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Counterfactuals

> A causal model consists of a DAG over V (a.k.a. causal structure), a set
of functions x; = fi(pai, u;) for each X; ¢ V (a.k.a. structural equations),
and a joint distribution p(u) over the error variables U; (a.k.a. unobserved
causes).

> A causal model defines a joint distribution over V:

p(v) = [Tp(xilpai) = 2T T L=t (par.unIp(u) = 2. plu).

{ul Ai xi=f (paj,u;) }

> An assighment U = u represents an individual or unit in the
population, or a situation in nature.

> Given some variables X ¢ V, the submodel M, of a causal model M is the
model resulting from deleting the edges into the variables in X, and
replacing the functions f; corresponding to the variables in X with the
constant functions X; = x;.

> The effect of an action do(x) on M is given by M.

> Given two sets of variables X, Y c V, the value of Y(u) in M is the
potential response of Y to an action do(x) in situation U = u, which we
denote as Y (u).

> The counterfactual sentence “The value that Y would have obtained in
situation U = u, had X been x" is interpreted as Y (u).

» Population intervention = do(x) = Yx # Yx(u) = unit intervention.



Counterfactuals

> Recall that we used counterfactuals to define direct and indirect effects:

TE(x,x*,Y)=E
CDE(x,x",Y)=E
NDE(x,x*,Y) =E

NIE(x,x*,Y)=E

Y- Y]
sz - Yx*z]
Yz, - Y]

Yz, — Yir ]

— o/ /o

> The expressions above are population-level effects. The unit-level effects
are given by the evaluating the expressions under the expectations as
functions of U, because the expectations are over U.



Counterfactuals
> The following quantities are well-defined:

p(Y=y)= > p(u)

Y@=y}
p(Ya=y)= > p(u)
{ulYx )=y}
p(Ya=y,X=x")= > p(u)
(Ul V() 2y AX (u)=x"}
p(Ya=y,Yo=y)= > p(u)

{ulYs(u)=ynY,s=y"}
despite Y and Y, cannot be observed simultaneously (multiple worlds).
> The following quantity is particularly interesting:

p(Yo=y'lxy)= > pluxy)
{ulY, o (u)=y"}
because the probability that X = x caused Y =y may be interpreted as
the probability that Y would not be y had X not been x, given that X = x
and Y =y have in fact occurred. This is important for diagnosis, planning
and determination of liability.
> Evaluating the expression above can be divided into three steps:
1. Update p(u) to obtain p(ulx,y) which is assumed to be invariant to the
hypothetical action in the next step,
2. modify M to obtain M,s, and
3. compute Y in M, with p(u|x,y) instead of p(u).



Counterfactuals

> Consider the following causal model:

(Encouragement) (Homework) (Exam score) YU
X a=05 H c=04 Y X
H=a-X+Uy
Y=b-X+c-H+Uy
b=07 oy, =0 forallij€ (X,H,Y)

> For a student named Joe, we have that X =0.5, H=1 and Y =1.5. What
would Joe's score have been, had he doubled his study time ?

> Note that the question is about (a subpopulation of) one individual, not
about the whole population (cf. do-calculus). However, the values of a, b
and c apply to the population, and Ux, Uy and Uy account for all
variation among the individuals in the population.

» The values of the unobserved variables for Joe (i.e., his specific
characteristics) are:

Uy = 0.5,
Uy =1-05-0.5=0.75, and
Uy=15-07-05-04-1=075.

> The answer is:
(Encouragement) (Homework) (Exam score)
X H=2 c=04 Y Yio(Uy = 05, Uy = 0.75,Uy = 0.75)

-~ =
=05-07+2.0-04+0.75
=190

b=0.7



Counterfactuals
> Consider the following causal model:
U, U,

X=U Z=aX+Uy,Y=bZ

x ¢ z b oy
(College)  (Skill) (Salary)
where X, U; and U are binary, whereas Z and Y are continuous.
> What is the expected salary of individuals with skill level Z =1, had they
received a college education ?
> Note that the question is about a subpopulation, not about the whole
population (cf. do-calculus). The values of a and b apply to the
population, and U; and U, account for all variation among the individuals.
» Assume that a=1. Note that Z =1 occurs only for (U1 =0, U, =1) and
(Ui =1,U> =0) with p(U1 =0)p(U> =1) and p(Ur =1)p(U> =0). Then:

ElYy lZ=11=b(1+ Pl = 0P = 1)
e PGt = 0)P(u> = 1) + P(uy = 1)P(u, = 0)
ElYyolZ=11=b P(u; = 0)P(u, = 1)
P(uy = 0)P(uy = 1) + P(u; = 1)P(u, = 0)

which implies that the expected salary of individuals with skill level Z =1
would have been higher had they gone to college than if not. This is to be
expected since some of these individuals did not attend college and, had
they done it, their skill would have been Z =2 and their salary Y = 2b.



Counterfactuals

U (Court order)

w
C (Captain)

'
a L<v B (Riflemen)

D (Death)

> If the prisoner is dead, what is the probability that he/she would be dead
even if rifleman A had not shot ? That is, we want p(Dz = d|D = d).

» Assumptions: The rifleman B is accurate and shots only if commanded.
The rifleman A is accurate and shoots when commanded or due to other
reasons, e.g. nervousness (W). Finally, U is unknown.

Model (M, P(u, w))

U, W)~ Plu,w) Pq ifu=1,w=1,

c=U (C) .
1- fu=1 w=0,
A=CvW (A Plu, w) = pit—a) va=nw
B=C (B) (1= plg ifu=0 w=1,
D=AvE (D) (l=—pil-gq) ifu=0 w=0.
Model (M-.4, P(u,w | D))

(U, W)~ Plu,w | D)
€=U (© Pluw p
A e P wipy= | T B lore =l
B=C (B) 1] if u=0and w=0.
D=AvEB (D)

q(—p)

P(D-a | D) = POV | D) = T — .



The Twin Network Method

> As seen, p(Dz = d|D = d) can be computed from p(u, w|d) in Ms.

> Alternatively, it can be computed as p(D* = d|D = d, A* = 3) in the twin
network. For this, we interpret the twin network as a causal model, which
defines a joint distribution over V U V*. Marginalization and conditioning

do the rest.
U (Court order)
w
C (Captain)
A B (Riflemen)
D (Death)

> More efficient methods exist (based on message passing, a.k.a.
sum-product algorithm).

> The advantage of the twin network method is that it avoids computing
p(ule), which may be time and space consuming, because the variables in
U may become dependent conditioned on E = e.



Counterfactual Back-Door Criterion

> A set of variables Z satisfies the back-door criterion wrt an ordered pair of
sets of variables (X, Y) in a causal structure G which may include
unobserved variables if
» Z contains no descendants of X, and
> Z blocks every path between X and Y that contains an arrow into X.

> If Z satisfies the back-door criterion wrt (X, Y), then
p(Ya=ylZ=2,X=x")=p(Ys=y|Z=2)

for all x, x" and z.

> Proof: Assume to the contrary that there is a path in the twin network
between X and Y = Yj that is not blocked by Z. The path must be of
the form X:-- < Us —» --Y* or X-++ < Us <> Ur — ---Y*. So, the original
network has a path X:-- <~ Us - ---Y or X--- « Us < Ur — ---Y that is not
blocked by Z. So, the original network has a path between X and Y that
contradicts the back-door criterion.

> The original front-door criterion can also be extended to counterfactuals.



Counterfactual Back-Door Criterion

Example 4.4.1 A government is funding a job training program aimed at getting jobless peo-
ple back into the workforce. A pilot randomized experiment shows that the program is effective;
a higher percentage of people were hired among those who finished the program than among
those who did not go through the program. As a result, the program is approved, and a recruit-
ment effort is launched to encourage I among the iployed, by offering the job
training program to any unemployed person who elects to enroll.

Lo and behold, enrollment is successful, and the hiring rate among the program’s graduates
turns out even higher than in the randomized pilot study. The program developers are happy
with the results and decide to request additional funding.

> Critics may say “The program works for randomly chosen people, but
those that enroll of their own initiative are more resourceful and, thus,
more likely to find a job regardless of the program. One needs to estimate
the hiring rate of the enrolled and compare it with what it would have
been had they not enrolled”.

» That is, they want to know the so-called effect of treatment on the
treated:

ETT = E[Yx-1 - Yx=o|X =1]
where X represents enrollment and Y is the hiring rate. Note that
ETT = E[Y|X =1] - E[ Yx=0|X =1]

by linearity of the expectation and E[Yx-1|X =1] = E[Y|X =1] by
consistency of counterfactuals, i.e. for the individuals that are observed
to have X =1, setting X =1 should produce no change.



Counterfactual Back-Door Criterion

> If we can find a set of nodes Z that satisfies the back-door criterion wrt
(X,Y), then

pP(Ye=y[X=x) =3 p(Ya=yIX=x',Z=2)p(Z = 2|X = X")
=2 p(Ya=ylZ=2)p(Z = 2]X =x)
=2 p(Ye=ylX=x,Z=2)p(Z=2X =x")

=3 p(Y=yX=x,Z=2)p(Z=2X=x)

by the counterfactual back-door criterion and the consistency of
counterfactuals, which implies that
E[Yx=0o|X =1] =Y E[Y|X =0,Z =z]p(Z = z|X = 1).

» Z is obtained by inspecting the causal model. Typically, it is age,
education, disposition, etc.



Counterfactual Back-Door Criterion

> Consider an intervention that adds g mg/| of insulin to a group of patients
with varying levels of insulin already in their systems. Can we estimate the
effect of this intervention 7

» Let X denote the current level of insulin, and Y the outcome variable.
Note that

E[Y|do(x+ q)] - E[Y|do(x)]

does not answer the question, because it corresponds to giving the same
amount of insulin to everyone. Precisely for this reason, do-calculus
cannot answer queries about personalized actions, i.e. queries where the
actions depend on the individual.

» The answer to the question above is

5 E[VxowrsglX = 1p(X = x) - E[V].

where E[Yx_x1q|/X = x'] can be estimated as seen before letting
x =x"+q, if we find a set of nodes that satisfy the the back-door criterion
wrt (X, Y). Again, Z is obtained by inspecting the causal model.
Typically, it is age, weight, genetic disposition, etc.

> A similar problem occurs when we want to estimate the effect of actions
on a subpopulation characterized by features that are affected by the
actions. In the homework encouragement example, the effect on test score
of sending lazy students to the encouragement program is
E[Yx:ﬂH < Ho], not E[Y|dO(X = 1),H < Ho].



Counterfactuals in Linear-Gaussian Causal Models
» In non-parametric causal models, E[Yx|z] may not be identifiable even if
we run experiments: We need the model's functional equations to
compute p(ulz) and the desired quantity in M.
> For that reason, in linear-Gaussian causal models, any counterfactual is
identifiable whenever the model parameters are identifiable, since these
fully define the model. The parameters are identifiable in experimental
studies by applying the definition of direct effect. The question is then
whether counterfactuals are identifiable in observational studies.
» If TE(X,Y) is identifiable, then E[Y|z] is identifiable as
E[Y«|z] = E[Y|z] + TE(X,Y)(x - E[X|z])
for any arbitrary set of nodes Z. In other words, it equals the best
prediction of Y given z plus the change expected in Y when X is shifted
from the predicted value to the hypothetical one.

> The result above allows us to compute the ETT in the homework
encouragement example:

ETT = E[Yxz1 - Yx=0|X =1] = E[ Yxz1|X = 1] = E[ Yx=0|X = 1]
=E[YIX=1]+TE(X,Y)(1-E[X|X =1])
—E[Y|X=1]-TE(X,Y)(0- E[X|X=1] = TE(X,Y).

In words, the ETT is equal to the effect of treatment on the entire

population. This is a general result for linear-Gaussian causal models, i.e.
it holds if we replace the evidence X =1 with any Z = z.



Axiomatic Characterization of Counterfactuals

>

Composition: Wi (u) = w = Y (u) = Yi(u), i.e. if we force W to take a
value that it would have had anyway, then this has no effect on the other
variables. Note that consistency follows from composition.

Effectiveness: Xy (u) = x, i.e. if we force X to take value x, then it will
take that value.

Reversibility: Yiw(u) =y A Wy (u) = Yi(u) =y, i.e. multiple solutions
due to feed-back loops are precluded. It follows from composition in
causal models without feed-back loops. It may not hold in a model with
feed-back loops if the model is too coarse. Adding missing factors to the
model restores reversibility.

The three properties above are sound and complete for the identification
of counterfactuals.

To apply the properties above for counterfactual identification, we have
first to translate the causal model into the language of counterfactuals
using the following two rules (which follow from y = fy (pay, uy)):
> Exclusion restrictions: Ypay (u) = Ypay,z(u) forall Y e Vand Zc V.
> Independence restrictions: Ypa, L {Z;-?Zl s le;azk} for all Y e V and
{Z',...,ZF} c V that is not connected to Y via paths containing only U
variables.
Unfortunately, unlike for do-calculus, there is no algorithm to apply the
properties above.



Axiomatic Characterization of Counterfactuals

a Ul (Unobserved)

-

% N
. N
L ’ ? U, N N Figure 7.5 Causal diagram illustrating the effect of smok-
’ ‘: ing on lung cancer.
X Y
Smoking Tarin Cancer
Lungs

Applying these two rules to our example, we see that the causal diagram in Figure 7.5
encodes the following assumptions:

Zx(w) = Zy:(u), (727
Xyu) = Xoy () = Xz (u) = X(u), (7.28)
Y (u) = Yix(u), (7.29)

Z, iy, X} (730)

Compute P(Z, = z) (i.e., the causal effect of smoking on tar).
P(Z, =2) = P(Z, =z |x) from (7.30)
= P(Z =z |x) by composition
= P(z | x). (7.3D)



Necessary and Sufficient Causes

> Let X and Y denote two binary variables, and x = y = true and
x" =y’ = false. The probability of necessity is

PN = p(yw|x,y)

i.e., the probability that the effect would be absent in the absence of the
cause, given that the cause and the effect were present, i.e. how necessary
the cause is for the production of the effect. E.g., how necessary the
treatment was for no recurrence of the disease.

> The probability of sufficiency is
PS = p(yIx',y")

i.e., the probability that the effect would be present in the presence of the
cause, given that the cause and the effect were absent, i.e. how sufficient
the cause is for the production of the effect. E.g., how sufficient the
treatment would have been for no recurrence of the disease.

> The probability of necessity and sufficiency is

PNS = p(yx, yxr)-
» Moreover, PNS = p(x,y)PN + p(x’,y")PS. Proof:
Y Ao = (B AYe) Axvx) = (Y Ax A ya) v (i ax ay')

by consistency of counterfactuals. Finally, take probabilities on both sides.



Necessary and Sufficient Causes
*> In general, we have that
max[0, p(yx) = p(yx)] < PNS < min[p(yx), p(yir)]-
» Under no-confounding (a.k.a. exogeneity), we have that
max[0, p(y|x) - p(y[x")] < PNS < min[p(y|x), p(y'|x")]

because p(yx) = p(y|x), and
_PNS L ips_ PNS
p(ylx) p(y'[x)

which provide corresponding bounds for PN and PS.

PN

» Monotonicity: Yi(u) > Y, (u) for all u, i.e. the effect would be present in
the presence of the cause, given that the effect is present in the absence of
the cause. E.g., the treatment does not produce the disease.

» Under no-confounding and monotonicity, we have that

PNS = p(y|x) - p(y|x")
nd (/) - p(ylx') (/1) - plylx')
_ PP = pUIX) | e PUYX) —p(yIX)
PN = =000 R VD)



Necessary and Sufficient Causes
» Under just monotonicity, we have that PNS, PN and PS are identifiable
whenever p(yx) and p(y,) are identifiable:
PNS = p(yx) = p(yx')
pN = PO = ply)
p(x,y)
ps - PUx) —p(y)
p(x',y")

> Moreover,

pn = PO = Plyr) _ plylx)p(x) + p(yIX)P(x") — P(ysr)

p(x,y) p(ylx)p(x)
_ Pyl = pylx’) _ pUyIx) = p(y)
p(ylx) p(ylx)p(x)

where the first term is PN under no-confounding, and the second term is a
correction for confounding, i.e. p(y|x') # p(y«). E.g., the first term
measures how much likely it is to recover under treatment, and the second
corrects for any confounding between treatment and recovery, e.g.
socio-economic factors.

> The expressions above become lower bounds in the non-monotonic case.



Necessary and Sufficient Causes

Consider the following data (Table 9.1, adapted 10 from Finkelstein and Levin 1990) com-
paring leukemia deaths in children in southern Utah with high and low exposure to radi-
ation from the fallout of nuclear tests in Nevada. Given these data, we wish to estimate
the probabilities that high exposure to radiation was a necessary (or sufficient, or both)
cause of death due to leukemia.

Exposure

High (x) Low (x)

Deaths (y) 30 16
Survivals (y") 69,130 59.010

Assuming monotonicity — that exposure to nuclear radiation had no remedial effect
on any individual in the study — the process can be modeled by a simple disjunctive mech-
anism represented by the equation

y=flx,u,q) = Ng) Vu, (944)

where u represents “all other causes” of y and where ¢ represents all “‘enabling” mecha-
nisms that must be present for x to trigger y. Assuming that ¢ and u are both unobserved,
the question we ask is under what conditions we can identify the probabilities of causa-
tion (PNS, PN, and PS) from the joint distribution of X and Y.



Necessary and Sufficient Causes

Assuming no-confounding, i.e. X 1{Q,U}:

30 16

- = 0.0001625, (9.45
30+ 69,130 16 + 59,010 ©.45)

PNS = P(y [ x) = P(y | x") =

PNS PNS

PN = =
P(y |x)  30/(30+ 69,130)

= 0.37535, (9.46)

PNS PNS

PS = =
1— P(y[x)  1—16/(16+ 59,010)

= 0.0001625. (9.47)

Statistically, these figures mean that:

1. There is a1.625 in ten thousand chance that a randomly chosen child would both
die of leukemia if exposed and survive if not exposed,

2. There isa 37.544% chance that an exposed child who died from leukemia would
have survived had he or she not been exposed;

3. Thereisa1.625in ten thousand chance that any unexposed surviving child would
have died of leukemia had he or she been exposed.



Necessary and Sufficient Causes

Enabling Factors Q: lRadialion

{
AND U Other Causes

Y Leukemia

Figure9.2 Causalrelationships in the radiation—leukemia example, where W represents confound-
ing factors.

Finally, Theorem 9.2.15 assures us that PN and PS are identifiable even when x is
not independent of {u, ¢}, provided only that the mechanism of (9.44) is embedded in a
larger causal structure that permits the identification of P(y,) and P(y,). For example,
assume that exposure to nuclear radiation (x) is suspect of being associated with terrain
and altitude, which are also factors in determining exposure to cosmic radiation. A model
reflecting such consideration is depicted in Figure 9.2, where W represents factors affect-
ing both X and U. A natural way to correct for possible confounding bias in the causal
effect of X on Y would be to adjust for W, that is, to calculate P(y,) and P(y,’) using
the standard adjustment formula (equation (3.19))

PO =Y PO Lx w)P@w),  Plyo) =Y Py [, w)Pw) 948)

w



The Ladder of Causation

3. COUNTERFACTUALS p(v) +G +f |

ACTIVITY:
QUESTIONS:

EXAMPLES:

Imagining, Retrospection, Understanding

Whatif 1 had dore ...7 Why?
(Was it X that caused Y? What if X had not
occurred? What if 1 had acted differently?)
Was it the aspirin that stopped my headache?
Would Kennedy £ Oswald had not
killed him? Whatif 1 had not smoked for the

last 2 years?

2. INTERVENTION p(v)+G |

ACTIVITY:
QUESTIONS:

EXAMPLES:

Doing, Intervening

Whatif 1do ... Hon?
(What would Y beif Tdo X2
How can 1 make Y happen?)

will my headache be cured?

1. ASSOCIATION p(v)

ACTIVITY:
QUESTIONS:

EXAMPLES:

Secing, Observing

Whatif Isee .7
(How are the variables related?
How would seeing X change my belief in Y?)

What does a symptom tell me about a disease?
What does a survey tell us about the
election results?
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