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Counterfactuals
▸ A causal model consists of a DAG over V (a.k.a. causal structure), a set

of functions xi = fi(pai ,ui) for each Xi ∈ V (a.k.a. structural equations),
and a joint distribution p(u) over the error variables Ui (a.k.a. unobserved
causes).

▸ A causal model defines a joint distribution over V :

p(v) =∏
i

p(xi ∣pai) = ∑
u

[∏
i

1xi=f (pai ,ui )]p(u) = ∑
{u∣ ⋀i xi=f (pai ,ui )}

p(u).

▸ An assignment U = u represents an individual or unit in the
population, or a situation in nature.

▸ Given some variables X ⊆ V , the submodel Mx of a causal model M is the
model resulting from deleting the edges into the variables in X , and
replacing the functions fi corresponding to the variables in X with the
constant functions Xi = xi .

▸ The effect of an action do(x) on M is given by Mx .

▸ Given two sets of variables X ,Y ⊆ V , the value of Y (u) in Mx is the
potential response of Y to an action do(x) in situation U = u, which we
denote as Yx(u).

▸ The counterfactual sentence “The value that Y would have obtained in
situation U = u, had X been x” is interpreted as Yx(u).

▸ Population intervention = do(x) = Yx ≠ Yx(u) = unit intervention.
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Counterfactuals

▸ Recall that we used counterfactuals to define direct and indirect effects:

TE(x , x∗,Y ) = E[Yx −Yx∗]

CDE(x , x∗,Y ) = E[Yxz −Yx∗z]

NDE(x , x∗,Y ) = E[YxZx∗
−Yx∗]

NIE(x , x∗,Y ) = E[Yx∗Zx −Yx∗]

▸ The expressions above are population-level effects. The unit-level effects
are given by the evaluating the expressions under the expectations as
functions of U, because the expectations are over U.
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Counterfactuals
▸ The following quantities are well-defined:

p(Y = y) = ∑
{u∣Y (u)=y}

p(u)

p(Yx = y) = ∑
{u∣Yx (u)=y}

p(u)

p(Yx = y ,X = x ′) = ∑
{u∣Yx (u)=y∧X(u)=x′}

p(u)

p(Yx = y ,Yx′ = y ′) = ∑
{u∣Yx (u)=y∧Yx′=y

′}

p(u)

despite Yx and Yx′ cannot be observed simultaneously (multiple worlds).
▸ The following quantity is particularly interesting:

p(Yx′ = y ′∣x , y) = ∑
{u∣Yx′ (u)=y

′}

p(u∣x , y)

because the probability that X = x caused Y = y may be interpreted as
the probability that Y would not be y had X not been x , given that X = x
and Y = y have in fact occurred. This is important for diagnosis, planning
and determination of liability.

▸ Evaluating the expression above can be divided into three steps:
1. Update p(u) to obtain p(u∣x , y) which is assumed to be invariant to the

hypothetical action in the next step,
2. modify M to obtain Mx′ , and
3. compute Y in Mx′ with p(u∣x , y) instead of p(u).
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Counterfactuals

▸ Consider the following causal model:

▸ For a student named Joe, we have that X = 0.5, H = 1 and Y = 1.5. What
would Joe’s score have been, had he doubled his study time ?

▸ Note that the question is about (a subpopulation of) one individual, not
about the whole population (cf. do-calculus). However, the values of a, b
and c apply to the population, and UX , UH and UY account for all
variation among the individuals in the population.

▸ The values of the unobserved variables for Joe (i.e., his specific
characteristics) are:

▸ The answer is:
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Counterfactuals
▸ Consider the following causal model:

where X , U1 and U2 are binary, whereas Z and Y are continuous.
▸ What is the expected salary of individuals with skill level Z = 1, had they

received a college education ?
▸ Note that the question is about a subpopulation, not about the whole

population (cf. do-calculus). The values of a and b apply to the
population, and U1 and U2 account for all variation among the individuals.

▸ Assume that a = 1. Note that Z = 1 occurs only for (U1 = 0,U2 = 1) and
(U1 = 1,U2 = 0) with p(U1 = 0)p(U2 = 1) and p(U1 = 1)p(U2 = 0). Then:

which implies that the expected salary of individuals with skill level Z = 1
would have been higher had they gone to college than if not. This is to be
expected since some of these individuals did not attend college and, had
they done it, their skill would have been Z = 2 and their salary Y = 2b.
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Counterfactuals

▸ If the prisoner is dead, what is the probability that he/she would be dead
even if rifleman A had not shot ? That is, we want p(Da = d ∣D = d).

▸ Assumptions: The rifleman B is accurate and shots only if commanded.
The rifleman A is accurate and shoots when commanded or due to other
reasons, e.g. nervousness (W ). Finally, U is unknown.
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The Twin Network Method

▸ As seen, p(Da = d ∣D = d) can be computed from p(u,w ∣d) in Ma.

▸ Alternatively, it can be computed as p(D∗
= d ∣D = d ,A∗ = a) in the twin

network. For this, we interpret the twin network as a causal model, which
defines a joint distribution over V ∪V ∗. Marginalization and conditioning
do the rest.

▸ More efficient methods exist (based on message passing, a.k.a.
sum-product algorithm).

▸ The advantage of the twin network method is that it avoids computing
p(u∣e), which may be time and space consuming, because the variables in
U may become dependent conditioned on E = e.
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Counterfactual Back-Door Criterion

▸ A set of variables Z satisfies the back-door criterion wrt an ordered pair of
sets of variables (X ,Y ) in a causal structure G which may include
unobserved variables if
▸ Z contains no descendants of X , and
▸ Z blocks every path between X and Y that contains an arrow into X .

▸ If Z satisfies the back-door criterion wrt (X ,Y ), then

p(Yx = y ∣Z = z ,X = x ′) = p(Yx = y ∣Z = z)

for all x , x ′ and z .

▸ Proof: Assume to the contrary that there is a path in the twin network
between X and Y ∗

= Yx that is not blocked by Z . The path must be of
the form X⋯ ← US → ⋯Y ∗ or X⋯ ← US ↔ UT → ⋯Y ∗. So, the original
network has a path X⋯ ← US → ⋯Y or X⋯ ← US ↔ UT → ⋯Y that is not
blocked by Z . So, the original network has a path between X and Y that
contradicts the back-door criterion.

▸ The original front-door criterion can also be extended to counterfactuals.
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Counterfactual Back-Door Criterion

▸ Critics may say “The program works for randomly chosen people, but
those that enroll of their own initiative are more resourceful and, thus,
more likely to find a job regardless of the program. One needs to estimate
the hiring rate of the enrolled and compare it with what it would have
been had they not enrolled”.

▸ That is, they want to know the so-called effect of treatment on the
treated:

ETT = E[YX=1 −YX=0∣X = 1]

where X represents enrollment and Y is the hiring rate. Note that

ETT = E[Y ∣X = 1] − E[YX=0∣X = 1]

by linearity of the expectation and E[YX=1∣X = 1] = E[Y ∣X = 1] by
consistency of counterfactuals, i.e. for the individuals that are observed
to have X = 1, setting X = 1 should produce no change.
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Counterfactual Back-Door Criterion

▸ If we can find a set of nodes Z that satisfies the back-door criterion wrt
(X ,Y ), then

p(Yx = y ∣X = x ′) = ∑
z

p(Yx = y ∣X = x ′,Z = z)p(Z = z ∣X = x ′)

= ∑
z

p(Yx = y ∣Z = z)p(Z = z ∣X = x ′)

= ∑
z

p(Yx = y ∣X = x ,Z = z)p(Z = z ∣X = x ′)

= ∑
z

p(Y = y ∣X = x ,Z = z)p(Z = z ∣X = x ′)

by the counterfactual back-door criterion and the consistency of
counterfactuals, which implies that

E[YX=0∣X = 1] = ∑
z

E[Y ∣X = 0,Z = z]p(Z = z ∣X = 1).

▸ Z is obtained by inspecting the causal model. Typically, it is age,
education, disposition, etc.
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Counterfactual Back-Door Criterion
▸ Consider an intervention that adds q mg/l of insulin to a group of patients

with varying levels of insulin already in their systems. Can we estimate the
effect of this intervention ?

▸ Let X denote the current level of insulin, and Y the outcome variable.
Note that

E[Y ∣do(x + q)] − E[Y ∣do(x)]

does not answer the question, because it corresponds to giving the same
amount of insulin to everyone. Precisely for this reason, do-calculus
cannot answer queries about personalized actions, i.e. queries where the
actions depend on the individual.

▸ The answer to the question above is

∑
x′

E[YX=x′+q ∣X = x ′]p(X = x ′) − E[Y ].

where E[YX=x′+q ∣X = x ′] can be estimated as seen before letting
x = x ′ + q, if we find a set of nodes that satisfy the the back-door criterion
wrt (X ,Y ). Again, Z is obtained by inspecting the causal model.
Typically, it is age, weight, genetic disposition, etc.

▸ A similar problem occurs when we want to estimate the effect of actions
on a subpopulation characterized by features that are affected by the
actions. In the homework encouragement example, the effect on test score
of sending lazy students to the encouragement program is
E[YX=1∣H ≤ H0], not E[Y ∣do(X = 1),H ≤ H0].
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Counterfactuals in Linear-Gaussian Causal Models
▸ In non-parametric causal models, E[Yx ∣z] may not be identifiable even if

we run experiments: We need the model’s functional equations to
compute p(u∣z) and the desired quantity in Mx .

▸ For that reason, in linear-Gaussian causal models, any counterfactual is
identifiable whenever the model parameters are identifiable, since these
fully define the model. The parameters are identifiable in experimental
studies by applying the definition of direct effect. The question is then
whether counterfactuals are identifiable in observational studies.

▸ If TE(X ,Y ) is identifiable, then E[Yx ∣z] is identifiable as

E[Yx ∣z] = E[Y ∣z] +TE(X ,Y )(x − E[X ∣z])

for any arbitrary set of nodes Z . In other words, it equals the best
prediction of Y given z plus the change expected in Y when X is shifted
from the predicted value to the hypothetical one.

▸ The result above allows us to compute the ETT in the homework
encouragement example:

ETT = E[YX=1 −YX=0∣X = 1] = E[YX=1∣X = 1] − E[YX=0∣X = 1]

= E[Y ∣X = 1] +TE(X ,Y )(1 − E[X ∣X = 1])

− E[Y ∣X = 1] −TE(X ,Y )(0 − E[X ∣X = 1] = TE(X ,Y ).

In words, the ETT is equal to the effect of treatment on the entire
population. This is a general result for linear-Gaussian causal models, i.e.
it holds if we replace the evidence X = 1 with any Z = z .
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Axiomatic Characterization of Counterfactuals
▸ Composition: Wx(u) = w ⇒ Yxw(u) = Yx(u), i.e. if we force W to take a

value that it would have had anyway, then this has no effect on the other
variables. Note that consistency follows from composition.

▸ Effectiveness: Xxw(u) = x , i.e. if we force X to take value x , then it will
take that value.

▸ Reversibility: Yxw(u) = y ∧Wxy(u) ⇒ Yx(u) = y , i.e. multiple solutions
due to feed-back loops are precluded. It follows from composition in
causal models without feed-back loops. It may not hold in a model with
feed-back loops if the model is too coarse. Adding missing factors to the
model restores reversibility.

▸ The three properties above are sound and complete for the identification
of counterfactuals.

▸ To apply the properties above for counterfactual identification, we have
first to translate the causal model into the language of counterfactuals
using the following two rules (which follow from y = fY (paY ,uY )):
▸ Exclusion restrictions: YpaY (u) = YpaY ,z(u) for all Y ∈ V and Z ⊆ V .
▸ Independence restrictions: YpaY ⊥{Z

1
pa

Z1
, . . . ,Z k

pa
Zk
} for all Y ∈ V and

{Z1, . . . ,Z k} ⊆ V that is not connected to Y via paths containing only U
variables.

▸ Unfortunately, unlike for do-calculus, there is no algorithm to apply the
properties above.



17/25

Axiomatic Characterization of Counterfactuals
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Necessary and Sufficient Causes
▸ Let X and Y denote two binary variables, and x = y = true and

x ′ = y ′ = false. The probability of necessity is

PN = p(y ′x′ ∣x , y)

i.e., the probability that the effect would be absent in the absence of the
cause, given that the cause and the effect were present, i.e. how necessary
the cause is for the production of the effect. E.g., how necessary the
treatment was for no recurrence of the disease.

▸ The probability of sufficiency is

PS = p(yx ∣x
′, y ′)

i.e., the probability that the effect would be present in the presence of the
cause, given that the cause and the effect were absent, i.e. how sufficient
the cause is for the production of the effect. E.g., how sufficient the
treatment would have been for no recurrence of the disease.

▸ The probability of necessity and sufficiency is

PNS = p(yx , y
′

x′).

▸ Moreover, PNS = p(x , y)PN + p(x ′, y ′)PS . Proof:

yx ∧ y ′x′ = (yx ∧ y ′x′) ∧ (x ∨ x ′) = (y ∧ x ∧ y ′x′) ∨ (yx ∧ x ′ ∧ y ′)

by consistency of counterfactuals. Finally, take probabilities on both sides.
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Necessary and Sufficient Causes

▸ In general, we have that

max[0,p(yx) − p(yx′)] ≤ PNS ≤ min[p(yx),p(y
′

x′)].

▸ Under no-confounding (a.k.a. exogeneity), we have that

max[0,p(y ∣x) − p(y ∣x ′)] ≤ PNS ≤ min[p(y ∣x),p(y ′∣x ′)]

because p(yx) = p(y ∣x), and

PN =
PNS

p(y ∣x)
and PS =

PNS

p(y ′∣x ′)

which provide corresponding bounds for PN and PS.

▸ Monotonicity: Yx(u) ≥ Yx′(u) for all u, i.e. the effect would be present in
the presence of the cause, given that the effect is present in the absence of
the cause. E.g., the treatment does not produce the disease.

▸ Under no-confounding and monotonicity, we have that

PNS = p(y ∣x) − p(y ∣x ′)

and

PN =
p(y ∣x) − p(y ∣x ′)

p(y ∣x)
and PS =

p(y ∣x) − p(y ∣x ′)

1 − p(y ∣x ′)
.
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Necessary and Sufficient Causes

▸ Under just monotonicity, we have that PNS, PN and PS are identifiable
whenever p(yx) and p(yx′) are identifiable:

PNS = p(yx) − p(yx′)

PN =
p(y) − p(yx′)

p(x , y)

PS =
p(yx) − p(y)

p(x ′, y ′)

▸ Moreover,

PN =
p(y) − p(yx′)

p(x , y)
=
p(y ∣x)p(x) + p(y ∣x ′)p(x ′) − p(yx′)

p(y ∣x)p(x)

=
p(y ∣x) − p(y ∣x ′)

p(y ∣x)
−
p(y ∣x ′) − p(yx′)

p(y ∣x)p(x)

where the first term is PN under no-confounding, and the second term is a
correction for confounding, i.e. p(y ∣x ′) ≠ p(yx′). E.g., the first term
measures how much likely it is to recover under treatment, and the second
corrects for any confounding between treatment and recovery, e.g.
socio-economic factors.

▸ The expressions above become lower bounds in the non-monotonic case.
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Necessary and Sufficient Causes
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Necessary and Sufficient Causes

Assuming no-confounding, i.e. X ⊥{Q,U}:
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Necessary and Sufficient Causes
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The Ladder of Causation
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