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Abstract

We apply MCMC to approximately calculate
(i) the ratio of directed acyclic graph (DAG)
models to DAGs for up to 20 nodes, and (ii)
the fraction of chain graph (CG) models that
are neither undirected graph (UG) models
nor DAG models for up to 13 nodes. Our re-
sults suggest that, for the numbers of nodes
considered, (i) the ratio of DAG models to
DAGs is not very low, (ii) the ratio of DAG
models to UG models is very high, (iii) the
fraction of CG models that are neither UG
models nor DAG models is rather high, and
(iv) the ratio of CG models to CGs is rather
low. Therefore, our results suggest that (i)
when learning DAG/CG models, searching
the space of DAG/CG models instead of the
space of DAGs/CGs can result in a mode-
rate/considerable gain in efficiency, and (ii)
learning a CG model instead of an UG model
or DAG model can result in a substantially
better fit of the learning data.

1 INTRODUCTION

Probably the most common approach to learning di-
rected acyclic graph (DAG) models, also known as
Bayesian network models, is that of performing a
search in the space of either DAGs or DAG models.
In the latter case, DAG models are typically repre-
sented as essential graphs (EGs). Knowing the ratio
of DAG models to DAGs is a valuable piece of in-
formation when deciding which space to search. For
instance, if the ratio is low, then one may prefer to
search the space of DAG models rather than the space
of DAGs, though the latter is usually considered ea-
sier to traverse. Unfortunately, while the number of
DAGs for a given number of nodes can be computed
without enumerating them all (Robinson 1977), the

only method for counting DAG models we are aware
of is by enumeration. For instance, (Gillispie and Perl-
man 2002) counted the number of DAG models for up
to 10 nodes by enumerating all the EGs by means of a
computer program. Counting DAG models by enume-
rating EGs seems challenging for more than 10 nodes:
To enumerate all the EGs over 10 nodes, the computer
program in (Gillispie and Perlman 2002) needed 2253
hours in a ”mid-1990s-era, midrange minicomputer”.

We obviously prefer to know the exact ratio of DAG
models to DAGs for a given number of nodes rather
than an approximation to it. However, an approxi-
mate ratio may be easier to obtain and serve as well
as the exact one to decide which space to search. In
this paper, we propose a Markov chain Monte Carlo
(MCMC) approach to approximately calculate the ra-
tio while avoiding enumerating EGs. Our proposal
consists of the following steps. First, we construct a
Markov chain (MC) whose stationary distribution is
uniform over the space of EGs for the given number of
nodes. Then, we sample this stationary distribution
and compute the ratio of essential DAGs (EDAGs) to
EGs in the sample. Finally, we transform this approxi-
mate ratio into the desired approximate ratio of EGs
to DAGs. We report the so-obtained approximate ra-
tio for up to 20 nodes. The approximate ratios agree
well with the exact ones available in the literature, i.e.
for up to 10 nodes (Gillispie and Perlman 2002), and
suggest that, for up to 20 nodes, the ratio is not very
low. Furthermore, we transform the approximate ra-
tios of EGs to DAGs into approximate ratios of EGs
to undirected graphs (UGs) in order to show that, for
up to 20 nodes, there seems to be many more DAG
models than UG models.

In this paper, we also address the following question.
Chain graphs (CGs) include both UGs and DAGs and,
thus, they can represent at least as many independence
models as UGs and DAGs. Knowing the fraction of
CG models that are pure CG (PCG) models, i.e. that
are neither UG models nor DAG models, is a valuable



piece of information when deciding which class of gra-
phical models to use. For instance, if the fraction is
high, then one may prefer to use CG models rather
than UG models or DAG models. The only method
for computing the fraction we are aware of is by enu-
merating CG models and PCG models. However, this
seems a challenging approach for more than five nodes:
(Volf and Studený 1999) report the ratio of PCG mo-
dels to CG models for up to five nodes only, though
they used a computer program to enumerate all the
CG models and detect which are PCG models.

Again, we propose approximating the ratio of PCG
models to CG models rather than calculating it exactly
to avoid incurring prohibitive computational costs.
Specifically, we present a MCMC approach to estima-
ting the ratio while avoiding enumerating CG models.
Our proposal is based on the following steps. First,
we construct a MC whose stationary distribution is
uniform over the space of CG models, represented as
largest CGs (LCGs), for a given number of nodes.
Then, we sample this stationary distribution and com-
pute the ratio of pure LCGs (PLCGs) to LCGs in the
sample. We report the so-obtained approximate ratio
for up to 13 nodes. The approximate ratios agree well
with the exact ones available in the literature, i.e. for
up to five nodes (Volf and Studený 1999), and sug-
gest that, for up to 13 nodes, the ratio of PCG models
to CG models is considerably high. Furthermore, we
transform the approximate ratios of PLCGs to LCGs
into approximate ratios of LCGs to CGs in order to
show that, for up to 13 nodes, the ratio of CG models
to CGs is very low. Therefore, when learning CG mo-
dels, one may prefer to search the former space rather
than the latter.

The rest of the paper is organized as follows. We re-
view some key concepts in Section 2. Then, we des-
cribe our MCMC approach to estimate the ratio of
DAG models to DAGs and the ratio of PCG models
to CG models in Sections 3 and 4, respectively. Fi-
nally, we close with some discussion in Section 5.

2 PRELIMINARIES

The definitions and results in this section are borrowed
from (Andersson et al. 1997a, Lauritzen 1996, Volf
and Studený 1999). For the sake of readability, we
leave undefined some concepts that are not central to
this paper and, instead, refer the reader to the original
works for their definitions.

A path from X1 to Xn in a graph G is a sequence
of distinct nodes X1, . . . , Xn such that there exists
an edge in G between every two consecutive nodes in
the sequence. A cycle in G is a sequence of nodes
X1, . . . , Xn such that there exists an edge in G bet-

ween every two consecutive nodes in the sequence,
X1, . . . , Xn−1 are distinct, and Xn = X1. A path
from X1 to Xn in G is called descending if either
the undirected edge Xi − Xi+1 or the directed edge
Xi → Xi+1 is in G for i = 1, . . . , n− 1. A descending
path is called directed if it contains at least one direc-
ted edge. A path X1, . . . , Xn in G is called a complex
if the subgraph of G induced by the path looks like
X1 → X2−X3− . . .−Xn−2−Xn−1 ← Xn. A complex
is called an immorality if n = 3. A chain graph (CG)
is a graph containing (possibly) both undirected and
directed edges and no directed cycles. An undirected
graph (UG) is a CG containing only undirected edges.
A directed acyclic graph (DAG) is a CG containing
only directed edges.

An independence model is a set of independencies bet-
ween sets of random variables. The independence mo-
del represented by a CG G whose nodes are random
variables is the set of independencies of the form X is
independent of Y given Z such that Z blocks all the
paths from X to Y in the moral graph of the subgraph
of G induced by the smallest ancestral set containing
X ∪Y ∪ Z (Lauritzen 1996). An independence model
is called a CG/UG/DAG model if it can be represen-
ted by a CG/UG/DAG. A CG model that is neither
an UG model nor a DAG model is called a pure CG
(PCG) model.

Two CGs are called equivalent if they represent the
same independence model. It has been proven that
two CGs are equivalent iff they have the same adja-
cencies and complexes. Note that this implies that
there are not equivalent UGs. Every class of equiva-
lent CGs/DAGs and, thus, every CG/DAG model can
be uniquely represented by a CG, known as the largest
CG (LCG)/essential graph (EG), such that it contains
the directed edge X → Y iff all the CGs/DAGs in the
class contain X → Y , while it contains the undirected
edge X −Y iff some but not all the CGs/DAGs in the
class contain X → Y . A LCG is called a pure LCG
(PLCG) if it represents a PCG model. An EG is cal-
led an essential DAG (EDAG) if it is a DAG, i.e. if
it represents a class of equivalent DAGs with a single
member.

3 APPROXIMATE RATIO OF DAG
MODELS TO DAGS

We estimate the ratio of DAG models to DAGs for a
given number of nodes by estimating the ratio of EGs
to DAGs. For this purpose, we construct a MC over
the space of EGs for the given number of nodes with
the transition matrix defined as follows:

• Copy the current EG G into H, and choose uni-



formly and perform one of the following seven mo-
difications of H:

– No change: Keep H as it is.
– Add line: Choose two nodes X and Y of H

uniformly and with replacement. If X and Y
are distinct and non-adjacent in H then add
the undirected edge X − Y to H, otherwise
keep H as it is.

– Remove line: Choose two nodes X and Y of
H uniformly and with replacement. If X and
Y are distinct and the undirected edge X−Y
is in H then remove it from H, otherwise keep
H as it is.

– Add arrow: Choose two nodes X and Y of H
uniformly and with replacement. If X and Y
are distinct and non-adjacent in H then add
the directed edge X → Y to H, otherwise
keep H as it is.

– Remove arrow: Choose two nodes X and Y of
H uniformly and with replacement. If X and
Y are distinct and the directed edge X → Y
is in H then remove it from H, otherwise keep
H as it is.

– Add immorality: Choose three nodes X, Y
and Z of H uniformly and with replacement.
If X, Y and Z are distinct and pairwisely
non-adjacent in H then add the immorality
X → Y ← Z to H, otherwise keep H as it is.

– Remove immorality: Choose three nodes X,
Y and Z of H uniformly and with replace-
ment. If X and Y are distinct and the im-
morality X → Y ← Z is in H then remove
the directed edges X → Y and Z → Y from
H, otherwise keep H as it is.

• If H is an EG then move to H, otherwise stay in
G.

To check whether H is an EG, we make use of (An-
dersson et al. 1997a) which proves that H is an EG iff
(i) H is a CG, (ii) all the chain components of H are
chordal, (iii) H has no flags, and (iv) all the directed
edges in H are strongly protected.

We now show that the MC above is aperiodic, i.e.
there exists a strictly positive probability of remaining
in the current state, and irreducible, i.e. there exists a
strictly positive probability of reaching any state from
any other state. These two properties guarantee that
the MC has a unique stationary distribution to which
it converges when the number of transitions goes to
infinity (Häggström 2002). We also show that the uni-
form distribution is reversible for the MC, i.e. the pro-
bability of transition from an EG G to another EG H is
the same as the probability of transition from H to G.

This implies that the uniform distribution is the sta-
tionary distribution of the MC (Häggström 2002). The
MC is clearly aperiodic owing to the first modification
proposed above. Moreover, for any two EGs G and
H there exists a sequence of EGs starting with G and
ending with H such that every two consecutive EGs
in the sequence differ in exactly one undirected edge,
one directed edge, or two directed edges forming an
immorality (Andersson et al. 1997a, Perlman 2000).
Therefore, any EG can be reached from any other EG
by applying the last six modifications proposed above
and, thus, the MC is irreducible. If G and H are two
EGs such that G has one undirected edge more or less
than H, then the probability of transition from G to H
equals the probability of choosing the appropriate mo-
dification, i.e. 1

7 , times the probability of choosing the
appropriate nodes, i.e. 2

n2 for n nodes. Clearly, this is
the same as the probability of transition from H to G.
The same reasoning applies if G has one directed edge
or two directed edges forming an immorality more or
less than H. Consequently, the uniform distribution is
reversible for the MC.

Our MCMC approach to estimating the ratio of EGs to
DAGs for a given number of nodes consists in sampling
EGs uniformly by sampling the stationary distribution
of the MC above and, then, compute the ratio R of
EDAGs to EGs in the sample. Since the desired ratio
#EGs

#DAGs can be expressed as #EDAGs
#DAGs

#EGs
#EDAGs , then we

can approximate it by #EDAGs
#DAGs

1
R where #DAGs and

#EDAGs are computed via the recursive formulae in
(Robinson 1977, Steinsky 2003), respectively. Finally,
note that, strictly speaking, the EGs in the sample do
not really come from the stationary distribution of the
MC but from one, hopefully, close to it. Specifically,
each of these EGs is obtained as the state of the MC
after performing a large number of transitions. The
larger the number of transitions performed the better
because, as shown above, the MC converges to the
stationary distribution when the number of transitions
performed goes to infinity.

It is tempting to think that we do not need to construct
a MC with the properties above in order to sample an
EG uniformly and that, instead, it suffices to choose
any EG and randomly perturb it a random number
of times. However, the fact that it is impossible to
predict the so-obtained EG does not imply that we
are sampling an EG uniformly.

3.1 RESULTS

We report in Table 1 the approximate ratios of DAG
models to DAGs for up to 20 nodes that we have obtai-
ned via the MCMC approach described in the previous
section. Each approximate ratio reported is based on



Table 1: Exact and approximate ratios of DAG models to DAGs. Each entry of the table contains, in this order,
the exact/approximate ratio of DAG models to DAGs, the exact/approximate ratio of EDAGs to DAG models,
and the time required to compute them (in hours).

NODES EXACT APPROXIMATE

2 0.66667, 0.50000, 0.0 h 0.66007, 0.50500, 3.5 h

3 0.44000, 0.36364, 0.0 h 0.43704, 0.36610, 5.2 h

4 0.34070, 0.31892, 0.0 h 0.33913, 0.32040, 6.8 h

5 0.29992, 0.29788, 0.0 h 0.30132, 0.29650, 8.0 h

6 0.28238, 0.28667, 0.0 h 0.28118, 0.28790, 9.4 h

7 0.27443, 0.28068, 0.0 h 0.27228, 0.28290, 12.4 h

8 0.27068, 0.27754, 0.0 h 0.26984, 0.27840, 13.8 h

9 0.26888, 0.27590, 7.0 h 0.27124, 0.27350, 16.5 h

10 0.26799, 0.27507, 2253.0 h 0.26690, 0.27620, 18.8 h

11 0.26179, 0.28070, 20.4 h

12 0.26737, 0.27440, 21.9 h

13 0.26098, 0.28090, 23.3 h

14 0.26560, 0.27590, 25.3 h

15 0.27125, 0.27010, 25.6 h

16 0.25777, 0.28420, 27.3 h

17 0.26667, 0.27470, 29.9 h

18 0.25893, 0.28290, 37.4 h

19 0.26901, 0.27230, 38.1 h

20 0.27120, 0.27010, 40.3 h

a sample of 104 EGs, each obtained as the state of the
MC after performing 106 transitions with the empty
EG as initial state. For the sake of completeness, we
also report the approximate ratios of EDAGs to DAG
models obtained. Finally, we also report the time re-
quired to obtain each approximate ratio. The time is
given in hours and corresponds to a C++ implementa-
tion1 of the MCMC approach described above run on
a Pentium 2.4 GHz, 512 MB RAM and Windows 2000.
We also report in the table the exact ratios that are
available in the literature, i.e. for up to 10 nodes (Gil-
lispie and Perlman 2002). The times reported for the
exact ratios are borrowed from that work and corres-
pond to a computer program run on a ”mid-1990s-era,
midrange minicomputer”. Therefore, a direct compa-
rison to our times seems unadvisable.

The first conclusion that we draw from Table 1 is that
the approximate ratios are very close to the exact ones.
This makes us confident on the accuracy of the ap-
proximate ratios for 11 to 20 nodes, where no exact
ratios are available in the literature due to the high
computational cost involved in calculating them. Ano-
ther conclusion that we draw from the table is that the
ratio for 11 to 20 nodes seems to be between 0.258 and
0.271 and, thus, that it is not very low. This agrees
well with (Gillispie and Perlman 2002) where a ratio
around 0.267 is conjectured for more than 10 nodes by

1Available at http://www.ifm.liu.se/∼jmp.

extrapolating the exact ratios for up to 10 nodes. The-
refore, our results suggest that, for up to 20 nodes, the
size of the space of DAG models is not smaller than
one-forth of the size of the space of DAGs. It is also
worth mentioning that the exact and approximate ra-
tios of EDAGs to DAG models in the table indicate
that, for up to 20 nodes, the percentage of DAG mo-
dels that can be represented by a unique DAG is above
27 %, a substantial percentage.

Note that we can obtain approximate numbers of DAG
models for up to 20 nodes by just multiplying the ap-
proximate ratios of DAG models to DAGs in Table 1
by the numbers of DAGs, which can be computed via
the recursive formula in (Robinson 1977). This is equi-
valent to multiplying the inverse of the approximate
ratios of EDAGs to DAG models in the table by the
numbers of EDAGs, which can be computed via the
recursive formula in (Steinsky 2003). If we now divide
these approximate numbers of DAG models by the cor-
responding number of UG models, which is 2

n(n−1)
2 for

n nodes, we obtain approximate ratios of DAG models
to UG models for up to 20 nodes. These approximate
ratios are compiled in Table 2, together with the exact
ratios for up to 10 nodes. From the exact ratios, we can
see that DAGs are more expressive than UGs for up
to 10 nodes, as they allow representing more indepen-
dence models. Moreover, for up to 10 nodes, the num-
ber of DAG models increases faster with the number



Table 2: Exact and approximate ratios of DAG models
to UG models.

NODES EXACT APPROXIMATE

2 1.00000 0.99010

3 1.37500 1.36575

4 2.89063 2.87726

5 8.57617 8.61615

6 32.5874 32.4486

7 149.017 147.849

8 790.259 787.804

9 4747.80 4789.54

10 31801.1 31670.9

11 229632

12 1.89129×106

13 1.61273×107

14 1.54416×108

15 1.58964×109

16 1.62424×1010

17 1.91962×1011

18 2.25464×1012

19 2.99079×1013

20 4.05238×1014

of nodes than the number of UG models. According
to the approximate ratios obtained, these observations
seem to apply for up to 20 nodes. Note, however, that
not all the UG models are DAG models: An UG mo-
del with UG G is a DAG model iff G is decomposable
(Andersson et al. 1997b).

4 APPROXIMATE RATIO OF PCG
MODELS TO CG MODELS

We estimate the ratio of PCG models to CG models
for a given number of nodes by estimating the ratio
of PLCGs to LCGs. For this purpose, we construct a
MC over the space of LCGs for the given number of
nodes with the transition matrix defined as follows:

• Copy the current LCG G into H, and choose uni-
formly and perform one of the following seven mo-
difications of H:

– No change: Keep H as it is.
– Add line: Choose two nodes X and Y of H

uniformly and with replacement. If X and Y
are distinct and non-adjacent in H then add
the undirected edge X − Y to H, otherwise
keep H as it is.

– Remove line: Choose two nodes X and Y of
H uniformly and with replacement. If X and
Y are distinct and the undirected edge X−Y

is in H then remove it from H, otherwise keep
H as it is.

– Add arrow: Choose two nodes X and Y of H
uniformly and with replacement. If X and Y
are distinct and non-adjacent in H then add
the directed edge X → Y to H, otherwise
keep H as it is.

– Remove arrow: Choose two nodes X and Y of
H uniformly and with replacement. If X and
Y are distinct and the directed edge X → Y
is in H then remove it from H, otherwise keep
H as it is.

– Add complex: Choose four nodes X, Y , Z
and W of H uniformly and with replacement.
If X, Y , Z and W are (i) distinct with the
only exception that Y and W may be equal,
and (ii) neither X and Y nor X and Z nor
Z and W are adjacent in H, then add the
directed edges X → Y and Z → W to H,
otherwise keep H as it is.

– Remove complex: Choose four nodes X, Y , Z
and W of H uniformly and with replacement.
If X, Y , Z and W are (i) distinct with the
only exception that Y and W may be equal,
(ii) X and Z are non-adjacent in H, and (iii)
the directed edges X → Y and Z → W are
in H, then remove these two directed edges
from H, otherwise keep H as it is.

• If H is a LCG then move to H, otherwise stay in
G.

To check whether H is a LCG, we make use of (Volf
and Studený 1999) which proves that H is a LCG iff
it is a CG and all its directed edges are protected.

We now show that the MC above is aperiodic and irre-
ducible, and that the uniform distribution is reversible
for it. As discussed in Section 3, these three proper-
ties guarantee that the MC converges to the uniform
distribution when the number of transitions goes to in-
finity. To see that the MC satisfies the first and third
properties, we can apply the same reasoning as in Sec-
tion 3. To see that the MC satisfies the second pro-
perty, we resort to Theorem 1 in the appendix which
proves that for any two LCGs G and H there exists
a sequence of LCGs starting with G and ending with
H such that every two consecutive LCGs in the se-
quence differ in exactly one undirected edge, one di-
rected edge, or two directed edges forming a complex.
Therefore, any LCG can be reached from any other
LCG by applying the last six modifications proposed
above and, thus, the MC is irreducible. Note that the
last two modifications described above are more gene-
ral than adding and removing a complex, as they also



Table 3: Exact and approximate ratios of PCG models to CG models. Each entry of the table contains the
exact/approximate fractions of CG models that are, in this order, UG models, DAG models, both UG models
and DAG models, PCG models, and the time required to compute them (in hours).

NODES EXACT APPROXIMATE

2 1.00000, 1.00000, 1.00000, 0.00000 1.00000, 1.00000, 1.00000, 0.00000, 1.5 h

3 0.72727, 1.00000, 0.72727, 0.00000 0.73600, 1.00000, 0.73600, 0.00000, 1.9 h

4 0.32000, 0.92500, 0.30500, 0.06000 0.32200, 0.92700, 0.31100, 0.06200, 2.3 h

5 0.08890, 0.76239, 0.07136, 0.22007 0.08200, 0.76500, 0.07300, 0.22600, 2.8 h

6 0.02100, 0.56900, 0.01100, 0.42100, 3.4 h

7 0.00500, 0.40200, 0.00100, 0.59400, 4.2 h

8 0.00000, 0.30200, 0.00000, 0.69800, 5.1 h

9 0.00000, 0.19800, 0.00000, 0.80200, 6.4 h

10 0.00000, 0.13700, 0.00000, 0.86300, 8.2 h

11 0.00000, 0.06400, 0.00000, 0.93600, 12.5 h

12 0.00000, 0.05100, 0.00000, 0.94900, 12.9 h

13 0.00000, 0.04100, 0.00000, 0.95900, 19.2 h

allow adding and removing directed edges that neither
create nor destroy any complex.

Our MCMC approach to estimating the ratio of
PLCGs to LCGs for a given number of nodes consists
in sampling LCGs uniformly by sampling the statio-
nary distribution of the MC above and, then, compute
the ratio of PLCGs to LCGs in the sample. To check
whether a LCG is a PLCG, we make use of (Andersson
et al. 1997b) which proves (i) that a LCG represents
an UG model iff it has no complexes, and (ii) that a
LCG represents a DAG model iff the moral graph of
the subgraph of the LCG induced by the closure of
each of its chain components is decomposable.

4.1 RESULTS

We report in Table 3 the approximate ratio of PCG
models to CG models for up to 13 nodes that we have
obtained via the MCMC approach described in the
previous section. Each ratio reported is based on a
sample of 103 LCGs, each obtained as the state of the
MC after performing 107 transitions with the empty
LCG as initial state. For the sake of completeness, we
also report the fractions of CG models that are UG
models, DAG models, and both UG models and DAG
models. Finally, we also report the time required to
obtain each approximate ratio. The time is given in
hours and corresponds to a C++ implementation2 of
the MCMC approach described above run on a Pen-
tium 2.4 GHz, 512 MB RAM and Windows 2000. We
also report in the table the exact ratios that are avai-
lable in the literature, i.e. for up to five nodes (Volf
and Studený 1999). No times are reported in that
work.

2Available at http://www.ifm.liu.se/∼jmp.

The first conclusion that we draw from Table 3 is that
the approximate ratios are very close to the exact ones.
This makes us confident on the accuracy of the ap-
proximate ratios for six to 13 nodes, where no exact
ratios are available in the literature. Another conclu-
sion that we draw from the table is that, for up to 13
nodes, the ratio of UG models to CG models seems
to decrease very fast with the number of nodes. For
instance, the ratio seems to fall below 0.01 already for
seven nodes. On the other hand, the ratio of DAG mo-
dels to CG models for up to 13 nodes seems to decrease
slower with the number of nodes. This was expected,
since the results in Section 3.1 indicate that the ra-
tio of DAG models to UG models for up to 13 nodes
grows fast with the number of nodes. In any case, the
ratio of DAG models to CG models for up to 13 nodes
also seems to decrease rather rapidly with the number
of nodes. For instance, the ratio seems to be below
0.1 for 11 nodes. In other words, our results suggest
that the ratio of PCG models to CG models increases
rather fast with the number of nodes and, thus, that
CGs are considerably more expressive than UGs and
DAGs. For instance, the ratio seems to be above 0.5
already for seven nodes and above 0.9 for 11 nodes.
This is a strong argument in favor of using CGs for
representing independence models.

Note that we can obtain approximate numbers of CG
models for up to 13 nodes by just multiplying the in-
verse of the approximate ratios of UG models to CG
models in Table 3 by the corresponding number of UG
models, which is 2

n(n−1)
2 for n nodes. Alternatively, we

can multiply the inverse of the approximate ratios of
DAG models to CG models in the table by the num-
bers of DAG models, which are known for up to 10
nodes (Gillispie and Perlman 2002) or can be estima-



Table 4: Exact and approximate ratios of CG models
to CGs.

NODES EXACT APPROXIMATE

2 0.50000 0.50000

3 0.22000 0.22000

4 0.11848 0.11823

5 0.08077 0.08049

6 0.06414 0.06493

7 0.05690

8 0.04758

9 0.04592

10 0.04213

11 0.05610

12 0.04579

13 0.03541

ted for up to 20 nodes with the help of Table 1 as we
have described in Section 3.1. Furthermore, if we now
divide the so-obtained approximate numbers of CG
models by the corresponding number of CGs, which
can be computed via the recursive formula in (Steinsky
2003), we obtain approximate ratios of CG models to
CGs for up to 13 nodes. These approximate ratios are
compiled in Table 4, together with the exact ratios for
up to six nodes (Volf and Studený 1999). Clearly, the
ratio decreases with the number of nodes and becomes
lower than 0.1 already for five nodes. According to the
approximate ratios obtained, the ratio seems to conti-
nue decreasing for seven to 10 nodes. For 11 to 13
nodes, the ratio seems to be constant, though this is
unclear. Compare these results with those in Table 1,
which indicate that the ratio of DAG models to DAGs
is higher than 0.25 at least for up to 20 nodes. In sum-
mary, our results suggest that, for up to 13 nodes, the
size of the space of CG models is much smaller than
the size of the space of CGs and thus, when learning
CG models, it may pay off to search the former space
rather than the latter.

5 DISCUSSION

We have developed a MCMC approach to approxima-
tely compute the ratio of DAG models to DAGs and
the ratio of PCG models to CG models. We have re-
ported results for up to 20 nodes in the former case and
for up to 13 nodes in the latter case. Note that com-
puting the exact ratios is computationally costly and
that, as a consequence, they have never been compu-
ted for more than 10 nodes in the former case (Gillispie
and Perlman 2002) and five in the latter case (Volf and
Studený 1999). Therefore, our approach allows us to
trade off accuracy for speed. The conclusions that we
have drawn from the ratios reported are as follows. For

up to 20 nodes, (i) the size of the space of DAG models
is not smaller than one-forth of the size of the space of
DAGs, and (ii) DAGs can represent many more inde-
pendence models than UGs. For up to 13 nodes, (i) the
size of the space of CG models is much smaller than
the size of the space of CGs, and (ii) CGs are much
more expressive than UGs and DAGs. In more practi-
cal terms, our results suggest that (i) when learning
DAG/CG models, searching the space of DAG/CG
models instead of the space of DAGs/CGs can result
in a moderate/considerable gain in efficiency, and (ii)
learning a CG model instead of an UG model or DAG
model can result in a significantly better fit of the lear-
ning data, given the superior expressiveness of CG mo-
dels. We plan to develop and evaluate a MCMC algo-
rithm for learning CG models from data by searching
the space of LCGs. Specifically, we will consider the
modifications presented in Section 4 which, as proven
in Theorem 1 in the appendix, describe an aperiodic
and irreducible MC. This algorithm will be similar to
that proposed in (Andersson et al. 1997a, Madigan et
al. 1996) for learning DAG models by searching the
space of EGs via the modifications described in Section
3. Another topic for further research consists in im-
proving these two sets of modifications, because they
rather often produce a graph that does not belong to
the search space. This problem has been previously
pointed out by (Perlman 2000) for the modifications
in Section 3. Furthermore, (Perlman 2000) presents an
alternative set of modifications and claims that they
are more efficient. We have not implemented them
however, because no results supporting this claim are
reported in that work. Moreover, they are more diffi-
cult to implement than those in Section 3.

Finally, it is worth mentioning that there exist in the
literature some other MCMC approaches to approxi-
mate counting that may have been used in this work,
e.g. (Häggström 2002, Sinclair 1993). We have not
considered them however, because they seem more
costly and less accurate than ours.

APPENDIX

The following definitions and results are borrowed
from (Volf and Studený 1999). We use the terms
lines and arrows as synonyms of undirected and di-
rected edges, respectively. A route from X1 to Xn in a
graph G is a sequence of nodes X1, . . . , Xn such that
there exists an edge in G between every two consecu-
tive nodes in the sequence. A path is a route invol-
ving distinct nodes. A path X1, . . . , Xn in G is called
a complex if the subgraph of G induced by the path
looks like X1 → X2−X3 − . . .−Xn−2 −Xn−1 ← Xn.
The arrows X1 → X2 and Xn → Xn−1 are called com-
plex arrows. A descending route from X1 to Xn in G,



X1 Ã Xn, is a route from X1 to Xn in G such that ei-
ther the line Xi−Xi+1 or the arrow Xi → Xi+1 is in G
for i = 1, . . . , n−1. A node X is an ancestor of another
node Y in G if there exists a descending route X Ã Y
in G. An arrow X1 → Y1 in G covers another arrow
X2 → Y2 in G if X1 is an ancestor of X2 in G and Y2

is an ancestor of Y1 in G. If G is a CG, then an arrow
X1 → Y1 in G covers another arrow X2 → Y2 in G iff
there exists a descending route X1 Ã X2 → Y2 Ã Y1

in G, i.e. a descending route from X1 to Y1 contai-
ning the arrow X2 → Y2. An arrow is protected in G
if it covers a complex arrow in G. Note that all the
complex arrows in G are protected in G. A CG is a
LCG iff all its arrows are protected. We now prove the
following new result, which is similar to Propositions
4.5 and 3.1 in (Andersson et al. 1997a, Perlman 2000),
respectively, but for LCGs instead of EGs.

Theorem 1 For any two LCGs G and H there exists
a sequence of LCGs starting with G and ending with H
such that every two consecutive LCGs in the sequence
differ in exactly one undirected edge, one directed edge,
or two directed edges forming a complex.

Proof: Choose any non-complex arrow X1 → Y1 in
G and remove it from G. Call the resulting graph G1.
Clearly, G1 is a CG. Moreover, all the arrows in G1 are
protected. To see it, consider any non-complex arrow
X2 → Y2 in G1 and note that all the complex arrows
in G are complex arrows in G1. If X2 → Y2 does not
cover X1 → Y1 in G, then there exists a complex arrow
X3 → Y3 in G such that there exists a descending path
X2 Ã X3 → Y3 Ã X2 in G that does not include
X1 → Y1, because otherwise X2 → Y2 would cover
it in G. Therefore, such a descending path exists in
G1 and, thus, X2 → Y2 is protected in G1. On the
other hand, if X2 → Y2 covers X1 → Y1 in G, then
there exists a descending path X2 Ã X1 → Y1 Ã Y2

in G. Moreover, since X1 → Y1 covers some complex
arrow X3 → Y3 in G, the descending path above can be
modified into a descending route X2 Ã X1 Ã X3 →
Y3 Ã Y1 Ã Y2 in G that does not contain X1 → Y1.
Therefore, such a descending route exists in G1 and,
thus, X2 → Y2 is protected in G1. Consequently, G1

is a CG and all its arrows are protected in G1, which
implies that G1 is a LCG.

Repeat the step above while possible and call the re-
sulting LCG G2. Note that all the arrows in G2 are
complex arrows. Take the empty graph, which is a
LCG, add to it all the lines in G2, and call the resul-
ting graph G3. Each line addition produces a LCG
because the resulting graph is a CG with no arrows.
Take any complex in G2 that it is not already in G3

and add it to G3. Note that this can be accomplished
by simply adding to G3 either the two arrows forming

the complex or only one of the arrows if the other is
already in G3. Moreover, the complex addition pro-
duces a LCG because the resulting graph is a CG and
all its arrows are complex arrows, since no complex
previously added to G3 is destroyed because otherwise
it would not be a complex in G2. Continue adding
complexes to G3 while possible, i.e. until G3 coincides
with G2. So, we have proven that there exists a se-
quence of LCGs starting with G and ending with the
empty graph such that every two consecutive LCGs in
the sequence differ in exactly one undirected edge, one
directed edge, or two directed edges forming a com-
plex. Repeating the steps above for H instead of G
proves the theorem.
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