contains directed edges and hence is a DAG.
That no DAG exists if G∗ contains any bidirected edge we simply have to note
that DAGs is a subfamily of essential MVR CGs and that all arrowheads are
indifferent in an essential MVR CG. Hence there can exist no member in the
Markov equivalence class not containing the bidirected edge.

To see that G∗ is the essential graph we can note the following. For any MVR
CG G′ ∈ G there must exist a DAG G such that all arrowheads in G exist in
G′ since G′ only can contain bidirected edges where G contains directed edges.
Hence it is enough to join every DAG in G to get the essential MVR CG G∗

and hence, since this is a way the essential graph can be created for DAGs,3 G∗

must be the essential graph of G. ut

As well as Lemma 2:

Proof. Let G be the Markov equivalence class of G∗. We know that a covG G ∈ G
must exist if there exists no non-shielded non-colliders in G∗ since for all triplets
X,Y and Z, such that G∗ the induced subgraph X (( Y (( Z, X and Z must
form an unshielded collider over Z. Hence all edges in G∗ can be replaced by
bidirected edges to get G such that I(G) = I(G∗). To see that no covG G ∈ G
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can exist if there exist a non-shielded non-collider in G∗ let this non-collider be
over Y such that the induced subgraph X (( Y ( Z exists in G∗ such that X
is a non-descendant of Z. Clearly G must have the same adjacencies as G∗ since
covGs is a subfamily of essential MVR CGs and hence the induced subgraph
X (( Y (( Z must exist in G. However, since G only contains bidirected edges
this would mean that X 6⊥GZ|Y ∪ paG∗(Z) while X⊥G∗Z|Y ∪ paG∗(Z) must
hold. Hence we have a contradiction. ut

Finally we also state one more lemma about the structure of JCGs that is
used later in the appendix.

Lemma 4. The arrowhead on any directed edge that shares an endnode with an
indifferent bidirected edge in a JCG must be indifferent itself.

Proof. This follows from the fact that a bidirected edge cannot share an endnode
with an undirected edge in an essential MVR CG as denoted in point 2 in Lemma
3. This means there can exist no directed edge X → Y in a MVR CG G such
that there exist another MVR CG G′ of the same Markov equivalence class
containing X ← Y if X or Y is an endnode of a bidirected edge. Hence the
arrowhead must be indifferent. ut

MCMC operators

The rest of the appendix is devoted to proving Theorem 3. This is performed
by first giving the proof of the theorem which then uses lemmas defined later
in the appendix. This structure does hopefully allow the reader to get a better
understanding why the lemmas are needed and what they will be used for. Hence
we first give the proof of Theorem 3:

Proof. Since we know that the possible states are the essential MVR CGs we
need to prove two things; first that the Markov chain has a unique stationary
distribution and secondly that this is the uniform distribution. The former is
proven if we show that the operators have the properties aperiodicity, i.e. that
the Markov chain does not end up in the same state periodicly, and irreducibility,
i.e. that any state can be reached from any other state.9 The latter is proven
if we can show that the operators have the symmetry property, i.e. that the
probability of transition from one state to another is equal to the probability of
going to the latter state to the former.9

To prove aperiodicy we only need to show that there exists a positive prob-
ability of ending up in the same state in two consequent transitions (given that
irreducibility holds).9 This obviously holds since there must always exist an op-
eration that for a set of certain nodes will result in that Gi+1 = Gi (i.e. if ”Add
undirected edge” operation for two nodes A and B is possible, then the ”Remove
undirected edge” operation for the two nodes A and B cannot be possible).

To prove irreducibility we need to show that we with these operators can
reach any essential MVR CG G′ from any other essential MVR CG G′′. It is
here enough to show that we from the empty graph G∅ can reach any essential
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MVR CG, since we know that any operation is reversible, i.e. it can be undone
by some other operation. To show this we can base our reasoning on the fol-
lowing: let G∗ be the essential MVR CG we want to reach through a set of
operations. It must then exist another MVR CG G∗u that has the same structure
as G∗ with the exception that G∗u contains no undirected edge that exists in
G∗. Lemma 5 states that we can remove edge by edge to reach G∗u from G∗ by
only removing undirected edges one by one, and due to reversibility we then also
know G∗ is reachable by adding undirected edges one by one to G∗u. Hence we
now only need to show that G∗u is reachable from the empty graph G∅. Lemma
7 then states that an essential MVR CG GCi+1

is reachable, with the operations
described in Definition 2, from another essential MVR CG GCi if GCi+1 and
GCi have the same structure with the exception that GCi+1 contains one more
bidirected component C such that chGCi+1

(X) = ∅. Hence we know that we can
add components one by one such that we achieve a set of essential MVR CGs
GC0

, GC1
, ..GCn

where GC0
= G∅ and GCn

= G∗u and that all the necessary
transformations is possible if the operations in Definition 2 is chosen in the right
order. Hence we have irreducibility.

Finally we have to prove symmetry. This must also hold since the probability
of choosing an operation o for an essential MVR CG Gi that transforms Gi to an
essential MVR CG Gi+1 must be equal to choosing an operation o′ for Gi+1 such
that o′ transforms Gi+1 to Gi. To see this note that the probability of choosing
any of the first six operators for a certain set of nodes is 1

8 ∗
1
n2 for any essential

MVR CG. Hence the ”remove” operator for a certain kind of edge must have
an equal probability of being chosen in Gi+1 as the ”add” operator for the same
kind of edge in Gi for these operators. For the seventh and eight operation the
probability is harder to state. However, let Gi be the essential MVR CG before a
”add V-collider operation” over a node X, where k non-arrow edge-endings have
been changed to arrows, and Gi+1 the essential MVR CG after the operation.
Then the probability of the ”add V-collider operation” in Gi is 1

8 ∗
1
n ∗

1
|adGi

(X)|k .

If we then study the reverse operator ”Remove V-collider” in Gi+1 we can see
that the probability of transforming Gi+1 to Gi is 1

8 ∗
1
n ∗

1
|adGi+1

(X)|k . Since we

know that adGi
(X) = adGi+1

(X) we can deduce that the probability must be
equal in both cases. Hence we have symmetry for the set of operations. ut

Lemma 5. In a chordal undirected graph G, with at least one edge, it is always
possible to remove one edge so that the resulting graph G′ is still chordal.

Proof. From Jensen and Nielsen14 we know that there exists at least two simpli-
cial nodes in G such that, since G contains an edge, have at least one neighbour.
A simplicial node is a node such that the set of neighbours of the node is com-
plete. Let X be a simplicial node that has a neighbour Y . Now assume that
removing X−Y from G creates a nonchordal cycle. Then that cycle must be of
the form V1, . . . , Vn = V1 with V2 = X such that V1 and V3 is not adjacent (or
the cycle must also be non-chordal in G which cannot be the case). However,
that V1 and V3 is not adjacent is a contradiction since X is simplicial, and hence
G \ {X−Y } must be chordal. ut
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Lemma 6. In an essential MVR CG G∗ with a bidirected component C there
exists an unshielded collider, between two nodes of which at least one is in C
over every node in C.

Proof. Assume the contrary. This means there exist a node X ∈ C such that
no node in C forms an unshielded collider over X. This does however mean
there exists an essential MVR CG G′ with the same structure as G∗ with the
exception that X is a parent of C instead of in it. This in turn means that G′

and G∗ represents the same Markov equivalence class but that G′ contains less
arrowheads than G∗ which is a contradiction. ut

Lemma 7. Let G∗ and G′ be two essential MVR CGs without any undirected
edges such that G∗ and G′ have the same nodes and structure with the exception
that G′ is missing a component C that exists in G∗ such that chG∗(C) = ∅. The
operators in Definition 2 can then transform G′ to G∗ through a sequence of
essential MVR CG G1, . . . , Gn by only applying one operator at a time.

Proof. If |C| = 1 this follows from Lemma 8, otherwise it follows from Lemma
9. ut

Let G∗ and G′ be two essential MVR CGs without any undirected edges such
that G∗ and G′ have the same nodes and structure with the exception that G′

is missing a component C containing only one node Y , that exists in G∗ such
that chG∗(Y ) = ∅. The algorithm below then defines the operations and their
order to transform G′ into G∗ through a sequence of essential MVR CGs
G1, . . . , Gn. Let Gi be the input graph for each line that is transformed into
Gi+1, which then takes the place of Gi in the next executed line:

1 Add Y to G′ and denote the new graph G1

2 Repeat until no case is applicable (restart the loop after each change):
3 If there exist a node X ∈ paG∗(Y ) such that X /∈ paGi(Y ) and spG∗(X) 6= ∅

then let Gi+1 = Gi ∪ {X → Y }.
4 If there exist a node X ∈ paG∗(Y ) such that X /∈ paGi(Y ) and

bdG∗(X) 6⊆ paG∗(Y ) then let Gi+1 = Gi ∪ {X → Y }.
5 If there exist a node X ∈ paG∗(Y ) such that X /∈ paGi(Y ) and
∃Z ∈ paGi(Y ) ∩ (coGi(X) ∪ deGi(X)) then let Gi+1 = Gi ∪ {X → Y }.

6 If there exist a node X ∈ paG∗(Y ) such that X /∈ paGi(Y ) and
paGi(Y ) 6⊆ bdG∗(X) then let Gi+1 = Gi ∪ {X → Y }.

7 If there exist two nodes X,Z ∈ paG∗(Y ) such that X,Z /∈ paGi(Y ) and
X /∈ adG∗(Z) then let Gi+1 = Gi ∪ {X → Y,Z → Y }.

Algorithm 2: Procedure for adding edges when |C| = 1

Lemma 8. All graphs G1, . . . , Gn described in Algorithm 2 are essential MVR
CGs and the transformation in each step can be achieved through one or more
operations described in Definition 2 in which case all intermediate graphs are
essential MVR CGs.
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Proof. Assume the contrary. This means that one of the following statements
hold: (1) One of the lines in Algorithm 2 creates a graph Gi+1 that is not
an essential MVR CG when Gi is an essential MVR CG. (2) That Gi is not
transformable into Gi+1 through a sequence of operations described in Definition
2 or (3) that Gi 6= G∗ holds for the essential MVR CG Gi that passes line 7.
We will first show that (1) and (2) must be false and then finish the proof
contradicting that (3) can hold. Note that since G′ is an essential MVR CG we
know that all edges in the subgraph of Gi induced by VGi

\Y must be indifferent.
This follows from the fact that the algorithm only add directed edges oriented
towards Y and hence that the cause making any arrowhead indifferent in G′

must still be valid in Gi. Also note that Gi for any i must be a subgraph of G∗

and hence that adGi(Y ) = paGi(Y ) ∀i.
We will first study Gi+1 for all lines in algorithm 2. To see that Gi+1 cannot

contain any semi-directed cycle it is enough to note that Gi+1 is a subgraph of G∗

which can not contain any semi-directed cycles. Furthermore any new arrowhead
on a new edge in Gi+1 (compared to Gi) must be and remain indifferent in Gj

for all j ≥ i for the following reasons: line 3, since a directed edge that share
an endnode with a bidirected edge always is indifferent according to Lemma 4.
Line 4, since any other orientation of the edge would result in an unshielded
collider not in G∗. Line 5, since any other orientation of the edge would cause a
semi-directed cycle to appear in Gj , j > i. To see this note that all arrowheads
in Gi must be remain indifferent in all Gj j ≥ i. This can be seen inductively
starting with G1 which have the same edges as Gi \Y which must be indifferent
for all Gi as noted above. For each iteration i of the algorithm one or more new
directed edges is then added with the property that they will remain indifferent
for all j ≥ i. Hence all arrowheads in Gi must remain indifferent for all j ≥ i
and hence any other orientation of the edge added in line 5 must cause a semi-
directed cycle in all Gj j ≥ i. Line 6, since an unshielded collider that exists in
G∗ is added and line 7 since X → Y and Z → Y both are part of an unshielded
collider in G∗. Hence Gi+1 must be essential MVR CGs for these lines.

In line 7 we will however have to do two or three operations to reach Gi+1

from Gi and hence we have to show that all intermediate graphs are essential
MVR CGs. Note that if this line is reached then (1) bdGi

(Y ) ⊆ bdGi
(X) (resp.

bdGi
(Y ) ⊆ bdGi

(Z)) and spGi
(X) = spGi

(Z) = spGi
(Y ) = ∅ must hold. (1)

must hold or line 6 must be applicable since adGi(X) \ Y = adG∗(X) \ Y (resp.
adGi(Z) \Y = adG∗(Z) \Y ) and (2) must hold since we know that spG∗(Y ) = ∅
and if spGi

(X) 6= ∅ (resp. spGi
(Z) 6= ∅) line 3 must be applicable.

We can now have two cases. If bdGi
(X) 6⊆ bdGi

(Y ) (resp. bdGi
(Z) 6⊆ bdGi

(Y ))
then we know thatGi∪{X → Y } (resp.Gi∪{Z → Y }) must be an essential MVR
CG. Hence we can first add X → Y (resp. Z → Y ) to Gi whereafter we can add
Z → Y (resp. X → Y ) and then reach Gi+1. However if both bdGi(X) ⊆ bdGi(Y )
and bdGi(Z) ⊆ bdGi(Y ) hold then we know that bdGi(X) = bdGi(Z) = bdGi(Y )
must hold. Hence both Gi ∪ {X−Y } and Gi ∪ {X−Y, Y−Y } must be essential
MVR CGs. We can then perform the ”add V-collider” operation to transform
the undirected edges to directed edges oriented towards Y in Gi∪{X−Y, Y−Y }
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to reach Gi+1. Hence all intermediate graphs for line 7 must be essential MVR
CGs.

The last thing to prove is then that paGi
(Y ) = paG∗(Y ) after line 7. To

see this assume the contrary, i.e. that there exist a node X ∈ paG∗(Y ) but
X /∈ paGi

(Y ). In addition, let us choose this X such that no node W exists for
which W ∈ (deG∗(X) \ coG∗(X)) ∩ paG∗(Y ) and W /∈ paGi(Y ) hold. Obviously
spGi

(X) = ∅ or line 3 would be applicable. We also know that paG∗(X) =
paGi

(X) ⊆ paG∗(Y ) or line 4 would be applicable. bdG∗(Y ) ⊆ adG∗(X) must
also hold since no unshielded collider can exist between X and some node Z over
Y in G∗ or line 6 (if Z ∈ paGi

(Y )) or line 7 (if Z /∈ paGi
(Y )) would be applicable.

This means that paG∗(X) = paG∗(Y ) \X. Finally we also know that reversing
the orientation of the edge X → Y in Gi would cause no semi-directed cycle to
appear or line 5 would be applicable. This does however, since no node W existed
and hence that all descendants of X already is added as parents to Y , that the
orientation of the edge X → Y also can be reversed in G∗ without creating any
semi-directed cycle or unshielded collider. This does however contradict that G∗

is an essential MVR CG. Hence we have a contradiction that X can exists after
line 7. ut

Let G∗ and G′ be two essential MVR CGs without any undirected edges such
that G∗ and G′ have the same nodes and structure with the exception that G′

is missing a component C, such that |C| ≥ 2, that exists in G∗ such that
chG∗(C) = ∅. The algorithm below then defines the operations and their order
to transform G′ into G∗ through a sequence of essential MVR CGs G1, . . . , Gn.
Let Gi be the input graph for each line that is transformed into Gi+1, which
then takes the place of Gi in the next executed line:

1 Add all the nodes in C to G′ and denote the new graph G1

2 Repeat until until Gi = G∗:
3 Let X, Y and Z be three nodes in Gi such that X ∈ C, Y ∈ C,

Z ∈ paG∗(C) ∪ C, X and Z form an unshielded collider over Y in G∗,
bdGi(Y ) = ∅ and ∀W ∈ chGi(Y ) such that Cw = coGi(W ) there ∃R,P ∈ Cw

such that bdGi(R) 6⊆ bdG∗(Y ) ∪ Y , P ∈ chGi(Y ) and bdGi+1(Y ) 6⊆ bdG∗(P ) ∪ P
hold. Let Gi+1 = Gi with the exception that all non-arrowheads towards Y are
replaced by arrowheads and if X and/or Z is not adjacent of Y in Gi then
X → Y and/or Z → Y is added to Gi+1.

4 Repeat until bdGi(Y ) = bdG∗(Y ):
5 Let Q be a node such that Q ∈ bdG∗(Y ) but Q /∈ bdGi(Y ). Then let

Gi+1 = Gi ∪ {Q→ Y }.
Algorithm 3: Procedure for adding edges when |C| > 1

Lemma 9. All graphs G1, . . . , Gn described in Algorithm 3 are essential MVR
CGs and the transformation in each step can be achieved through one or more
operations described in Definition 2 in which case all intermediate graphs are
essential MVR CGs.
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Proof. Assume the contrary. This means that one of the following statements
hold: (1) One of the lines in Algorithm 3 creates a graph Gi+1 that is not
an essential MVR CG when Gi is an essential MVR CG. (2) That Gi is not
transformable into Gi+1 through a set of operations described in Definition 2 or
(3) that Gi never becomes G∗. We also make two assumptions that have to be
proven. Assumption 1 is that when when the loop in line 2 restarts we have that
∀cj ∈ C, such that bdGi(cj) 6= ∅, bdGi(cj) = bdG∗(cj) must hold for the current
graph Gi. We will denote these cj as being ”collided”. Assumption 2 is that all
bidirected edges in any Gi must be indifferent in all Gj j ≥ i.

The rest of the proof is constructed as follows. In part 1 we will first show that
assumption 1 holds. This is then followed by proving that all Gi+1 are essential
MVR CGs for line 3 in part 2. In the end of part 2 we also prove assumption
2. In part 3 we then show that Gi is transformable into Gi+1 through a set of
operations described in Definition 2 and that all intermediate graphs also are
essential MVR CGs. In part 4 we show that Gi+1 must be an essential MVR
CG for line 5 and finally in part 5 we show that the algorithm must terminate
and hence that Gi becomes G∗ after |C| number of iterations of line 2.

First we will however make some observations about the algorithm and Gi.
Note that only two lines, line 3 and line 5, changes the structure of Gi to Gi+1.
For these lines we can see that a directed edge X → Y only is added to Gi+1 if
X → Y orX ←→ Y is inG∗. We can also see that a bidirected edgeX ←→ Y only is
added to Gi+1 in line 3 and then only if it also exists in G∗ since any X ∈ chGi

(Y )
and Y must both be adjacent and in the same bidirected component in G∗. We
can also note that edges never are removed once they have been added to Gi,
although directed edges can be replaced by bidirected edges. This means that
once an arrowhead is added to Gi+1 it must exist in all Gj j > i. Finally we can
also note that edges only are added with arrowheads towards collided nodes, i.e.
nodes that has been chosen as Y in line 3.

Part 1:
That ∀cj ∈ C, such that bdGi(cj) 6= ∅, bdGi(cj) = bdG∗(cj) obviously holds for
i = 1 since bdG1

(cj) = ∅ ∀cj ∈ C. Then, for each iteration of line 2, one node Y
is selected in line 3 and becomes collided. When a node is chosen as Y in line
3 two things happen; First, in line 3, all already adjacent nodes of Y become
spouses of Y when all non-arrowheads towards Y are replaced with arrowheads.
Secondly, in line 5, that directed edges are added from all remaining nodes in
bdG∗(Y ) to Y . From this it is clear that once this is done all nodes in bdG∗(Y )
also must be in bdGi

(Y ).

We can also note that the algorithm never adds any edges oriented towards
any other nodes than those chosen as Y , nor does it ever remove any arrowheads.
This means that all nodes cj ∈ C, for which bdGi

(cj) 6= ∅ holds, must have been
chosen as Y in some iteration k, and hence we know that bdGl

(cj) = bdG∗(cj)
must hold ∀l > k. Hence it is clear from induction, starting with i = 1 that
∀cj ∈ C, such that bdGi

(cj) 6= ∅, bdGi
(cj) = bdG∗(cj) must hold ∀Gi hence that

assumption 1 holds.
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Part 2:
In this part we study line 3 and show that allGi+1 are essential MVR CGs for line
3 and in the end we also show that assumption 2 holds. Here we have three nodes
X ∈ C, Y ∈ C and Z ∈ paG∗(C) ∪ C such that X and Z forms an unshielded
collider over Y in G∗. We also know that bdGi

(Y ) = ∅ and ∀W ∈ chGi
(Y )

such that Cw = coGi(W ) there ∃R,P ∈ Cw such that bdGi(R) 6⊆ bdG∗(Y ) ∪ Y ,
P ∈ chGi(Y ) and bdGi+1(Y ) 6⊆ bdG∗(P ) ∪ P hold.

We can also make some deductions about the structure of Gi. Recall that
chG∗(C) = ∅ and hence we know, together with assumption 1, that no collided
nodes in C can have any children. From assumption 1 we also know that any
child of Y , as well as any node in C that is endnode of a bidirected edge, must
be collided. This in turn means that ∀cj ∈ C such that bdGi(cj) 6= ∅, we must
have that chGi

(cj) = ∅ which means that deGi
(cj) \ coGi

(cj) = ∅ must hold.

Also note that we can have three subcases: Case 1, that both X,Z ∈ chGi
(Y ),

case 2, that X ∈ chGi(Y ) but Z /∈ adGi(Y ) and finally case 3, that X,Z /∈
adGi(Y ). If we have case 1 line 3 then consists of replacing all non-arrowhead
edgeendings towards Y with an arrowheads simultaneously. Hence all children of
Y will become spouses of Y . In case 2 all non-arrowheads are replaced for Gi+1

but Z → Y is also added. Finally in case 3 both X → Y and Z → Y is added
to Gi+1 in addition to the replacement of the non-arrowheads.

We can now prove that Gi+1 cannot contain any semi-directed cycle since we
know that bdGi

(Y ) = ∅ and that ∀cj ∈ chGi
(Y ) we must have that deGi

(cj) \
coGi

(cj) = ∅. If we assume case 1 we know that no new directed edges are
added and hence that ∀cj ∈ chGi

(Y ) chGi
(cj) = chGi+1

(cj). We also know that
chGi+1(Y ) = ∅ and, since ∀cj ∈ coGi+1(Y ) ∪ Y chGi+1(cj) = ∅, we obviously
cannot have a semi-directed cycle. For case 2 we can note that we can have
two cases, either Z ∈ C or Z /∈ C. If Z ∈ C then we know that Z cannot be
previously collided or Z ∈ chGi

(Y ) would have to hold due to assumption 1
and that Z ∈ spG∗(Y ). Hence we know that bdGi

(Z) = ∅ and since the only
edge containing Z as an endnode that is added in line 3 is Z → Y and hence
bdGi+1(Z) = ∅ must hold. This does however contradict that Z is part of any
semi-directed cycle. If we on the other hand have that Z /∈ C then we know that
∀cj ∈ C Z /∈ deGi

(cj) and Z /∈ deGi+1
(cj) must hold. Hence we cannot have a

semi-directed cycle containing Z in Gi+1 for case 2 and that no semi-directed
cycle can exist not containing Z follows similarly as for case 1. For case 3 we can
see that no semi-directed cycle can exist in Gi+1 and contain Z or X similarly
as we saw in case 2 since X must be in C. It also follows similarly as for case 1
that no semi-directed cycle can exist in Gi+1 containing neither X nor Z. Hence
no semi-directed cycle can exist in Gi+1.

Now assume that a not indifferent arrowhead is created in Gi+1 when the
non-arrowheads are replaced by arrowheads. We know that the edge X → Y
(resp. Z → Y ), for case 2 or 3 (resp. case 3) must be part of an unshielded
collider over Y and hence be indifferent. This means that the not indifferent
arrowhead must be on one of the bidirected edges created containing Y as an
endnode. Let S be the node for which either the arrowhead towards Y or towards
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S, or both, on the edge S ←→ Y is not indifferent in Gi+1. We can then note
that S, as well as all nodes in CS = coGi

(S), must be collided previously since
Y → S is in Gi due to assumption 1. From the prerequisite of choosing Y in
line 3 we know that there ∃cn, dm ∈ CS such that bdGi

(cn) 6⊆ bdG∗(Y ) ∪ Y ,
dm ∈ chGi

(Y ) and bdGi+1
(Y ) 6⊆ bdG∗(dm) ∪ dm hold. Note that cn and dm can

be S. Let S ←→ c1 ←→ c2 ←→ . . . ←→ cn, n ≥ 0 (0 if cn = S), be a path π1
between S and cn in Gi. Without losing generalization we can assume that cn
must be adjacent of Y or there must exist some node ck ∈ S ∪ c1 ∪ . . . ∪ cn−1
such that ck is adjacent of Y and such that bdGi

(ck) 6⊆ bdG∗(Y ) ∪ Y and hence
can take the place of cn. Hence we know that Y ←→ cn must be in Gi+1. From
assumption 2 we then know that all bidirected edges on π1 must be indifferent
in Gi+1 since they also existed in Gi. From bdGi(cn) 6⊆ bdG∗(Y ) ∪ Y we then
know that the arrowhead towards cn on Y ←→ cn must be indifferent in Gi+1

since it is part of an unshielded collider in Gi and bdGi+1
(cn) = bdGi

(cn). This
in turn means that the arrowhead towards S on Y ←→ S must be indifferent
or a semi-directed cycle would exist in Gi+1. Similarly we can see that there
must exist a path π2 of indifferent bidirected edges between S and dm and that
the arrowhead towards Y on Y ←→ dm must be indifferent in Gi+1. This is due
to that bdGi+1

(Y ) 6⊆ bdG∗(dm) ∪ dm holds according to the prerequisite and
bdG∗(dm) = bdGi

(dm) since dm has been collided previously and hence that dm
forms an unshielded collider over Y with some other node in Gi+1. This in turn
means that the arrowhead towards Y on Y ←→ S must be indifferent or a semi-
directed cycle occurs in Gi+1. Hence we have shown that the arrowhead towards
S is indifferent due to cn and that the arrowhead towards Y is indifferent due to
dm on the edge S ←→ Y and contradicted that any arrowhead on this edge can
be indifferent. Hence all arrowheads added in line 3 must be indifferent.

Furthermore we can also see that the reasoning must hold for any edge S ←→
Y for all Gj j > i because of the following: (1) the arrowhead towards cn on cn ←
→ Y must be indifferent in all Gj since bdGi

(cn) = bdG∗(cn) must hold since cn
has been collided previously. This then means that bdGj

(cn) 6⊆ bdG∗(Y )∪Y must
hold for all j > i. (2) the arrowhead towards Y on dm ←→ Y must be indifferent
in all Gj since bdGi+1(Y ) ⊆ bdGj (Y ) and hence bdGj (Y ) 6⊆ bdG∗(dm) ∪ dm must
hold for all j. (3) Finally we can show that all bidirected edges in coGi(S) must
be indifferent for all Gj j > i iteratively. Starting with G1 containing no edges
with endnodes in C this statement obviously holds, and each time a bidirected
edge is added to Gi it must hold that all previously added bidirected edges in Gi

must be indifferent for all Gj j ≥ i. Therefore, following the reasoning above, the
bidirected edges between any nodes in spGi+1(Y ) and Y must also be indifferent
for all Gj j > i and we have proven that assumption 2 is correct since this is the
only place in the algorithm where bidirected edges are created.

What remains to prove to show that Gi+1 is an essential MVR CG is that
no arrowhead are made not indifferent in line 3. Due to assumption 2 we then
know that the edge made not indifferent cannot be a bidirected edge, and since
Gi contains no undirected edges, we know that it must be a directed edge. For
a directed edge to have an indifferent arrowhead it must either be part of an
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unshielded collider, or the other orientation of it must cause a new unshielded
collider or a semi-directed cycle to occur in the graph. Hence, since edges only
are added and made bidirected in line 3, for an edge to be made not indifferent it
must cease to be part of an unshielded collider. This means that we can, without
losing generality, assume a directed edge with an endnode M cease to be part of
an unshielded collider when X → Y is added to Gi. Then we know that X →M
and Y → M also must exist in Gi since X and Y must form an unshielded
collider over M in Gi but neither X nor Y have been collided previously. This
does however mean that Y ←→M must exist in Gi+1 which together with Lemma
4 contradicts that any adjacent directed edge can be not indifferent. Hence we
have a contradiction and all arrowheads in Gi+1 must be indifferent which means
that Gi+1 is an essential MVR CG for line 3.

Part 3
It is easy to see that Gi is transformable into Gi+1 in line 5 since the transfor-
mation only consists of adding a directed edge and hence that operation can be
used. For line 3 it is however more difficult. In part 2 three subcases, case 1, 2 and
3, were identified. If we have case 1 then it is easy to see that the transformation
from Gi to Gi+1 can be achieved by the ”add V-collider” operation.

For case 2 we can note three things; first that bdGi(Y ) = ∅, secondly that
X is collided and hence that Y → X is in Gi. Thirdly we can note that we can
have two major sub-cases, either bdGi

(Z) = ∅ or bdGi
(Z) 6= ∅. First assume that

bdGi
(Z) = ∅ holds. We can then add an undirected edge between Z and Y . The

resulting graph Gi ∪ {Z−Y } must be an essential MVR CGs since bdGi
(Y ) =

bdGi(Z) = ∅ and since Gi did not contain any undirected edges the created
undirected component is chordal. To see that no indifferent arrowheads are made
not indifferent assume the contrary. Then there must exist a third node M such
that Y → M and Z → M are in Gi for which either the arrowhead on Z → M
or Y →M is made indifferent similarly as we saw in part 2. From assumption 1
we know that bdGi

(M) = bdG∗(M) and from Lemma 6 we know that there must
exist an unshielded collider over M . Hence we know that an unshielded collider
exists over M in Gi. Note that Z and Y cannot be the two nodes forming the
unshielded collider over M since Z is adjacent of Y in G∗. Let U be one of the
nodes in bdG∗(M)\ (Z ∪Y ) forming such an unshielded collider. If U ∈ paG∗(C)
or if U ∈ C but has not been collided previously then there can exist no edge
between U and Y since bdGi(Y ) = ∅ and bdGi(U)∩C = ∅. Hence Y →M must
form an unshielded collider with U overM inGi+1 which gives us a contradiction.
If U ∈ C and U has been collided we know that U ←→ M must be in Gi and
from Lemma 4 we then have that any directed edge sharing an endnode M with
an indifferent bidirected edge must be indifferent. Hence we have a contradiction
and Gi∪{Z−Y } must be an essential MVR CG. From Gi∪{Z−Y } we can then
perform the ”add V-collider” operation to reach Gi+1.

If on the other hand bdGi(Z) 6= ∅ we know that Z cannot be in C or Y → Z
would exist in Gi according to assumption 1. We also know that Gi ∪ {Z → Y }
must be an essential MVR CG since reversing the edge would cause the graph
to have a different set of unshielded colliders. To see this note that bdGi

(Y ) = ∅
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and that nbGi(Z) = ∅. Hence the edge Y → Z would cause Y to form unshielded
colliders over Z with all nodes in bdGi

(Z) and hence the edge Z → Y must be
indifferent. Also note that adding Z → Y cannot cause some already existing
arrowhead in Gi to become not indifferent according to the same reasoning as
for Z−Y above. Hence Gi ∪ {Z → Y } must be an essential MVR CG.

For case 3 we can follow the same reasoning. In this case we do however know
that X cannot have been collided previously and hence that bdGi

(X) = ∅ must
hold due to assumption 1. First assume that bdGi

(Z) = ∅ holds. We can then
add undirected edges, first between X and Y and then between Z and Y . The
resulting graphs Gi ∪ {X−Y } and Gi ∪ {X−Y, Z−Y } must be essential MVR
CGs since bdGi

(X) = bdGi
(Y ) = bdGi

(Z) = ∅ and since Gi did not contain
any undirected edges the created undirected component must be chordal. That
no indifferent arrowheads are made not indifferent follows as for case 2 above.
From Gi ∪ {Z−Y,X−Y } the ”add V-collider” operation can then be performed
to reach Gi+1.

If on the other hand bdGi
(Z) 6= ∅ it follows similarly as for case 2 that

Gi ∪ {Z → Y } is an essential MVR CG. From this graph the edge X → Y can
then be added which now will form an unshielded collider, since bdGi

(X) = ∅,
with Z over Y and hence Gi∪{Z → Y,X → Y } must be an essential MVR CG.
Note that adding Z → Y (resp. X → Y ) cannot cause some already existing
arrowhead in Gi to become not indifferent according to the same reasoning as
for X−Y above.

This gives us that Gi is transformable into Gi+1 using the operators in Defi-
nition 2 for all lines in Algorithm 3 and that all intermediate graphs are essential
MVR CGs.

Part 4
In this part we will show that Gi+1 in line 5 must be an essential MVR CG
if Gi is an essential MVR CG for the same line. Line 5 add a directed edge
Q → Y to Gi for which we know that ∀ck ∈ coGi

(Y ) ck must be collided, due
to assumption 1, and hence that chGi

(ck) = ∅ similarly as we saw in part 2.
Hence we know that deGi

(Y ) \ coGi
(Y ) = deGi+1

(Y ) \ coGi+1
(Y ) = ∅. From this

it directly follows that Gi+1 can contain no semi-directed cycle since Gi contains
no semi-directed cycle.

Now assume that the arrowhead on the edge Q → Y is not indifferent in
Gi+1. We know there exists a node X as described in line 3 in the algorithm
such that X ∈ bdGi(Y ) ∩ C. Since Y ←→ Q is not in Gi we must also have that
either Q /∈ C holds or that Q has not been collided previously. In either case we
know that Q /∈ chGi

(X) must hold. First assume that X has not been collided
previously. Then, since bdGi

(X) = ∅, X and Q cannot be adjacent and therefore
must form an unshielded collider over Y and hence the arrowhead on the edge
Q → Y must be indifferent in Gi+1. If X on the other hand has been collided
previously we know that both Gi and Gi+1 must contain the bidirected edge
X ←→ Y . From Lemma 4 we then get that any directed edge with X or Y as an
endnode also must be indifferent and hence we have a contradiction that Q→ Y
is not indifferent in Gi+1.
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Secondly assume that the edge Q → Y causes some other previously in-
different arrowhead to become not indifferent in Gi+1. Similarly as we saw
in the last paragraph of part 2 we know that this must include a third node
M ∈ adGi

(Q) ∩ adGi
(Y ) such that there is either the edge between Q and M

or Y and M that is made not indifferent. We can from this note that the edge
between Y and M cannot be bidirected since Lemma 4, together with assump-
tion 2, then states that all directed edges containing M as an endnode must be
indifferent. Hence either Y → M or M → Y must exist in Gi. However, since
only directed edges oriented towards Y is added after line 3, and every child of
Y is made a spouse of Y in line 3, we can see that the edge Y →M cannot exist
in Gi in line 5. Hence M → Y must exist in Gi. From this it follows that, since Y
and X cannot form an unshielded collider over M in Gi when M → Y is in Gi,
it must be the edge M → Y that is made not indifferent when Q→ Y is added.
However, just like in the last paragraph we can note that a node X must exist,
and that if X is collided then M → Y must be indifferent due to the bidirected
edge, while if it is not collided, then M and X must form an unshielded collider
over Y in Gi+1. Hence the edge M → Y must be indifferent in Gi+1 and we have
a contradiction which means that Gi+1 for line 5 must be an essential MVR CG
if Gi is an essential MVR CG.

Part 5
The last thing to prove is that the algorithm must terminate and hence that Gi

becomes G∗ after |C| number of iterations of line 2.

To show this assume the contrary, i.e. that there exist no node in Gi for which
line 3 is applicable but where there exist a node Y that has not yet been collided
and hence bdGi

(Y ) 6= bdG∗(Y ). From Lemma 6 we know that an unshielded
collider must exist over Y in G∗ for which at least one of the boundary nodes
are in C. From assumption 1 we also know that ∀cj ∈ C, such that bdGi(cj) 6= ∅,
bdGi

(cj) = bdG∗(cj) must hold for Gi and hence that bdGi
(Y ) = ∅ must hold. It

is now easy to see that chGi
(Y ) 6= ∅ must hold or line 3 would be applicable. In

general this also means that for all non-collided nodes cl ∈ C we must have that
chGi

(cl) 6= ∅ or line 3 would be applicable for that node.

Before we continue we will note two things (1) First that for every connected
set of nodes A ⊂ C, i.e. every A ⊂ C for which there exist a path between any
pair of nodes in the subgraph of G∗ induced by A, we must have that there
∃al ∈ A such that ∃R ∈ spG∗(al) and bdG∗(al) 6⊆ bdG∗(R)∪R. If this would not
be the case there would exist no unshielded collider over A. Hence there would
exist a MVR CG G′, such that I(G′) = I(G∗), where G′ has the same structure
as G∗ with the exception that A is a parent component of C \A in G′ instead of
in the same component as C \A as in G∗. This is of course a contradiction since
G′ would contain less arrowheads than G∗ and hence G∗ cannot be an essential
MVR CG. Similarly we can note (2) that ∃am ∈ A such that ∃P ∈ spG∗(am)
and bdG∗(P ) 6⊆ bdG∗(am) ∪ am or A could be a child component of C \ A and
the graph would still represent the same independence model.

Let B ⊂ C such that B forms a component in Gi. Obviously such a B must
exist or C would form one large component and hence Gi = G∗. From (2) we
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know there exists at least one node br ∈ B such that there ∃T ∈ paGi(br) ∩ C
such that bdG∗(T ) 6⊆ bdG∗(br) ∪ br. To see this let A in (2) take the form of
B. Then we know there exists a node am ∈ A such that ∃P ∈ spG∗(am) such
that bdG∗(P ) 6⊆ bdG∗(am) ∪ am. Obviously P ∈ spGi

(am) cannot hold, since P
then would belong to B, but since we know that ∀bk ∈ B bdGi(bk) = bdG∗(bk)
by assumption 1, and that P ∈ bdG∗(am), we can deduce that P ∈ paGi(am) ∪
nbGi

(am) must hold. This together with the fact that Gi does not contain any
undirected edges means that P ∈ paGi

(am). Hence there must exist a br taking
the form of am and T taking the form of P . Also note that if different nodes in
chGi(T ) belong to different components in Gi, then there must exist a node with
the same properties as br in all components. To see this note that chGi(T ) ⊆
spG∗(T ) and that all nodes in chGi

(T ) must have been collided according to
assumption 1. For the prerequisites of line 3 not to be fulfilled we know that
for some component D that contains a child of T we must have that ∀dk ∈ D
bdGi

(dk) ⊆ bdG∗(T )∪T must hold. Moreover, since dk must be collided we must
also have that bdGi(dk) = bdG∗(dk) and hence that bdG∗(dk) ⊆ bdG∗(T ) ∪ T
must hold. This in turn also means that ∀dk ∈ D dk ∈ chGi(T ) must hold. If
we let E = paGi

(D) ∩ C and F consist of all nodes em ∈ E such that ∃dn ∈ D
and bdG∗(em) 6⊆ bdG∗(dn) ∪ dn we can note that ∀fm ∈ F we must have that
∀dk ∈ D bdGi

(dk) ⊆ bdG∗(fm) ∪ fm and dk ∈ chGi
(fm) or the prerequisite for

line 3 must be fulfilled for a node fm. In addition, since dk must be collided
in Gi we must have that bdG∗(dk) ⊆ bdG∗(fm) ∪ fm holds. This does however
mean that F is complete and that ∀fm ∈ F D ∪ (E \ F ) ⊆ adG∗(fm) and
adG∗(D ∪ (E \ F )) ⊆ adG∗(fm) ∪ fm. This means that there exists no colliders
towards any node in D ∪ (E \ F ) from any other node in C. Hence we have a
contradiction with (1) since there then would exist an essential MVR CG G′

with the same structure as G∗ with the exception that D ∪ (E \ F ) are parents
of C instead of in C which contradicts that G∗ is an essential MVR CG. Hence
at least one of the nodes in F must be possible to collide which contradicts the
assumption. ut

Acknowledgments This work is funded by the Center for Industrial Informa-
tion Technology (CENIIT) and a so-called career contract at Linköping Univer-
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