CAUSAL INFERENCE WITH GRAPHICAL MODELS

LAB

JOSE M. PEÑA
STIMA, IDA, LIU

To be done in pairs.
Submission: By e-mail to jose.m.pena@liu.se.
Deadline: See the course website.
(1) Consider the following causal model:

where Genotype is unobserved. Add to the model the variables Education, Age and ParentalEducation where the last two are unobserved. Add to the model the causal relations that you consider appropriate between the variables in each of the following pairs: $(E, S),(E, C),(A, E),(A, S),(P E, E)$ and $(P E, C)$. Project the resulting model onto the observed variables. Use the R package causaleffect to determine if the causal effect $p(C \mid d o(s))$ is identifiable. If so, report the corresponding expression.
(2) Repeat the exercise 1 without the variable $P E$ and its associated relations. Check if you obtain the same result and explain why or why not.
(3) Assume that we know that a natural phenomenon follows either the causal model

$$
\begin{aligned}
x & =u_{X} \\
y & =\alpha x+u_{Y}
\end{aligned}
$$

with $U_{X} \perp U_{Y} \mid \varnothing$, or the causal model

$$
\begin{aligned}
& x=\beta y+w_{X} \\
& y=w_{Y}
\end{aligned}
$$

with $W_{X} \perp W_{Y} \mid \varnothing$. Moreover, assume that U_{X}, U_{Y}, W_{X} and W_{Y} are normally distributed with unknown mean and variance each. Can observational data distinguish the two models ? If not, can interventional data do so ? If so, how many interventions (i.e., $d o(x)$ or $d o(y))$ are needed ?
(4) Repeat the exercise 3 assuming that $\alpha, \beta \geq 1$. Hint: Check the variances of X and Y.
(5) Repeat the exercise 3 assuming that U_{X} and U_{Y} have equal variance, and W_{X} and W_{Y} have also equal variance. Hint: Check the variances of X and Y.
(6) There is a treatment T for the disease D. However, the effectiveness of T depends on whether the patient has a rare condition C or not. Unfortunately, there is no way to know whether a patient has the condition or not. Specifically, the survival of a patient
(in years) is as follows:

$$
S \mid T, C \sim\left\{\begin{array}{l}
\mathcal{N}(4,1) \text { if } T=0 \text { and } C=0 \\
\mathcal{N}(8,1) \text { if } T=0 \text { and } C=1 \\
\mathcal{N}(7,1) \text { if } T=1 \text { and } C=0 \\
\mathcal{N}(5,1) \text { if } T=1 \text { and } C=1
\end{array}\right.
$$

and $p(C=0)=0.9$.
Mr. P suffered the disease, and his doctor decided to administer him the treatment. Mr. P died after 4.5 years. Would Mr. P have lived longer (in expectation) had the doctor not administered him the treatment ? Did the doctor act optimally (in expectation) according to the knowledge available when she took the decision ?

